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Abstract: Meta-elliptical distributions are multivariate statistical models in which the dependence structure is governed
by an elliptical copula and where the marginal distributions are arbitrary. In this paper, goodness-of-fit tests are
proposed for the construction of an appropriate meta-elliptical model for multidimensional data. While the choice
of the marginal distributions can be guided by classical goodness-of-fit testing, how to select an adequate elliptical
copula is less clear. In order to fill this gap, formal copula goodness-of-fit methodologies are developed here around
the radial part that characterizes an elliptical distribution. The key idea consists in estimating its univariate distribution
function from a pseudo-sample derived from the original multivariate observations. Then, a Cramér–von Mises distance
between this non-parametric estimator and the expected parametric version under the null hypothesis is used as a test
statistic. An approximate p-value is obtained from an application of the parametric bootstrap. The method is extended
to the case where the elliptical generator has unknown parameters using a minimum-distance criterion. While a careful
investigation of the asymptotic behavior of the tests is not presented here, Monte–Carlo simulations indicate that the
methods have good sample properties in terms of size and power. The techniques are illustrated on the Danish fire
insurance, Upper Mississippi river, Oil currency and Uranium exploration data sets.

Résumé : Les lois méta-elliptiques sont des modèles statistiques multivariés dans lesquels la structure de dépendance
est gouvernée par une copule elliptique et où les distributions marginales sont arbitraires. Dans cet article, des tests
d’adéquation sont proposés afin de construire un modèle méta-elliptique approprié pour des données multidimen-
sionnelles. Alors que le choix des marges peut se faire via des tests d’adéquation classiques, comment sélectionner
une copule elliptique adéquate est moins clair. Pour combler ce manque, des méthodes d’adéquation formelles sont
développées ici autour de la partie radiale qui caractérise une loi elliptique. L’idée centrale consiste à estimer sa
fonction de répartition univariée à partir d’un pseudo-échantillon qui découle des observations multivariées originales.
Ensuite, on utilise comme statistique de test la distance de Cramér–von Mises entre cet estimateur non-paramétrique et
sa version attendue sous l’hypothèse nulle. Une p-valeur approximative est obtenue d’une application du bootstrap
paramétrique. La méthode est généralisée au cas où le générateur elliptique est à paramètres inconnus en utilisant un
critère à distance minimale. Bien que le comportement asymptotique des tests ne soit pas étudié ici, des simulations
Monte–Carlo indiquent que les méthodes possèdent de belles propriétés échantillonnales en termes de seuil et de
puissance. Les techniques sont illustrées sur les jeux de données “Danish fire insurance”, “Upper Mississippi river”,
“Oil currency” et “Uranium exploration”.
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Selection of a Meta-elliptical Distribution 79

1. Introduction

Following Cambanis et al. (1981), a random vector X ∈ Rd is said to be elliptically contoured if
its associated characteristic function is of the form

E
(

ei t>X
)
= exp

(
i t>µ

)
ϒ

(
1
2

t>Σ t
)
, (1)

where t = (t1, . . . , td)>, µ ∈ Rd is a mean vector and Σ ∈ Rd×d is a positive definite matrix;
the function ϒ : R+→ R is called the characteristic generator and is such that υ(t1, . . . , td) =
ϒ(t2

1 + · · ·+ t2
d) is a d-variate characteristic function. This class of multidimensional distributions

was first introduced by Kelker (1970) as a generalization of the classical Normal law, and
comprises in particular the spherical laws when µ = (0, . . . ,0)> ∈ Rd and Σ is the identity matrix.
The most notorious members of the general elliptical family are the multivariate Normal and
Student distributions. These models have proven useful for statistical modeling in situations where
alternatives to normality were needed, especially in finance and hydrology. Their success lies
mainly in that they allow for heterogeneous levels of dependence for the pairs, via the elements
of a covariance matrix, and several kinds of tail behaviors by means of the elliptical generator.
Among the many applications of elliptical distributions, one can cite Landsman and Valdez (2003)
for the computation of tail conditional expectations, and Owen and Rabinovitch (1983) in the
theory of portfolio choice.

Even if elliptical models are quite flexible, they nevertheless have the disadvantage that all
marginal distributions have the same analytical form up to location and scale factors. This can be
quite restrictive in situations where, for example, marginal tail behaviors are of a different nature,
some components being heavy tailed and others having light tails. A model-building strategy
that allows much more flexibility is to consider the copula of elliptically contoured distributions
combined with any choice of the marginal distributions. Of course, the starting point of this
approach is Sklar’s Theorem, who ensures that if the marginal distributions of a d-variate random
vector X = (X1, . . . ,Xd)

> are continuous, then there exists a unique copula CX : [0,1]d → [0,1]
such that for each x = (x1, . . . ,xd)

> ∈ Rd ,

P(X≤ x) =CX {P(X1 ≤ x1) , . . . ,P(Xd ≤ xd)} . (2)

When X is elliptically contoured, the function CX is called an elliptical copula. These dependence
functions are the key elements of the multivariate meta-elliptical distributions, which are the
multivariate probability laws whose underlying copula is elliptical. In other words, a random
vector Y = (Y1, . . . ,Yd)

> ∈Rd is said to be meta-elliptically distributed with marginal distributions
F1, . . . ,Fd if its copula CY belongs to the family of elliptical copulas. These models thus provide a
general framework where one can select arbitrary margins and where the dependence structure
is governed by a correlation matrix and an elliptical generator. As enlightened by Genest et al.
(2007), “Meta-elliptical models are a good compromise between convenience and flexibility.”
They appear in several contexts of multivariate statistical analysis. For example, Abdous et al.
(2005) studied their dependence properties in the bivariate case, Landsman (2009) used them to
model capital allocation and Wang et al. (2010) in multivariate modeling of hydrological data.

Despite the numerous successes in the application of meta-elliptical models, the problem
of selecting an appropriate elliptical copula is still an open problem. Up until now, only the
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80 J.-F. Quessy & R. Bellerive

methodology based on the empirical copula process (see Genest et al., 2009) and on Kendall’s
process (see Genest et al., 2006) have been suggested for the selection of a meta-elliptical model.
This has been done by Genest et al. (2007), where trivariate hydrological data were modeled.
However, the power properties of these tests have not been investigated for elliptical copulas.
Furthermore, these methods have been considered solely in cases where the elliptical generator is
entirely known, i.e. no parameter needs to be estimated.

In this paper, statistical tools for the construction of an appropriate meta-elliptical model are
proposed and their properties in small samples are investigated. While the selection of suitable
marginal distributions can be made by standard univariate goodness-of-fit methods (see Durbin,
1973, for example), how to thoroughly choose an elliptical copula isn’t as clear. In order to fill
this gap, a special focus is put here on the investigation of new goodness-of-fit tests specifically
designed to assess the quality of the fit of a given elliptical copula family on multivariate data.
The key idea exploits a characterization of elliptically contoured random vectors via their so-
called radial part. Both the cases where the radial part has an entirely known distribution and
a distribution with unknown parameters are explored. The latter situation enables to test, for
example, for a Student dependence structure without having to specify the number of degrees of
freedom. A graphical tool based on sample counterparts of the radial part is also proposed.

This paper is organized as follows. In Section 2, standard results on elliptical and meta-elliptical
families of distributions are reviewed; many members, including the Normal, Student and Pearson
type II distributions are described. Section 3 concerns the development of a goodness-of-fit
procedure for selecting an appropriate elliptical copula; simulation results indicate that the method
works well. In Section 4, the framework is extended in order to consider cases where the elliptical
generator has unknown parameters; the behavior of the proposed minimum-distance test statistic
in small samples is numerically studied as well. Section 5 reports the results of the statistical
analysis of four data sets in the light of the new tests. Final remarks are given in Section 6,
especially around the routes that should be followed in order to obtain the asymptotic behavior of
the newly introduced test statistics and to thoroughly validate the use of the parametric bootstrap
method. In view of the simulation results, one has all the reasons to believe that the test statistics
converge weakly and that the bootstrap is asymptotically valid.

2. The meta-elliptical family of dependence functions

2.1. Elliptically contoured distributions

Let X ∈ Rd be elliptically contoured, i.e. its characteristic function has the form (1). Following
the same line of work as Schoenberg (1938) on spherically symmetric distributions, Cambanis
et al. (1981) obtained that X admits the stochastic representation

X d
= µ +G AU , (3)

where µ ∈ Rd is the mean vector, the radial part G is a positive random variable, A ∈ Rd×d is
a (fixed) matrix such that AA> = Σ and U is a random vector uniformly distributed on the unit
sphere Sd−1 in Rd , i.e.

Sd−1 =
{

u = (u1, . . . ,ud)
> ∈ Rd : u>u = 1

}
.
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Selection of a Meta-elliptical Distribution 81

Note that if the distribution of G is standardized in such a way that E(G 2) = d, one has E{(X−
µ)(X−µ)>}= Σ, so that Σ corresponds to the covariance matrix of X. From equation (3),∥∥A−1 (X−µ)

∥∥2
= G 2 ‖U ‖= G 2, (4)

where ‖ · ‖ is the usual euclidian norm in Rd . Since in practice, one generally observes copies of
the random vector X, representation (4) enables to recover the radial part G that characterizes
an elliptical distribution. This simple observation is at the base of the statistical methodologies
developed in this paper. When G has a density, the density of X exists and is of the form

hµ,Σ,g(x1, . . . ,xd) = |Σ|−1/2 g
{

1
2
(x−µ)>Σ

−1 (x−µ)

}
, (5)

in terms of a density generator g : R+→ R+ standardized in such a way that∫
∞

0
γ

d
2−1g(γ)dγ =

Γ(d/2)
(2π)d/2 .

In the sequel, one notes X∼ E (µ,Σ,g) whenever X admits the representation (3).
The marginal distributions of elliptically contoured random vectors belong to the same location-

scale family whose standard cdf, which will be denoted Qg in the sequel, is part of the univariate
elliptical family. Using the transformation in polar coordinates described in the Appendix of the
article by Landsman and Valdez (2003), one deduces that the density associated to Qg is

qg(x) =
πd/2

Γ
(d−1

2

) ∫ ∞

x2

(
γ− x2) d−3

2 g
(

γ

2

)
dγ.

It is clear from (5) that elliptical distributions are symmetric about µ . This formula also entails that
the density of A−1 (X−µ) is g(x>x/2), from which it follows that the density and distribution
functions of the squared radial part G 2 are respectively

ψG 2(γ) =
πd/2

Γ(d/2)
γ

d
2−1g

(
γ

2

)
and ΨG 2(γ) =

πd/2

Γ(d/2)

∫
γ

0
s

d
2−1g

( s
2

)
ds.

Some of the most popular elliptical distributions are now described; see Fang et al. (1990) for
more details.

Example 1 (Normal and Student distributions). The multivariate Normal distribution, noted N,
arises when

g(γ) =
1

(2π)d/2 exp(−γ) .

In that case, G 2 is chi-squared distributed with d degrees of freedom and the marginal distribution
Qg in the standard case corresponds to that of the N (0,1) law, namely

Qg(x) = Φ(x) =
∫ x

−∞

1√
2π

e−s2/2 ds.
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82 J.-F. Quessy & R. Bellerive

A generalization of the Normal distribution often used in robustness studies of Gaussian-based
statistical methods (see Bilodeau and Brenner, 1999, for instance) is the multivariate Student
distribution. In that case, the elliptical generator is proportional to

gν(γ) =
(

1+
γ

ν

)− ν

2−1
,

where ν > 0 is often referred to as the number of degrees of freedom. The law of d G 2 is then the
Fisher–Snedecor distribution with d and ν degrees of freedom. The Student distribution will be
noted Tν for the remaining of the paper. The case ν = 1 corresponds to the Cauchy distribution.

Example 2 (Normal variance mixture models). The N and Tν distributions can be viewed as
particular cases of the general normal variance mixture models described, for example, by
Klüppelberg and Kuhn (2009). Random variables in this class admit the stochastic representation
X =
√

W AZ, where Z follows a d-dimensional standard Normal distribution and W is a non-
negative random variable. One can then show that G 2 =W Z>Z/E(W ), so that G 2 d

=W χ2
d/E(W ).

The Normal and Student laws appear when W ≡ 1 and 1/W d
= χ2

ν/ν , respectively. Other popular
models also possess this stochastic representation. For example, one recovers the multivariate
Laplace distribution when W is an exponential random variable; for more details, see e.g. Eltoft
et al. (2006).

Example 3 (Pearson type II). An elliptical distribution is said to be unbounded if any subset of Rd

has non-null probability; this is the case, in particular, for the Normal and Student distributions.
The bounded case happens whenever the elliptical generator is such that g(γ) = 0 for all γ

exceeding some constant K > 0. This property is shared by the Pearson type II distribution
(referred to as Peθ in the sequel) whose generator is

gθ (γ) =
Γ
(d

2 +θ +1
)

πd/2 Γ(θ +1)
(1−2γ)θ , γ ∈ [0,1/2],

where θ >−1. In that case,

qg(x) =
Γ
(d

2 +θ +1
)

√
π Γ
(d

2 +θ + 1
2

) (1− x2) d−1
2 +θ

, x ∈ [−1,1],

and one obtains that Qg(x) = {1 + sign(x)B(x2)}/2, x ∈ [−1,1], where B is the cdf of the
Beta

(1
2 ,

d+1
2 +θ

)
distribution. As a consequence, Q−1

g (u) = sign(2u−1)
√

B−1(|1−2u|). One
can also show that the distribution of G 2 is Beta

(d
2 ,θ +1

)
.

Example 4 (Exponential power family). Consider an elliptical generator proportional to

gθ1,θ2(γ) = exp
(
−θ1 γ

θ2
)
,

where θ1,θ2 > 0. One recovers the Normal distribution when θ1 = θ2 = 1 and Laplace’s distri-
bution when θ1 =

√
2, θ2 = 1/2. Another interesting sub-model is Kotz’s distribution (see Kotz,

1975) that arises when θ1 = θ and θ2 = 1, i.e. gθ (γ) ∝ exp(−θ γ). It is worth noting that θ1 only
acts here as a scale parameter, so that it has no influence on the underlying copula. The copula
associated with gθ1,θ2 is then the same as the one generated by gθ (γ) ∝ exp(−γθ ). In that case,

G 2 d
= Y 1/θ , where Y is Gamma distributed with parameters d/(2θ) and 2θ .
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Selection of a Meta-elliptical Distribution 83

2.2. Elliptical copulas and meta-elliptical models

Elliptical copulas are simply the dependence structures that one can extract from the distributions
of elliptically contoured random vectors. Since copulas are invariant under strictly increasing
transformations of the individual variables, the copula of X = (X1, . . . ,Xd)

> ∼ E (µ,Σ,g) is the
same as the copula of X̃∼ E (0,R,g), where R is the correlation matrix associated to Σ. Hence,
without loss of generality, one can assume that X ∼ E (0,R,g) in the sequel. Considering the
inverse version of Sklar’s representation in (2), the copula of X is then

CX(u) = P
{

X≤Q−1
g (u)

}
, u = (u1, . . . ,ud)

>,

where

Q−1
g (u) =

(
Q−1

g (u1), . . . ,Q−1
g (ud)

)>
is the vector of componentwise inverses of the marginal distributions. From (5), one then deduces
that the copula of X is

CR,g(u) = |R|−1/2
∫ Q−1

g (u1)

−∞

· · ·
∫ Q−1

g (ud)

−∞

g
(

1
2

x>R−1x
)

dx, (6)

from which it follows that the density of an elliptical copula is of the form

cR,g(u) = |R|−1/2 g
(

1
2

x̃>R−1x̃
)
,

where x̃ = Q−1
g (u). In Figure 1, one can see the copula density plots (i.e. the normalized ranks) of

the realization of 5 000 pairs from the T1, T3, T9, N, Pe1 and Pe5 elliptical distributions.
Elliptical copulas lead directly to the meta-elliptical family of models. Indeed, a random

vector Y = (Y1, . . . ,Yd)
> is said to have a meta-elliptical distribution with correlation matrix R,

generator g and marginals F = (F1, . . . ,Fd)
> if its underlying copula is CR,g; it will be noted Y∼

ME (R,g,F) in the sequel. The meta-Gaussian distribution seems to have been first considered
by Krzysztofowicz and Kelly (1996) and Kelly and Krzysztofowicz (1997); the idea was extended
to general meta-elliptical distributions by Fang et al. (2002).

The multidimensional probability integral transformation ensures that F(Y)∼CR,g, from which
it follows that

X̃ = Q−1
g ◦F(Y)∼ E (0,R,g). (7)

Therefore, a particular case of equation (4) with µ = (0, . . . ,0)> ∈ Rd yields

G̃ 2 = X̃>R−1X̃∼ΨG 2 . (8)

Equation (8) is at the basis of the goodness-of-fit procedures developed in the next two sections.
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84 J.-F. Quessy & R. Bellerive

Figure 1: Three-dimensional histograms of the realizations of 5 000 pairs from the T1 (upper left
panel), T3 (upper right panel), T9 (middle left panel), Normal (middle right panel), Pe1 (lower left
panel) and Pe5 (lower right panel) copulas when τ = .5.

3. Goodness-of-fit procedure in the case of a fixed generator

3.1. Context

Let Y1, . . . ,Yn, where Yi = (Yi1, . . . ,Yid)
>, be independent copies of a random vector Y ∈ Rd .

The aim of this section is to develop a statistical method for the null and alternative hypotheses

H0 : Y∼ME (R,g,F) and H1 : Y�ME (R,g,F) , (9)
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Selection of a Meta-elliptical Distribution 85

where R and F are unknown, while the elliptical generator g is entirely known. This setting
encompasses the cases where one wants to test for a meta-Gaussian distribution or a meta-Student
distribution with a fixed number of degrees of freedom. The assumption of a fixed generator is
relaxed in Section 4 in order to allow for parametric generators g = gθ , where θ ∈Θ is unknown.

The fact that the vector F is undetermined enables to infer on the dependence structure of Y
regardless of the marginal behavior of its components. In general, non-parametric estimation
of the marginal distributions uses empirical distribution functions, i.e. F is estimated by Fn =
(Fn1, . . . ,Fnd)

>, where for each j ∈ {1, . . . ,d},

Fn j(y) =
1
n

n

∑
i=1
I(Yi j ≤ y) .

A model-free estimation of the correlation matrix R can also be accomplished. This is described
in the next subsection.

3.2. Estimation of the correlation matrix

An interesting feature of elliptical copulas is the fact that the correlation matrix can be estimated
independently of the form of the elliptical generator g. The idea is to exploit a relationship that
exists between the entries of R and the value of Kendall’s measure of association for each of the
d(d−1)/2 pairs. Recall that Kendall’s tau for a random pair (Y1,Y2) is defined by

τ(Y1,Y2) = P{(Y11−Y21)(Y12−Y22)> 0}−P{(Y11−Y21)(Y12−Y22)< 0} ,

where (Y11,Y12) and (Y21,Y22) are independent copies of (Y1,Y2). For a meta-elliptically contoured
random vector Y∼ME (R,g,F), one deduces from Lindskog et al. (2003) and Fang et al. (2002)
that

τ(Yk,Y`) =
2
π

sin−1 (Rk`)

for each (k, `) such that k < ` ∈ {1, . . . ,d}. Then, if τn,k` is an empirical version of τ(Yk,Y`), the
correlation matrix R can easily be estimated by Rn = (Rn)k`, where

(Rn)k` = sin
(

π

2
τn,k`

)
. (10)

Usually, τn,k` is the U-statistic defined by

τn,k` =−1+
4

n(n−1) ∑
i< j

{
I
(
Yki < Yk j,Y`i < Y` j

)
+ I
(
Yki > Yk j,Y`i > Y` j

)}
,

which is unbiased for τ(Yk,Y`) and asymptotically Normal as n→ ∞; see the monograph by Lee
(1990) for a thorough overview of the theory of U-statistics. The estimation method in (10) was
employed by Genest et al. (2007) and Klüppelberg and Kuhn (2009). As a generalization of the
large-sample behavior of Kendall’s tau for a single pair, Klüppelberg and Kuhn (2009) obtained
that √

n(Rn−R) N d(d−1)
2

(0,Λ)
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86 J.-F. Quessy & R. Bellerive

for some asymptotic variance-covariance matrix Λ that depends on the parameters R and g of the
underlying elliptical copula CR,g. In Table 1, the results of a simulation study that aims to evaluate
the efficiency of Rn as an estimator of R are presented. To this end, let S ∈ Rd×d be a symmetric
matrix and define the mean of its off-diagonal elements by

L (S) =
2

d(d−1) ∑
k<`∈{1,...,d}

Sk`.

The mean-squared error criterion that was used in the investigation is

MSER(Rn) = E
{
(L (Rn)−L (R))2

}
and has been estimated by

M̂SER(Rn) =
1
N

N

∑
i=1
{L (Rni)−L (R)}2 ,

where for each i ∈ {1, . . . ,N}, the sample correlation matrix Rni is computed from a random
sample of size n from the E (0,R,g) distribution for a given elliptical model generated by g.
In our empirical study, only the equi-correlated case has been considered, i.e. Rk` = ρ for all
k < ` ∈ {1, . . . ,d}. Note that the entries in Table 1 correspond to the estimated standardized MSE,
i.e. n× M̂SER(Rn). One can see that the standardized MSE’s

(i) are quite equivalent for n = 100 and n = 250;

(ii) decrease monotonically as the strength of the pairwise dependence coefficient ρ increases
when d ∈ {2,3}; for d ∈ {4,5}, they are equivalent when ρ ∈ {1/4,1/2} and about half
lower when ρ = 3/4;

(iii) tend to be lower as the dimension d increases;

(iv) depend on the elliptical generator : the lowest values appear for the Pearson type II distribu-
tion, while under the Student model, they are higher for low values of ν and tend to the
values for the Normal distribution when ν ∈ {6,9}, as was expected.

3.3. Test statistic and parametric bootstrap

Under the null hypothesis H0 stated in equation (9), each component of the random sample
Y1, . . . ,Yn follows a ME (R,g,F) distribution. Hence, from equation (7), one has for each i ∈
{1, . . . ,n} that

X̃i = Q−1
g ◦F(Yi)∼ E (0,R,g).

However, since the vector of the marginal distributions F is unknown, X̃1, . . . , X̃n are unobservable.
One would rather work with the pseudo-sample X1,n, . . . ,Xn,n, where for each i ∈ {1, . . . ,n},

Xi,n = Q−1
g ◦Fn(Yi). (11)

Note that

Fn(Yi) =

(
Rank(Yi1)

n
, . . . ,

Rank(Yid)

n

)>
,
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Selection of a Meta-elliptical Distribution 87

TABLE 1. Estimation, based on 1 000 replicates, of n times the mean-squared error M̂SER(Rn) of Rn for estimating
the correlation matrix R in the equi-correlated case

d = 2 d = 3 d = 4 d = 5
Model ρ n = 100 n = 250 n = 100 n = 250 n = 100 n = 250 n = 100 n = 250

1/4 1.0703 1.0388 0.4800 0.4477 0.3118 0.2739 0.2464 0.2471
N 1/2 0.6267 0.6701 0.3920 0.3792 0.2860 0.2897 0.2582 0.2561

3/4 0.2342 0.2303 0.1517 0.1555 0.1240 0.1362 0.1130 0.1218

1/4 1.7105 1.7624 0.7896 0.7802 0.5111 0.5279 0.3864 0.3918
T1 1/2 1.2420 1.1652 0.6402 0.6761 0.5114 0.4782 0.4091 0.3926

3/4 0.5136 0.4710 0.3236 0.3305 0.2633 0.2638 0.2328 0.2321

1/4 1.2011 1.2695 0.5831 0.5946 0.3716 0.3887 0.3179 0.2808
T3 1/2 0.8690 0.8866 0.4808 0.4804 0.3757 0.3640 0.3184 0.3296

3/4 0.3356 0.3499 0.2224 0.2143 0.1904 0.1831 0.1544 0.1463

1/4 1.0920 1.1576 0.5013 0.4969 0.3350 0.3560 0.2830 0.2778
T6 1/2 0.7941 0.7371 0.4605 0.4266 0.3107 0.3270 0.2872 0.3062

3/4 0.2717 0.2670 0.1742 0.1944 0.1464 0.1568 0.1519 0.1384

1/4 1.0349 1.1108 0.5090 0.5119 0.3330 0.3376 0.2620 0.2718
T9 1/2 0.7330 0.6892 0.4164 0.4142 0.3161 0.3035 0.2757 0.2602

3/4 0.2664 0.2666 0.1722 0.1744 0.1468 0.1581 0.1409 0.1372

1/4 0.8081 0.7833 0.3983 0.3792 0.2906 0.2838 0.2189 0.2359
Pe1 1/2 0.5037 0.5175 0.3058 0.3027 0.2662 0.2599 0.2224 0.2094

3/4 0.1864 0.1580 0.1365 0.1260 0.1146 0.1133 0.1051 0.1021

1/4 0.9074 0.8476 0.4072 0.3966 0.2755 0.2744 0.2326 0.2134
Pe2 1/2 0.5513 0.5486 0.3335 0.3450 0.2582 0.2664 0.2381 0.2273

3/4 0.2077 0.1769 0.1343 0.1374 0.1230 0.1059 0.1032 0.1003

1/4 0.9727 0.9236 0.4414 0.4502 0.2666 0.2787 0.2204 0.2458
Pe5 1/2 0.6237 0.5920 0.3748 0.3450 0.3120 0.2752 0.2201 0.2439

3/4 0.2071 0.2044 0.1351 0.1339 0.1293 0.1160 0.1114 0.1067

where Rank(Yi j) is the rank of Yi j among Y1 j, . . . ,Yn j; it is then clear that the upcoming statistical
methods are entirely rank-based. Since Fn is a uniformly consistent estimator of F, it is expected
that Xi,n follows approximately a E (0,R,g) distribution. The construction of sample counterparts
of the random variable G 2 adds another level of complexity since R must be estimated, too.
Starting from equation (8) and admitting that

G 2
i,n = X>i,n R−1

n Xi,n (12)

for each i ∈ {1, . . . ,n}, one then has a pseudo-sample G 2
1,n, . . . ,G

2
n,n that should behave asymp-

totically like the random variable G 2. A non-parametric sample version of ΨG 2 would then
be

Ψn(γ) =
1
n

n

∑
i=1
I
(
G 2

i,n ≤ γ
)
.
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Showing thoroughly that Ψn is indeed a good estimator of ΨG 2 and that
√

n(Ψn−ΨG 2) converges
weakly to some limiting process are highly non-trivial problems that possibly require asymptotic
tools developed by van der Vaart and Wellner (2007) for empirical processes indexed by estimated
functions. Some remarks about these theoretical aspects, as well as other related issues, are given
in Section 6.

Reformulating the null and alternative hypotheses as H0 : G 2 ∼ ΨG 2 and H1 : G 2 � ΨG 2 ,
where ΨG 2 is associated to the E (0,R,g) distribution, a naturel test consist in rejecting H0 for
large values of the Cramér–von Mises distance between Ψn and ΨG 2 , namely

Vn = n
∫

∞

0
{Ψn(γ)−ΨG 2(γ)}2

ψG 2(γ)dγ.

One can easily show that

Vn =
n
3
+

n

∑
i=1

ΨG 2

(
G 2

i,n
)
− 1

n

n

∑
i=1

n

∑
j=1

{
ΨG 2

(
G 2

i,n∨G 2
j,n
)}2

.

Assuming that the underlying law that generates the data is meta-elliptical, a test based on Vn will
be consistent since G 2 characterizes elliptical distributions. Note that a test statistic similar to Vn

was proposed by Malevergne and Sornette (2003) in the special case of the Normal copula, where
ΨG 2 is the cdf of the chi-squared distribution with d degrees of freedom. Checking the Normal
copula hypothesis could also possibly be done using a rank-based version of the normality test
developed by Huffer and Park (2007).

The p-value of the test based on Vn will be computed by an application of the parametric
bootstrap method described next. Showing the asymptotic validity, as n→ ∞, of the algorithm
below could probably be obtained from results by Genest and Rémillard (2008). Based on the
simulation results presented in subsection 3.4, however, there is every reason to believe that the
method works well.

Algorithm 1. Given a random sample Y1, . . . ,Yn, the parametric bootstrap under the null
hypothesis H0 of a meta-elliptical distribution ME (R,g,F) consists in

(1) computing the sample correlation matrix Rn and the test statistic Vn from Y1, . . . ,Yn;

(2) generating, for a sufficiently large M ∈ N, independent random samples(
Y(1)

1 , . . . ,Y(1)
n

)
, . . . ,

(
Y(M)

1 , . . . ,Y(M)
n

)
from the E (0,Rn,g) distribution, and computing the test statistics V (1)

n , . . . ,V (M)
n associated

to each of these samples;

(3) obtaining the approximate p-value

pn,M =
1
M

M

∑
h=1
I
(

V (h)
n >Vn

)
.

An approximate confidence interval for ΨG 2 can be built from Algorithm 1 and the fact that√
n(Ψn−ΨG 2) converges weakly. Suppose one is seeking for a qα ∈ R+ such that

lim
n→∞

P
(√

n‖Ψn−ΨG 2‖∞
≤ qα

)
= 1−α,
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where 1−α is the desired confidence level. Take q̂α as the 100× (1−α)-th percentile of

√
n
∥∥∥Ψ

(1)
n −ΨG 2

∥∥∥
∞

, . . . ,
√

n
∥∥∥Ψ

(M)
n −ΨG 2

∥∥∥
∞

,

where Ψ
(h)
n is the empirical distribution function of G

(h)
1,n , . . . ,G

(h)
n,n computed from the parametric

bootstrap sample Y(h)
1 , . . . ,Y(h)

n . Then, the confidence band is defined for each x ∈ R+ by

CBα(x) =
[

Ψn(x)−
q̂α√

n
, Ψn(x)+

q̂α√
n

]
.

Remark 1. It is possible to extend the statistical method in this section to cases when the form of
ΨG 2 in the model E (0,R,g) is not explicit. The idea is to replace the test statistic Vn by

Vn,N = n
∫

∞

0
{Ψn(x)−ΨN(x)}2 dx,

where ΨN is the empirical distribution function of G 2
1,N , . . . ,G

2
N,N , where for each i ∈ {1, . . . ,N},

G 2
i,N = Y>i Yi and Yi ∼ E (0, Id ,g), with Id ∈ Rd×d the identity matrix. Note that one could also

use the weight function dΨN in the definition of Vn,N , but dx is chosen here for computational
convenience. In that case, one obtains a simple formula, namely

Vn,N =
2
N

n

∑
i=1

N

∑
j=1

(
G 2

i,n∨G 2
j,N
)
− 1

n

n

∑
i=1

n

∑
j=1

(
G 2

i,n∨G 2
j,n
)
− 1

n

N

∑
i=1

N

∑
j=1

(
G 2

i,N ∨G 2
j,N
)
.

The p-value can then be computed from a slight modification of Algorithm 1.

3.4. Investigation of the size and power of the test

The size and power of the test based on Vn have been investigated with the help of Monte-Carlo
simulations. The elliptical copulas considered under the null hypothesis are those extracted
from the T1, T3, T6, T9, N, Pe1, Pe2 and Pe5 distributions. The probability of rejecting the null
hypothesis is always estimated from 1 000 replicates and M = 1 000 bootstrap samples. In
addition to the eight elliptical models listed above, the non-elliptical Clayton (CL) and Gumbel–
Hougaard (GH) copulas were used as alternatives; see Nelsen (2006) for more details on these
two models. For the elliptical distributions, the parameter ρ ∈ {1/4,1/2,3/4} corresponds to the
correlation coefficient, i.e. R21 = R12 = ρ , while for the Clayton and Gumbel–Hougaard models,
ρ corresponds to Spearman’s rank correlation coefficient. The latter depends on the copula C of a
bivariate population via ρS = 12

∫ 1
0
∫ 1

0 {C(u,v)−uv}dudv.
The results for the bivariate case when n = 100 are reported in Table 2. One first sees that the

test keeps its 5% nominal level quite well under most of the considered scenarios. The power of
the test is also generally very good, which shows that the method discriminates well between the
various elliptical models. As expected, similar models are harder to distinguish, for example T3 vs
T6, T9 vs N and Pe1 vs Pe2. It is to note that the value of ρ has little influence on the power results.
The alternative model which is the most easily rejected is T1, even when the null hypothesis is the
closely related T3 distribution. As expected, two Student distributions are harder to distinguish
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when their associated number of degrees of freedom are relatively large, since then they are both
close to the Normal distribution. Finally, the probability of rejecting the null hypothesis when the
data come from the Clayton or the Gumbel–Hougaard copulas are generally high when the null
hypothesis is one of the Pearson type II distributions. For some reason, these departures from the
null hypothesis are not well detected when H0 is the T6 or T9 model. The results for n = 250, not
reported here, show that the power increases as n increases, as expected; see Bellerive (2012).

TABLE 2. Percentages of rejection, as estimated from 1 000 replicates, of the goodness-of-fit tests for bivariate
meta-elliptical models when n = 100

Model Model under H0
under H1 ρ T1 T3 T6 T9 N Pe1 Pe2 Pe5

1/4 5.9 84.6 98.1 99.0 99.9 100.0 100.0 100.0
T1 1/2 5.2 80.0 96.2 97.8 99.7 100.0 100.0 99.9

3/4 5.5 68.8 91.1 92.8 98.2 100.0 99.7 99.2

1/4 75.3 3.0 21.2 31.8 59.7 96.6 90.7 79.7
T3 1/2 69.3 6.6 21.3 29.7 58.8 95.3 85.3 80.2

3/4 59.4 5.3 17.4 30.0 54.7 95.1 86.0 75.4

1/4 94.0 8.1 4.7 8.8 23.3 80.1 64.2 42.8
T6 1/2 92.2 6.7 4.9 6.9 24.9 81.3 61.7 45.0

3/4 85.5 6.3 5.6 6.4 23.1 79.3 60.8 43.1

1/4 97.2 10.6 4.5 5.1 15.8 72.6 52.6 31.7
T9 1/2 96.1 10.4 4.4 4.9 14.6 70.4 47.0 27.7

3/4 93.9 7.0 4.4 5.1 13.0 69.5 47.8 28.3

1/4 99.5 25.7 8.3 3.8 5.5 44.2 23.7 11.3
N 1/2 99.6 25.7 6.0 4.4 4.4 44.5 19.7 10.2

3/4 98.4 17.0 5.7 5.1 4.9 43.7 18.5 10.8

1/4 100.0 81.1 45.3 34.3 14.8 4.8 5.8 7.6
Pe1 1/2 100.0 79.0 40.8 29.6 14.3 5.8 6.3 6.6

3/4 100.0 80.1 37.0 29.5 14.4 4.4 6.4 7.5

1/4 100.0 62.7 25.4 15.9 7.2 10.7 6.0 3.1
Pe2 1/2 100.0 64.5 24.3 17.5 6.8 10.7 4.2 6.4

3/4 100.0 59.0 21.4 15.6 6.9 10.2 4.9 3.4

1/4 99.9 41.6 13.9 7.7 4.4 22.7 11.8 5.2
Pe5 1/2 99.8 42.6 12.8 7.1 4.4 22.3 9.4 7.1

3/4 100.0 39.5 11.5 7.3 4.4 24.5 8.4 5.1

1/4 99.5 19.7 5.2 4.3 6.4 50.3 31.8 13.7
CL 1/2 98.9 18.0 3.1 5.1 8.3 57.8 36.2 20.1

3/4 97.9 13.2 4.4 4.2 10.4 63.4 37.7 22.9

1/4 98.3 11.5 3.5 4.1 12.8 68.4 43.9 26.9
GH 1/2 91.5 6.2 4.2 6.1 17.4 76.2 53.3 35.6

3/4 57.3 6.2 4.1 7.8 12.8 76.1 53.5 39.7
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The multivariate case has also been considered. In Table 3, the results are presented for
d ∈ {3,4} and the same alternatives that were used for the results presented in Table 2, except that
the Clayton and Gumbel–Hougaard copulas are now excluded. Only the case when n = 100 and
R is equi-correlated are presented here. Many of the comments stated for the results in Table 2
also apply here: the tests keep their 5% nominal level quite well, and the probabilities of rejection
are similar for the values of ρ that were considered. For a given scenario under H1, the power
tends to be higher in dimension d = 4 compared to d = 3. Finally note that the T1 model is highly
rejected for all the null hypotheses.

4. Goodness-of-fit procedure in the case of a parametric generator

4.1. A minimum-distance method

Suppose that the generator of an elliptical distribution depends on some unknown parameter
θ ∈Θ⊆ Rp, i.e. g = gθ . In that case, the null and alternative hypotheses are

H ?
0 : Y∼ME (R,gθ ,F) and H ?

1 : Y�ME (R,gθ ,F) ,

where R, θ and F are unknown. In what follows, one writes Qθ for the marginal distributions of
the elliptical law generated by gθ . A parametric version of (11) is then given by

Xi,n(θ) = Q−1
θ
◦Fn(Yi),

where Q−1
θ

= (Q−1
θ
, . . . ,Q−1

θ
)>, yielding the parametric pseudo-sample X1,n(θ), . . . ,Xn,n(θ). Sim-

ilarly, a parametric version of (12) is

G 2
i,n(θ) = Xi,n(θ)

>R−1
n Xi,n(θ),

where Rn is the estimator described in subsection 3.2. For a fixed value of θ , an empirical version
of the distribution ΨG 2(γ,θ) of the squared radial part G 2 under the model E (0,R,gθ ) is

Ψn(γ,θ) =
1
n

n

∑
i=1
I
{
G 2

i,n(θ)≤ γ
}
.

Since θ ∈Θ is unknown, the proposed goodness-of-fit procedure will be based on the minimum-
distance statistic

Wn = inf
θ∈Θ

Wn(θ),

where

Wn(θ) = n
∫

∞

0
{Ψn(γ,θ)−ΨG 2(γ,θ)}2

ψG 2(γ,θ)dγ

=
n
3
+

n

∑
i=1

ΨG 2

{
G 2

i,n(θ),θ
}
− 1

n

n

∑
i=1

n

∑
j=1

[
ΨG 2

{
G 2

i,n(θ)∨G 2
j,n(θ)

}
,θ
]2

is the Cramér–von Mises distance between Fn(γ,θ) and FG 2(γ,θ). In practice, Wn will be approx-
imated on a grid (θ1, . . . ,θT ) of Θ in such a way that

Wn ≈ min
θ1,...,θT∈Θ

Wn(θ).
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T
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T

9
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Pe1
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Pe5

1/4
3.8

97.0
100.0

100.0
100.0

100.0
100.0

100.0
5.4

99.3
100.0

100.0
100.0

100.0
100.0

100.0
T

1
1/2

4.5
95.2

100.0
100.0

100.0
100.0

100.0
100.0

4.0
98.7

100.0
100.0

100.0
100.0

100.0
100.0

3/4
4.2

88.3
98.6

99.6
100.0

100.0
100.0

100.0
3.2

94.5
99.7

100.0
100.0

100.0
100.0

100.0

1/4
98.3

5.1
37.8

58.2
91.0

100.0
99.9

98.1
99.8

4.9
49.8

72.8
98.3

100.0
100.0

99.9
T

3
1/2

96.7
3.7

38.7
55.4

90.4
99.9

99.7
98.0

99.8
3.3

46.0
70.8

98.0
100.0

100.0
99.9

3/4
93.3

4.1
26.2

46.8
84.6

99.9
99.8

97.4
99.2

4.3
37.0

61.9
95.7

100.0
100.0

99.6

1/4
100.0

16.6
4.9

12.1
48.0

98.5
95.5

82.3
100.0

29.8
5.2

13.5
69.0

99.7
98.7

93.3
T

6
1/2

99.9
17.0

5.3
11.0

46.6
96.7

94.3
81.7

100.0
30.8

6.0
13.0

66.8
99.5

99.3
94.2

3/4
99.7

14.8
4.8

10.7
44.8

97.2
91.9

77.0
100.0

30.7
4.8

10.5
58.7

99.8
98.6

89.4

1/4
100.0

30.8
5.6

6.0
27.3

94.4
86.3

60.9
100.0

61.2
6.5

4.4
42.3

98.1
94.4

78.2
T

9
1/2

100.0
32.7

4.1
5.1

26.0
93.2

87.3
62.6

100.0
57.0

5.2
4.4

41.2
98.3

95.7
76.2

3/4
100.0

27.8
5.0

6.1
23.9

93.8
82.2

57.2
100.0

55.8
8.2

4.7
33.0

98.0
95.2

72.5

1/4
100.0

75.1
23.6

10.2
5.0

63.6
44.0

17.5
100.0

98.2
47.5

16.7
5.4

72.3
50.7

19.8
N

1/2
100.0

76.9
19.9

7.8
5.4

65.9
44.3

19.5
100.0

97.0
44.9

18.8
6.4

74.5
57.9

18.2
3/4

100.0
68.9

19.0
10.4

3.7
65.7

38.8
16.4

100.0
96.6

43.5
17.9

5.2
74.6

54.0
20.7

1/4
100.0

100.0
97.5

89.2
51.0

5.8
9.9

22.4
100.0

100.0
99.9

99.5
77.7

4.2
14.1

43.1
Pe1

1/2
100.0

99.8
96.6

85.7
46.8

5.6
8.7

20.4
100.0

100.0
100.0

99.7
82.6

3.7
13.9

37.0
3/4

100.0
100.0

95.5
84.3

47.1
4.8

9.4
21.6

100.0
100.0

99.9
99.5

77.4
5.9

10.4
33.3

1/4
100.0

99.6
82.7

65.2
21.6

8.5
5.6

6.5
100.0

100.0
98.8

93.2
41.1

4.8
4.1

14.2
Pe2

1/2
100.0

99.8
80.8

62.5
23.2

7.8
5.4

8.9
100.0

100.0
98.9

92.5
44.1

5.6
4.8

12.6
3/4

100.0
99.6

82.3
59.9

21.6
6.2

5.5
7.5

100.0
100.0

98.5
92.8

43.8
5.5

5.3
12.4

1/4
100.0

95.5
53.3

29.2
5.8

28.2
14.1

6.0
100.0

100.0
88.1

65.0
13.2

24.7
11.8

4.5
Pe5

1/2
100.0

95.6
52.1

30.1
6.9

28.7
12.8

6.2
100.0

100.0
88.7

60.8
12.2

26.0
14.1

4.5
3/4

100.0
95.3

50.4
28.0

6.3
26.4

11.9
5.3

100.0
99.9

88.0
61.5

13.3
26.0

11.2
5.4
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An estimator of θ that is implicit in the definition of Wn is

θn = argmin
θ∈Θ

Wn(θ). (13)

In order to compute a p-value for the test based on Wn, an extension of the parametric bootstrap
described in Algorithm 1 is needed; it is described next.

Algorithm 2. Given a random sample Y1, . . . ,Yn, the parametric bootstrap under the null
hypothesis H ?

0 of a meta-elliptical distribution ME (R,gθ ,F) consists in

(1) computing the sample correlation matrix Rn, the estimator θn and the test statistic Wn from
Y1, . . . ,Yn;

(2) generating, for a sufficiently large M ∈ N, independent random samples(
Y(1)

1 , . . . ,Y(1)
n

)
, . . . ,

(
Y(M)

1 , . . . ,Y(M)
n

)
from the E (0,Rn,gθn) distribution, and computing the test statistics W (1)

n , . . . ,W (M)
n associ-

ated to each of these samples;

(3) obtaining the approximate p-value

p?n,M =
1
M

M

∑
h=1
I
(

W (h)
n >Wn

)
.

In the light of the empirical results presented in the next subsection, this algorithm works well.

4.2. Investigation of the power of the test

The power of the test based on Wn has been investigated when H ?
0 is either the Student or

the Pearson type II copula. The alternatives are Student copulas with ν ∈ {1,3,6,9} degrees
of freedom and Pearson type II copulas with θ ∈ {1,2,5}. The results for n ∈ {50,100} and
d ∈ {2,3} are in Table 4. When d = 3, the elliptical models under which the data are simulated
are restricted to the equi-correlated case R12 = R13 = R23 = 1/2.

One can say that the tests keep their 5% nominal level very well when the null hypothesis is a
Student copula. The tests are not as good under Pearson type II alternatives when n = 50, but it
improves markedly when n = 100. Concerning the power of the tests, it obviously increases as
the sample size increases. It is very high when testing for a Pearson type II copula under Student
alternatives, both in the bivariate and in the trivariate case. Of course, the power decreases as the
number of degrees of freedom increases, since then it gets closer to the limiting Normal case.
The power of the test is not as good when testing for a Student copula under Pearson type II
alternatives. It is significantly higher in dimension d = 3 compared to d = 2.

Results not presented here show that under Normal alternatives, the rejection rates are not
as close to 5% as one could expect. It can be explained by the fact that the test statistic Wn is
evaluated on a grid, so strictly speaking, the Normal case which occurs as the parameter value
tends to infinity is not considered. It is recommended to test the Normal copula hypothesis using
Vn in a first step, and then test for a general Student and / or Pearson type II dependence structures
only in case it is rejected.
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TABLE 4. Percentages of rejection, as estimated from 1 000 replicates, of the goodness-of-fit tests for the parametric
meta-elliptical models T and Pe in the equi-correlated case with ρ = 1/2 for d ∈ {2,3} when n ∈ {50,100}

n = 50 n = 100
d = 2 d = 3 d = 2 d = 3

Model Model under H0 Model under H0 Model under H0 Model under H0
under H1 T Pe T Pe T Pe T Pe

T1 6.0 95.8 6.0 98.7 4.7 99.5 6.1 100.0
T3 4.2 58.1 6.6 66.2 8.0 71.1 5.0 96.7
T6 4.7 35.4 8.8 34.2 3.3 41.4 4.6 70.6
T9 5.7 25.3 7.7 23.3 3.8 25.8 3.5 54.6

Pe1 15.3 8.0 54.1 10.2 33.4 6.4 88.9 9.1
Pe2 11.4 7.7 32.4 7.3 19.5 4.1 62.5 3.9
Pe5 7.9 8.0 19.2 6.5 9.8 4.4 29.8 6.0

5. Illustrations on real data

5.1. The Danish fire insurance data

These data consists of n= 2 167 insurance claims relative to fire losses collected at the Copenhagen
Reinsurance Company covering the years 1980–1990. This data set has been considered by
Rytgaard (1996) and Embrechts et al. (1997), among others. Here, an observation refers to a loss
of property and a loss of contents. When only the non-zero values are taken into account, this
results in a data set of n = 604 pairs. The scatter plot and density plot of the normalized ranks are
presented on Figure 2.
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Figure 2: Scatterplot (left panel) and density plot (right panel) of the normalized ranks for the
Danish insurance data set.

In order to find a suitable elliptical copula for these data, the test based on the statistic Vn has
been applied for various models; the results of the analysis are presented in the left part of Table 5.
From the entries therein, the T6, T9 et Normal models are not rejected at the 5% significance
level. These results are somewhat confirmed by the test based on Wn, where the Student model
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Figure 3: Probability that both claims in the Danish fire insurance data set exceed x0 (in millions
of Euros).

is highly accepted (Wn = 0.0208, p?n,M = 0.979, θn = 10.75), while the Pearson type II copula
is also accepted, but with a much smaller p-value (p?n,M = 0.088). It the latter case, the fact that
θn = 15 indicates that a Normal dependence structure would probably be suitable.

TABLE 5. Results of the goodness-of-fit tests on the Danish fire insurance and Upper Mississippi river data sets for the
null hypothesis of a meta-elliptical distribution with a fixed generator (p-values and critical values estimated from
M = 1 000 parametric bootstrap samples)

Model Danish fire insurance data Upper Mississippi river data
under H0 Vn p-value Critical value Vn p-value Critical value

T1 1.7674 < 0.01 0.1228 13.5651 0.0520 14.1875
T3 0.2074 0.0040 0.1252 9.2496 0.0800 11.8633
T6 0.0400 0.7300 0.1178 7.6496 0.1040 13.7071
T9 0.0220 0.9760 0.1224 7.1185 0.1040 10.5601
T15 0.0233 0.9760 0.1149 6.7834 0.0400 6.2213

N 0.0516 0.5810 0.1176 6.7896 0.0760 8.3766

Pe1 0.4882 < 0.01 0.1223 9.9542 0.0680 11.8050
Pe2 0.2853 < 0.01 0.1235 8.4941 0.1080 11.8820
Pe5 0.1370 0.0270 0.1176 7.7326 0.0560 9.6842
Pe10 0.0866 0.1960 0.1240 7.9703 0.0800 9.4569

In order to achieve a complete modeling, appropriate marginal distributions must be formally
selected once a suitable copula has been chosen. This step can be accomplished using a minimum-
distance approach similar to that employed in Section 4 for the choice of a parametric elliptical
copula. To describe the method briefly, let F(y,β ) be a univariate distribution function, where
β ∈B, and suppose one wants to test for H0 : F ∈ {F(·,β );β ∈B} and H1 : F /∈ {F(·,β );β ∈B}
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on the basis of Y1, . . . ,Yn i.i.d. F . First define

Sn(β ) = n
∫
R
{Fn(y)−F(y,β )}2 dF(y,β ),

and consider the goodness-of-fit test statistic and estimator

Sn = inf
β∈B

Sn(β ) and βn = argmin
β∈B

Sn(β ).

The null hypothesis can be rejected whenever Sn exceeds a critical value estimated from an
application of the parametric bootstrap. See Boos (1981) and Parr and Schucany (1982) for more
details about this minimum-distance goodness-of-fit method in the univariate case.

Of a particular interest for insurers is the probability that the two claims exceed some large
value x0 simultaneously, i.e. P(X > x0,Y > x0). From Sklar’s Theorem, one can write

P(X > x0,Y > x0) = 1−FX(x0)−FY (x0)+C{FX(x0),FY (x0)} ,

where FX , FY are the marginal distributions. In view of the histograms of both variables (not
presented here), exponential distributions could possibly be appropriate models for the individual
random variables. Considering a bivariate Normal copula Cρ for modeling the dependence in the
pair, which is radially symmetric, the probability is estimated by

P(X > x0,Y > x0) =Cρn

(
e−x0/λ̂X ,e−x0/λ̂Y

)
,

where ρn = 0.67, λ̂X = 2.35 and λ̂Y = 0.86. The graphic of this probability as a function of x0 is
presented in Figure 3. As one can see, the probability of both claims exceeding five million Euros
is very close to 0 under this model. Of course, another choice of a copula and / or margins would
have an influence on this probability.

5.2. The Upper Mississippi river data

The Mississippi river crosses the United States (US) from the North (state of Minnesota) to
the South (state of Louisiana), where it discharges water into the Gulf of Mexico. This river
is part of the Jefferson–Missouri–Mississippi system that drains about 40% of the US territory.
Here, a data set built by Ghizzoni et al. (2012) will be analyzed in the light of our goodness-of-
fit methods for the selection of an elliptical copula. The latter is based on a large database of
simultaneous measures of discharge taken at d = 18 stations on the upper part of the Mississippi
river from the years 1943 to 2008. The goal of Ghizzoni et al. (2012) was to fit either the Student
copula (combined with log-normal and generalized extreme-value marginals) or the skew Student
distribution to n = 89 selected events. However, no formal test was applied in order to validate or
discard these models. Using a two-step maximum likelihood approach called the inference for
margins method (see Joe, 2005), where some chosen parametric marginal distributions are first
estimated and then plugged into the full likelihood, they obtained ν̂ = 9.43 for the number of
degrees of freedom of the Student copula.

The results of the statistical analysis based on the test statistic Vn are presented in the right
part of Table 5. Since the estimated correlation matrix Rn was singular, a modified version was
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used instead. Indeed, two among the eighteen eigenvalues in the diagonal matrix D, such that
Rn = V DV>, were slightly negative. This problem has been overcome by using a variation of
the method proposed by Higham (2002) that consists in replacing D by D̃ in which the negative
eigenvalues are replaced by some small value, in this case .01. The resulting matrix R̃n =V D̃V>

is positive definite and appears to be the closest, with respect to the euclidian norm, to Rn in
the space of positive definite matrices. The results in Table 5 are quite congruent with those of
Ghizzoni et al. (2012). In fact, all the Tν copulas that were tested were accepted at the 5% level
(except the T15 copula); however, the p-values are only slightly larger than .05. These findings
are also to be shaded by the fact that all the Pearson type II copulas were also accepted. It just
illustrates the general difficulty of using goodness-of-fit methods to distinguish between various
models in small data sets. Such disappointing results were also obtained by Genest et al. (2007)
for a trivariate data set of size n = 47. When testing for the hypothesis of a Student copula model
with an unknown number of degrees of freedom, the minimum-distance statistic yields Wn = 7.65,
p?n,M = 0.14 and θn = 3.5; for the parametric Pearson type II model, Wn = 7.11, p?n,M = 0.09 and
θn = 17.00. Once again, both models are accepted by a small amount, in conformity with the
results for a fixed generator.

5.3. The Oil currency data

This data set consists of daily log-returns of the oil price, Standard & Poor’s 500, and of six
currency exchange rates from May 1985 to June 2004. It has been analyzed by Klüppelberg and
Kuhn (2009) to illustrate their newly introduced copula structure analysis. When considering
the last n = 904 observations, these authors concluded to the rejection of the Normal copula
and to the acceptance of a Student dependence structure using a goodness-of-fit test introduced
by Berg and Bakken (2007). Based on our results presented on the left part of Table 6, the T15
copula is clearly the right choice. Indeed, all other models considered are strongly rejected. When
performing the minimum-distance test for a global Student dependence structure, one obtains
Wn = 0.0264, p?n,M = 1 and θn = 16.00. These conclusions agree with that observed within the
graphics of Ψn versus ΨG 2 . Those when the null hypothesis is the N, T6, T16 and Pe2 copulas are
presented in Figure 4.

5.4. The Cook & Johnson data set revisited

As a final illustration, the Uranium exploration data set originally considered by Cook and
Johnson (1981, 1986) was analyzed. These d = 7 dimensional data consist of 655 chemical
analyses from water samples collected from the Montrose quadrangle of western Colorado (USA).
Concentrations were measured for uranium, lithium, cobalt, potassium, caesium, scandium and
titanium. A pair-by-pair copula modeling has been considered by Genest et al. (2006) for many
Archimedean copula families.

In view of results in the right part of Table 6, the Student copulas with ν = 6 and ν = 9
degrees of freedom are not rejected at the 5% level, while the other models are clearly rejected.
Again, these results are confirmed by the test based on Wn, where the parametric Student model
is accepted (Wn = 0.0197, p?n,M = 0.995, θn = 7.75) and the Pearson type II copula is rejected
(Wn = 4.3232, p?n,M < 0.01). A T8 copula would then be suitable for these data.
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Figure 4: Plot of Ψn (dashed lines) and ΨG 2 for the N (upper left panel), T6 (upper right panel),
T16 (lower left panel) and Pe2 (lower right panel) elliptical copulas for the Oil currency data set.

TABLE 6. Results of the goodness-of-fit tests on the Oil currency and Uranium exploration data sets for the null
hypothesis of a meta-elliptical distribution with a fixed generator (p-values and critical values estimated from
M = 250 parametric bootstrap samples)

Model Oil currency data Uranium exploration data
under H0 Vn p-value Critical value Vn p-value Critical value

T1 45.1691 < 0.01 0.2922 22.1950 < 0.01 0.3361
T3 8.6763 < 0.01 0.2480 2.7615 < 0.01 0.2225
T6 1.7985 < 0.01 0.2127 0.1422 0.1810 0.2052
T9 0.4727 < 0.01 0.2179 0.0526 0.8670 0.2029
T15 0.0308 1.0000 0.2368 0.4561 < 0.01 0.2256

N 1.0803 < 0.01 0.3109 2.2810 < 0.01 0.2617

Pe1 14.0350 < 0.01 0.9329 13.3178 < 0.01 0.7454
Pe2 9.7005 < 0.01 0.7094 9.8694 < 0.01 0.5670
Pe5 5.1667 < 0.01 0.5022 6.0796 < 0.01 0.4297
Pe10 3.1627 < 0.01 0.3912 4.3359 < 0.01 0.3485
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6. Final remarks

In this work, statistical methodologies for the selection of an appropriate elliptical copula have
been developed. The test statistics that have been proposed are constructed from pseudo-copies
of the non-observable i.i.d. random variables G 2

1 , . . . ,G
2
n , where G 2

i = X>i R−1 Xi, with Xi =
Q−1

g ◦F(Yi). To this end, the original observations Y1, . . . ,Yn were transformed to the scale of a
given elliptical distribution E (0,R,g) via Xi,n = Q−1

g ◦Fn(Yi) and a version of G 2
i was defined as

G 2
i,n = X>i,nR−1

n Xi,n. Obtaining the asymptotic behavior of statistical methods based on such data
dependent random variables is a very challenging problem that requires a careful treatment.

The first step would be to investigate the asymptotic behavior of
√

n(Ψn−ΨG 2). This could
possibly be done in the light of results by van der Vaart and Wellner (2007) on empirical processes
indexed by estimated functions. Following their main idea, write

√
n(Ψn−ΨG 2)=An1+An2+An3,

where

An1(γ) =
1√
n

n

∑
i=1

{
I
(
G 2

i ≤ γ
)
−ΨG 2(γ)

}
,

An2(γ) =
1√
n

n

∑
i=1

{
I
(
G 2

i,n ≤ γ
)
−P
(
G 2

i,n ≤ γ
)}
− 1√

n

n

∑
i=1

{
I
(
G 2

i ≤ γ
)
−P
(
G 2

i ≤ γ
)}

and An3(γ) =
√

n
{

P
(
G 2

i,n ≤ γ
)
−P
(
G 2

i ≤ γ
)}

. From standard theory, An1 converges weakly to a
ΨG 2-Brownian bridge. Regularity conditions on dΨG 2 and on the conditional distribution of Y
given G 2 = X>R−1 X with X = Q−1

g ◦F(Y) will be needed in order that supγ∈R+ |An2(γ)| → 0 in
probability. The asymptotic behavior of An3 will be a consequence of the Hadamard differentiabil-
ity of the map Φ(F,R) = P{Q−1

g ◦F(Y)>R−1 Q−1
g ◦F(Y)≤ γ}.

The asymptotic behavior of Wn = infθ∈ΘWn(θ) could probably be derived from the general
results by Pollard (1980) on minimum-distance statistics. Letting θ0 be the true parameter value
and assuming that the weak convergence of

√
n{Ψn(γ,θ0)−ΨG 2(γ,θ0)} to some limiting process

holds, regularity conditions on ∂ΨG 2(γ,θ)/∂θ should entail the weak convergence of Wn. Finally,
the validity of the parametric bootstrap method for the computation of p-values should follow
from arguments similar as those in Genest and Rémillard (2008) under regularity conditions on
the estimator Rn.
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