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Abstract: We compare three approaches to estimate the distribution of extreme rainfall at ungauged sites. Two
approaches rely on the univariate generalized extreme value distribution (GEV). SIGEV interpolates linearly the GEV
parameters estimated locally. RFA is a regional method which builds circular homogeneous neighborhood around each
site in order to increase the sample size. The observations in the neighborhood, properly normalized, are assumed
to follow the same GEV distribution. Then the normalizing factor (called the index value) has to be interpolated
to ungauged sites. The third method is the stochastic hourly rainfall generator called SHYPRE. By characterizing
precisely rainfall events, SHYPRE is able to simulate long rainfall series with statistics similar to the observed series.
The distribution of extreme rainfall is estimated empirically from the simulated series. The three approaches are
evaluated and compared on datasets from over 1000 rain gauges in the South of France. The evaluation framework that
we follow is based on the computation of high-level quantiles and aim at assessing the goodness-of-fit of the three
approaches and their sensitivity to the training data. Our conclusions are threefold : SIGEV, as implemented, should
be avoided because of its lack of robustness, RFA and SHYPRE despite the fact that they are based on very different
hypotheses on rainfall provide comparable performance and finally, the main challenge regarding the estimation at
ungauged sites concerns the spatial interpolation of the parameters, whatever the approach taken.

Résumé : Nous comparons trois approches pour l’estimation de la distribution des pluies extrêmes en des sites non-
jaugés. Deux de ces approches reposent sur la loi des valeurs extrêmes généralisée (GEV). La méthode SIGEV interpole
linéairement les paramètres de la GEV estimés localement aux sites jaugés. RFA est une méthode régionale qui définit
des voisinages homogènes circulaires autour de chaque site ce qui permet d’augmenter la taille de l’échantillon. En
effet, RFA fait l’hypothèse que les observations aux stations du voisinage suivent la même loi GEV à un facteur de
normalisation près. Ce facteur, appelé index value doit être interpolé aux sites non-jaugés. La troisième approche
se base sur un générateur de pluie horaire appelé SHYPRE. À l’aide d’un caractérisation précise des événements
pluvieux, SHYPRE est en mesure de simuler de longues séries de pluie ayant des statistiques semblables aux séries
d’observations. Ces trois approches sont évaluées et comparées sur un jeu de données comprenant plus de 1000 stations
dans le sud de la France. La comparaison des méthodes repose sur le calcul de quantiles de haut niveau et a pour but
d’évaluer la justesse et la sensibilité des méthodes. Nos conclusions sont les suivantes : SIGEV tel que mis en oeuvre
ne devrait pas être retenu en raison de son manque de robustesse, RFA et SHYPRE ont des performances comparables
bien que ces méthodes soient très différentes et nous concluons que le défi le plus important à relever pour ces trois
approches réside dans l’interpolation spatiale des paramètres.
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1. Introduction

The South of France includes three mountain ranges : the Pyrenees in the West along the Spanish
border with a peak at 3 404 m, the Massif central, a smooth mountain range which lies at the
North of the Mediterranean coast and peaks at 1 885 m and the Alps, a great mountain range
at the border with Switzerland and Italy with many peaks higher than 4 000 m. The region is
subject, on one hand, to the Atlantic oceanic climate from the West and, on the other hand, to the
Mediterranean climate from the South. The complex orography together with the combination of
oceanic and Mediterranean influences explain the high variability of rainfall in the region and
the occurrence of intense rainfall events which may trigger floods and landslide with dramatic
human and material consequences (Delrieu et al. (2005)). Hence, the analysis of extreme rainfall
is a critical step in the design of civil engineering structures (e.g. dams, reservoirs and bridges) or
for urban and landscape planning.

Extreme value theory (EVT – Coles (2001)) provides the proper parametric framework to
model the distribution of extremes. The Generalized Extreme Value (GEV) distribution is often
employed to model annual maxima of rainfall at gauged sites. The GEV parameter estimates can
then be interpolated in order to obtain a model for extreme rainfall at ungauged sites. Several
interpolation schemes have been proposed such as smoothing with kernel techniques (Carreau and
Girard (2011); Daouia et al. (2011); Gardes and Girard (2010)) and artificial neural network and
kriging (Ceresetti et al. (2012)). The natural extension of the univariate GEV distribution to spatial
maxima are the max-stable processes (Padoan et al. (2010)) which allow accurate modeling of the
dependence structure of spatial maxima.

The so-called regional frequency analysis (RFA) approaches consider, in addition to local
observations, observations from other sites in a region. Within this extended pool of observations,
extremes are assumed to be identically distributed apart from a site-specific scaling factor. This
assumption is referred to as regional homogeneity and can be validated by statistical tests (Hosking
and Wallis (1997); Viglione et al. (2007)). A potential advantage of RFA is to improve the accuracy
of the estimated distribution by reducing the uncertainty associated with extreme observations
(Kyselỳ et al. (2011)). Moreover, RFA can be applied for the estimation of the distribution of
extreme rainfall at ungauged sites. This requires the definition of a homogeneous region for each
site and the estimation of site-specific factors. The cornerstone of regional frequency analysis
is the approach pioneered by Hosking and Wallis (1997). Fixed homogeneous regions defined
a partition of the sites. Another variant of the RFA approach is to define regions-of-influence
for each site (Burn (1990); Castellarin et al. (2001)). These regions, which can be thought of as
neighborhoods, are based on similarity of sites attributes such as geographic and climatological
characteristics.

An alternative approach to the analysis of extremes is by means of stochastic rainfall generators.
Hidden Markov Models were proposed to model the occurrence and intensity of rainfall Hughes
et al. (1999); Charles et al. (1999), resampling based on nearest neighbours Buishand and
Brandsma (2001) and conditional mixtures with artificial neural networks Carreau and Vrac
(2011) among others. These models aim at modelling the distribution of rainfall at a given time-
step (daily or hourly) with proper statistical models. Some models might rely on atmospheric
information as covariates and can be used to study the impact of climate change on precipitation.
Other types of rainfall generators rely on the event-based nature of the precipitation process.
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Extreme Rainfall Analysis at Ungauged Sites 121

Poisson cluster models simulate storms from which originate raincells with various lifetimes and
rainfall intensities Burton et al. (2008). Arnaud and Lavabre Arnaud and Lavabre (1999) describe
a stochastic hourly rainfall generator which is based on the description of rainfall events both at
the hourly and daily time-step. Rainfall generators can simulate long series of observations from
which various statistics of rainfall can be estimated empirically.

In this paper, our goal is to compare the estimation of extreme rainfall distribution in terms
of high-level quantiles at sites which were kept apart for validation. For this reason, methods
based on univariate distributions are adequate, there is no need at this stage to model the spatial
dependence structure. We consider three approaches. In the first approach, local GEV parameter
estimates are spatially interpolated to ungauged sites thanks to geographic covariates. Preliminary
experiments with non-parametric non-linear interpolation showed no clear improvements over
simple linear interpolation. We thus kept the linear interpolation of the local GEV parameter
estimates, called the SIGEV method, for further comparisons. Second, we consider a regional
frequency approach with a circular region-of-influence type of neighborhood. It is straightforward
to choose the size of the neighborhood given by the radius by iteratively testing for homogeneity.
The GEV is taken as the model of the scaled regional sample distribution. The third approach is a
regional version of the rainfall generator from Arnaud and Lavabre (1999) which is presented
in section 3. In all three approaches, some model parameters need to be spatially interpolated to
be applicable at ungauged sites. Since the spatial interpolation bears similarities in all cases, it
is described in section 4. In section 5, we present the rainfall data and the evaluation framework
applied in the paper. In section 6, the comparative results are summarized. Finally, we provide a
discussion and a conclusion in section 7.

2. Methods based on extreme value theory

Let Xi be the daily annual maximum rainfall at station i, i = 1, . . . ,n. The RFA and the SIGEV
methods make the assumption that Xi follows a Generalized Extreme Value (GEV) distribution,
which we write Xi ∼ G E V (µi,σi,ξi), whose distribution function is given by :

Fi(x) = exp

[
−
{

1+ξi

(
x−µi

σi

)}−1/ξi
]
, for 1+ξi

(
x−µi

σi

)
> 0 (1)

where µi and σi are the location and scale parameters respectively and ξi is the shape parameter
(or tail index) which controls the heaviness of the upper tail of the distribution. When ξi > 0, the
tail is heavy (Pareto-type tail), the tail is finite for ξi < 0 and exponential if ξi = 0 (in this case,
the distribution function is obtained by taking the limit of Eq.(1) when ξi→ 0).

The choice of the GEV to model annual maxima is justified by the Fréchet-Tippet Theorem
which states that the maximum of most random variables over a large number of repetitions
converges to a GEV distribution Coles (2001). In practice, we assume that maximum rainfall
over a year is independent and identically distributed and that one year is long enough to ensure
that the GEV is a good approximation to the distribution of annual maxima. This is a standard
assumption. A T -year return level, the level of daily rainfall which is expected to be exceeded on
average once every T years, corresponds to the quantile of probability 1− 1/T which, with the
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GEV assumption, is given by, for ξi 6= 0 :

qi(T ) = µi−
σi

ξi

[
1−
{
− log

(
1− 1

T

)}−ξi
]
. (2)

2.1. Spatial interpolation of local GEV parameters

For the SIGEV method, we further assume that the GEV parameters can be interpolated in space
thanks to geographic covariates. More precisely, we make the following additional assumptions
regarding the GEV parameters from Eq.(1) :

µi = µ(zi)

σi = σ(zi) (3)

ξi = ξ (zi)

where zi is a vector of covariates at station i and µ(·), σ(·) and ξ (·) are functions which spatially
interpolate the GEV parameters. The implementation of these functions is detailed in section 4. In
practice, the GEV parameters must be estimated locally at each station i and then the interpolator
functions are trained on the pairs (zi, µ̂

L
i ), (zi, σ̂

L
i ) and (zi, ξ̂

L
i ), i = 1, . . . ,n where µ̂L

i , σ̂L
i and ξ̂ L

i
are the local GEV estimates for site i. In this work, the local GEV parameters are estimated with
the L-Moments method Hosking and Wallis (1997). We screened out stations with less then 20
years of observations in order to avoid high variance local GEV parameter estimates. To obtain the
GEV parameters at a new site i∗, we must collect the covariates for this site in zi∗ and then apply
the trained interpolator functions on zi∗ . Return levels can then be computed thanks to Eq.(2).

The SIGEV method is rather straightforward to implement. However bias and variance may
arise from the difficulty to accurately estimate and interpolate the GEV parameters. In particular,
the shape parameter estimate can have a large variance because few observations provide infor-
mation on the shape of the upper tail of the distribution. This is especially true for stations with
small numbers of observations. In addition, the spatial interpolation step has its own bias and
variance which interact with those of the local GEV parameter estimates. Besides, the interpolation
procedure does not take into account the possible dependencies between the GEV parameters at a
given site.

2.2. Regional Frequency Analysis

This approach attempts to solve some of the issues of the SIGEV method. First of all, the shape
parameter is assumed to be shared across all sites from a properly defined region. This increases
the sample size and reduces the variance of the GEV parameter estimates. Second, only one
parameter, called the index value, needs to be interpolated. The RFA method proceeds as follows.
Let us define the index value parameter at site i as mi = E[Xi] and let Yi be the annual maximum
normalized by the index value :

Yi =
Xi

mi
. (4)
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Therefore, we have the following moment equalities :

E[Yi] = 1

Var[Yi] =
Var[Xi]

m2
i

=CV (Xi)
2 (5)

E[Y 3
i ] =

E[X3
i ]

m3
i

=
γ(Xi) Var[Xi]

3/2

m3
i

= γ(Xi) CV (Xi)
3

where CV (Xi) and γ(Xi) are the coefficients of variation and of skewness respectively. A homo-
geneous region is defined as a set of sites {i j; j ∈ 1 . . .J} such that the following equalities in

distribution (indicated by d
=) hold :

Yi1
d
= Yi2

d
= . . .

d
= YiJ . (6)

According to the moment equations in Eq.(5) and assuming that the first three moments are
sufficient to describe the underlying distribution, the equalities in distribution are fulfilled when-
ever the coefficients of variation CV (Xi j) and skewness γ(Xi j) of the sites {i j; j ∈ 1 . . .J} are
equal. Next, we assume that the set of normalized annual maxima in the homogeneous region is
distributed according to a regional GEV distribution :

Yi j ∼ G E V (µR,σR,ξ R). (7)

Thus all the observations from the sites in the homogeneous region serve to estimate the regional
GEV parameters. Thereby the sample size is increased and the variance of the regional GEV
estimates is reduced compared to the local GEV estimates which resort only on the observations
from one site. As a consequence of Eqs. (4) and (7), the distribution of the un-normalized annual
maxima is given as :

Xi j ∼ G E V (mi j µ
R,mi j σ

R,ξ R). (8)

Therefore, all the sites in the homogeneous region share the same shape parameter ξ R and
their location and scale parameters differ by a multiplicative factor given by their index value
parameters.

2.2.1. Choice of homogeneous neighborhood

In practice, to apply the RFA approach to a site i∗, we define the neighborhood by a region of
influence around the site i∗ (the so-called RoI approach Burn (1990)). The region of influence
lies in the horizontal plane and is bounded by a circle centered on the site i∗. Fig.1 represents
a 40 km circular neighborhood around the city of Montpellier (red dot), in the South of France.
The stations which contribute to the regional GEV estimation are marked as blue dots. Since our
definition of neighborhood varies with the site i∗, the regional GEV parameters now depend on i∗,
so we write µR

i∗ , σR
i∗ and ξ R

i∗ . The size of the circular neighborhood is allowed to change from one
site to another in order to fulfill the homogeneity assumption. We optimize the radius for each site
as follows :
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124 Carreau et al.

1. An initial radius is fixed to 50 km, beyond which it is not reasonable to assume homogeneity.

2. Two homogeneity tests (Anderson-Darling Viglione et al. (2007) and Hosking and Wallis
Hosking and Wallis (1997)) are carried out to check whether the homogeneity assumption
is fulfilled.

3. If one of the test fails, the radius is decreased by 5 km and we start over at step 2.

4. If both tests succeed, we conclude that the region is homogeneous and keep the current
radius to define the neighborhood.

Two additional criteria to stop the loop in the optimization of the size of the neighborhood are
established in order to prevent bad neighborhood solutions (the radius has to be greater or equal
to 5 km and the neighborhood must contain a least 50 observations).

Figure 1: 40 km circular neighborhood around Montpellier, France, (red dot) among the
stations from the training set (blue dots).

2.2.2. Estimation at ungauged sites

The first step is to define the proper circular neighborhood around the site i∗ of interest as described
above. Then, the regional GEV parameters µR

i∗ , σR
i∗ , ξ R

i∗ are estimated from the normalized obser-
vations in the circular neighborhood with the L-moments method. To normalize the observations
at each site in the neighborhood, the index value parameters are estimated locally by the sample
average of the observed daily annual maxima. In addition, in order to fulfill the independence
assumption of the observations in the neighborhood, we perform a spatial declustering. More
precisely, whenever more than one maximum occurs on a given day among the stations from the
neighborhood, we assume that these maxima are associated to the same meteorological event
and we keep only the largest maximum. Note that if the site i∗ is ungauged, the neighborhood
can nevertheless be defined from the the gauged sites in the training set and the estimation of
the regional GEV parameters is performed with the observations from the gauged sites in the
neighborhood.

The only parameter which has to be interpolated at ungauged sites is the index value parameter.
This is performed similarly to the interpolation in the SIGEV approach. A vector of geographic
covariates zi∗ is available for each station i∗ and we assume the following relationship :
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Extreme Rainfall Analysis at Ungauged Sites 125

mi∗ = m(zi∗), (9)

where the mi∗ are approximated by the sample average of observed annual maxima to train the
interpolator function m(·) whose implementation is postponed to section 4. We screened out
stations with less then 10 years of observations to avoid high variance local index value estimates.

The RFA approach thus requires the estimation of four parameters to obtain the GEV parameters
at a new site i∗, namely µR

i∗ , σR
i∗ , ξ R

i∗ and mi∗ = m(zi∗). The return levels can then be computed by
applying Eq.(2) with µi∗ = mi∗µ

R
i∗ , σi∗ = mi∗σ

R
i∗ and ξi∗ = ξ R

i∗ .

3. SHYPRE : stochastic hourly rainfall generator

SHYPRE (Simulated HYdrographs for flood PRobability Estimation) has been developed by
the hydrological research team at the Aix-en-Provence branch of the National Research Institute
of Science and Technology for Environment and Agriculture (Irstea) for about two decades.
SHYPRE is a framework for hydro-meteorological risk estimation based on a stochastic hourly
rainfall generation model linked with a conceptual hydrological model Cernesson et al. (1996);
Arnaud and Lavabre (1999).

3.1. At-site rainfall generator

We describe here the stochastic hourly rainfall generator of SHYPRE for gauged sites. For a given
rain gauge station, this generator simulates rainfall events at an hourly time-step. The calibration
of the generator proceeds by first defining rainfall events from daily rainfall according to the
following criteria. Rainfall during the event must exceed 4 mm per day and must exceed 20 mm
at least on one day during the event (see Fig. 2 top panel for an illustration). Next, we consider
hourly rainfall. A rainy period is defined as a succession of hours with positive rainfall and a
shower is a succession of positive hourly rainfall with a unique maximum (in practice, showers
are defined by a large hourly intensity surrounded by lower hourly intensities). Note that several
rainy periods may coexist within a daily rainfall event and several rainfall showers may coexist
within a given rainy period, see Fig. 2 lower panel.

3.1.1. Variables describing hourly rainfall

Nine descriptive variables are used to characterize the structure of hourly rainfall events. The first
variable is the number of rainfall events per year, where the rainfall events are defined as described
above on daily rainfall. We next consider variables related to hourly rainfall. A given rainfall event
consists in several rainy periods (see Fig. 2 lower panel) which are separated by one or several
hours with no rain. Two other variables are the number of rainy periods per rainfall event and the
duration in hours of the period with no rain between two rainy periods. The following variables
are connected with showers. These are the number of showers per rainy period, the duration of
a shower, the cumulated rainfall of a shower, the ratio of the maximum hourly rainfall to the
cumulated rainfall of a shower and the relative position of the hourly maximum within a shower.
The last variable is the number of major showers in a given event. At least one major shower is
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126 Carreau et al.

Figure 2: (Top) Two rainfall events as defined on daily rainfall (minimum rainfall of 4 mm
and at least one day with 20 mm); (Bottom) Rainy periods within a given rainfall event
(shown in blue) defined on hourly rainfall. Rainy periods decompose into showers which are
centred around local maxima.

assumed to occur in an event and we consider an additional major shower for each day in the
event with cumulated rainfall above 50 mm.

Each descriptive variable is modeled with a parametric distribution (either Gaussian, Expo-
nential, Uniform, Geometric or Poisson, see Cernesson et al. (1996)). The parameters of each
distribution are estimated by the method of moments from hourly rainfall observations. Standard
practice is to split the year into two seasons and thus there are 20 parameters to estimate for each
season. The SHYPRE rainfall generator makes the assumption that the variables describing the
rainfall events are independent and that the rainfall process is stationary in time. However, the
temporal dependence between successive rainy periods within a rainfall event may be taken into
account Cantet (2009).

3.1.2. Density estimation of daily rainfall

The descriptive variables are sampled independently in a precise order dictated by the pattern
of rainfall events. From the values sampled, an hourly rainfall series is generated. The rainfall
generator is validated by comparing the simulated series with the observed ones. The comparisons
are made in terms of maximum rainfall of various durations (1, 2, 3, 4, 6, 12, 24, 48 and 72 hours).
These statistics are not part of the nine variables taken into account to describe the hourly rainfall
series. The estimation of the generator parameters and the validation of the simulation was carried
out on hourly rainfall from 251 pluviographic rain gauges across France, Réunion (Indian Ocean)
and Martinique (Caribbean Sea). Thus, the SHYPRE generator proved to be successful in various
climates Arnaud et al. (2007). Thanks to the parametrization in terms of rainfall events, rainy
periods and showers, the generator is directly applicable to a very broad rainfall range.
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Extreme Rainfall Analysis at Ungauged Sites 127

A daily rainfall series is then obtained by aggregating the hourly series at a daily time-step.
The simulation can be made long enough so that the distribution of rainfall can be approximated
by the empirical distribution. From this empirical distribution, an estimate of the distribution
of daily maximum rainfall is deduced. Extreme quantiles are computed from this estimated
distribution. For example, a 100-year return level (which corresponds to the quantile of level 0.99)
is determined by generating rainfall over a simulation period of 100 000 years.

3.2. Regional rainfall generator

The stochastic rainfall generator of SHYPRE can be extended to ungauged sites. For this, the
parameters are first constrained and thus the number of free parameters is reduced. Second, the
free parameters are interpolated spatially to allow the estimation at ungauged sites.

3.2.1. Constrained parametrization

The set of parameters is first constrained in the following way. The parameters which display
little variability across various climates and thus across space or the parameters which do not
influence much the rainfall simulations are assumed to take a single value for the whole region.
After analysis on 217 pluviographic rain gauges in France, 15 parameters are fixed to the median
value of the estimates at each rain gauge.

Daily rainfall series are much more widely available than hourly rainfall series. For this reason,
we describe the five remaining parameters which belong to four variables as functions of daily
rainfall. The first variable, the number of events per season, is already defined in terms of daily
rainfall. We assumed that it follows a Poisson distribution and the parameter of its distribution,
the expected value, is estimated directly from daily data. The parameters of the number of rainy
periods within an event and the number of showers within a rainy period are parametrized in
terms of a daily variable related to duration : the expected duration of an event in days. The
parameters of the last variable, the cumulated rainfall in a shower, are parametrized in terms of a
daily variable related to intensity : the expected maximum daily rainfall for the event in mm. The
parametrizations are implemented with generalized linear models.

3.2.2. Spatial interpolation of daily rainfall variables

This constrained parametrization links hourly rainfall to daily rainfall features, that is the hourly
rainfall generator can be parametrized from daily data. In order for the rainfall generator to work at
ungauged sites, we need to interpolate spatially the daily rainfall variables. From these interpolated
values and the generalized linear functions defined above, we can compute the parameters of the
distributions of hourly variables while the other parameters are assumed to be identical across the
region. In the next section, we explain how the spatial interpolation of the regional parameters
for each method is performed and in particular, how the daily rainfall variables of the SHYPRE
generator (expected number of events per season, expected maximum daily rainfall for the event
and expected total duration of the event) are interpolated to ungauged sites.
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4. Spatial interpolation

To build the interpolator functions, we combine multiple linear regression on geographic covariates
together with a smoothing of the residuals.

4.1. Dimensionality reduction and variable selection

There are 22 potential covariates which describe the geographical space : latitude, longitude,
altitude, 12 variables describing the landscape and seven distances to natural landmarks such
as the sea, the Rhône river, the ocean, and so on Sol and Desouches (2005). For the RFA and
the SIGEV methods, we reduce the dimensionality of the covariates (centered and scaled) by
applying the Slice Inverse Regression (SIR) method Li (1991). SIR looks for a linear subspace of
the covariates which has the best explanatory power. There is no assumption about the shape of
the relationship between the covariates and the dependent variable. In practice, the SIR algorithm
provides us with the orthonormal vectors which span the linear subspace (similarly to Principal
Component Analysis). For the interpolation of the GEV parameters in SIGEV, we applied SIR
with the 0.99 quantile as the dependent variable. Such a high-level quantile integrates the values
of the three GEV parameters. In addition, this allows the definition a unique subspace for the
SIGEV interpolation without resorting to a multivariate version of SIR. For the RFA method, we
use the index value as the dependent variable.

In the SHYPRE method, from the pool of 22 potential geographic covariates, the group of
three covariates which maximizes the explained variance, is selected. The selection is performed
for each parameter being interpolated.

4.2. Index value interpolation

Let zi∗ be the dimension-reduced vector of geographic covariates at site i∗. The interpolator
function takes the following shape for the index value parameter in Eq.(9) :

m(zi∗) = exp(z′i∗β + εi∗), (10)

where β is a vector of regression coefficients and εi∗ is estimated by smoothing the regression
residuals with kernel regression Bishop (1995) :

ε̂i∗ =
∑

ntrain
i=1 Kh(di,i∗)εi

∑
ntrain
i=1 Kh(di,i∗)

(11)

where di,i∗ is the Euclidean distance between sites i and i∗ in the x-y coordinate plane, ntrain is the
number of observations in the training set, Kh(d) = exp(−d2/2h2) is the Gaussian kernel and the
bandwidth is fixed to h = 10 km. Residuals are thus smoothed at site i∗ by considering mainly the
stations within a 20 km circular radius with increasing weights to closest stations. The relationship
in Eq.(10) is taken to be log-linear to ensure the positivity of the index value parameter.
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4.3. Local GEV parameters interpolation

For SIGEV, we have a multivariate regression, see Eq.(3) :µ(zi∗)
σ(zi∗)
ξ (zi∗)

= g(z′i∗α +ν i∗), (12)

where α is a matrix of regression coefficients and ν i∗ is a vector of length three which is estimated
by smoothing independently the regression residuals with kernel regression, see Eq.(11). The
same bandwidth parameter, h = 10 km, is applied each time. Similarly to the exponential function
in Eq.(10), the function g(·) enforces positivity constraints for the location and scale parameters
and is defined as g(a1,a2,a3) = (expa1,expa2,a3).

4.4. Daily rainfall variables interpolation

The regional parameters of the SHYPRE method are the daily rainfall variables (see section 3.2.1)
which are interpolated with multiple regression together with a smoothing of the residuals. The
smoothing is performed according to the inverse squared distance.

4.5. Intrinsic parameters

The two regional methods based on Extreme Value Theory have intrinsic parameters which must
be estimated from the stations in the training set in order to obtain the distribution of maximum
rainfall at each site i∗ of the nvalid sites in the validation set. For SIGEV, the intrinsic parameters
include only the regression coefficients φ SIGEV = α and, for the RFA method, these include also
the regional GEV parameters at the sites from the validation set φ RFA = {β ,(µR

i∗σ
R
i∗ ,ξ

R
i∗ )

nvalid
i∗=1}.

In the SHYPRE regional rainfall generator, the constrained parameters are calibrated once and
for all on the 217 pluviographic rain gauges. The intrinsic parameters of the SHYPRE generator
which must be estimated in order to obtain an empirical estimate of the daily rainfall distribution
at a new site i∗ are the regression coefficients which we write φ SHYPRE.

5. Rainfall Data and Evaluation Framework

We have daily observations from 1046 rain gauge stations gathered from the French Weather
Service "Météo France" and the Electricity Society "Électricité de France". The stations are
located in the South of France, from the Atlantic ocean near Spain, to the Mediterranean coast,
all the way up to the Alps, near the Italian border. For the regional methods based on Extreme
Value Theory (RFA and SIGEV), we are interested in daily annual maxima over the hydrological
year, which starts June 1st and ends May 31st. In order to have reliable maxima, years containing
more than 10% missing observations were screened out. Thus, there are between 2 to 58 years of
observed daily annual maxima. For the SHYPRE method, months with more than 10 days without
observations are considered as missing as a whole. Globally, SHYPRE is thus able to use more
data for the estimation of its parameters.
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5.1. Performance evaluation

The 1046 stations are split into a training set and a validation set. Figure 3a depicts the split
into a 50% training set (in blue dots) and 50% validation set (in red squares). Four additional
training/validation splits are considered : 33% training - 66% validation, 25% training - 75%
validation plus two other splits, A and B, which aim at challenging the regional methods. In the
training set A, there are 609 stations with short observation period, from 2 to 34 years. In training
set B, the challenge is made even more difficult by considering only 411 stations among the 609
from training set A. The validation set in both cases contains 411 stations with a least 46 years of
observations. In all five cases, the splits are made so as to ensure a minimum spatial coverage.

(a) Training/Validation (b) Training 1/Training 2

Figure 3: 1046 stations with 2 to 58 years of observations.

The training/validation splits are defined in order to evaluate the performance of the regional
methods. The SIR projection vectors and the parameters of the spatial interpolator functions (the
regression coefficients (β in Eq.(10), α in Eq.(12)) and those for the interpolation of the SHYPRE
daily rainfall variables) are computed on the training set. The interpolator functions are then
applied to the covariates of the validation set to estimate the index value, the local GEV parameters
and the SHYPRE daily rainfall variables at each site of the validation set. The homogeneous
neighborhood for RFA is defined for each station in the validation set exclusively from the stations
in the training set. In other words, the stations in the validation set are considered ungauged and
thus their observations are not used for training, only for validation. Accordingly, the regional
GEV parameters in Eq.(7) are estimated with the observations from the stations in the training set.

Two performance criteria are designed to evaluate the goodness-of-fit of each method on the
observations from the stations in the validation set with particular care for the extreme part of the
distribution. These criteria do not rely on standard statistical tests so as to circumvent the pitfall
of the spatial dependence for nearby stations and they do not involve the empirical frequency
of large observations to avoid the variability and the extrapolation issue in small samples. See
Renard et al. (2013) for details on these criteria.
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5.1.1. Quantile violations

The first criterion is based on the number of quantile violations : it verifies that the number
of observations above a quantile estimated by a given method is consistent with the quantile
level (if we estimate a 90%-quantile, when the model is right, we expect to have approximately
10% of the observations above this quantile). More precisely, for a given regional method and a
given training/validation split, let φ̂ be the so-called intrinsic parameter vector (see section 4.5)

estimated on the training set. Let qφ̂

i∗(T ) be the return level estimate with return period T years
(see Eq.(2)) at site i∗ of the validation set computed with the parameters φ̂ . The number of quantile

violations nφ̂

i∗(T ) corresponds to the number of observations at station i∗ greater than qφ̂

i∗(T ). If
the quantile is accurately estimated, we have that :

QT : nφ̂

i∗(T )∼B(ni∗ , 1/T) (13)

where ni∗ is the number of observations at site i∗ and B indicates the Binomial distribution with
number of trials ni∗ and success probability 1/T.

5.1.2. Maximum of maxima

The second criterion is based on the maximum observation Xmax i∗ = maxk=1,...,ni∗ Xk, for a given

station i∗. Let F̂ φ̂

i∗ be the distribution function of annual maximum rainfall at site i∗ estimated by a
given regional method with intrinsic parameters φ̂ . Then we have that :

M : F̂ φ̂

i∗ (Xmax i∗)∼K (ni∗ ,1) (14)

where K (ni∗ ,1) is the Kumaraswamy distribution Kumaraswamy (1980). In other words, if the

model is correct, we should have that P(F̂ φ̂

i∗ (Xmax i∗)≤ x) = xni∗ .

5.1.3. Graphical and numerical evaluation

The validity of hypotheses QT in Eq.(13) for return periods of T = 5 and T = 10 years and
M in Eq.(14) is checked for each regional method and each training/validation splits. We first
looked at probability-probability plots (p-p plots for short) to evaluate globally the validity of
QT and M . Let Bni∗ ,T and Kni∗ be the distribution functions of the binomial and Kumaraswamy
distributions respectively. Under the hypothesis that the model is correct, the cumulative frequen-

cies Kni∗ (F̂
φ̂

i∗ (Xmax i∗)) should be uniformly distributed. For the binomial cumulative frequencies,

Bni∗ ,T (n
φ̂

i∗(T )), the distribution, under the correct model hypothesis, is discrete and asymmetric
for large values of T . This distribution is smoothed by sampling uniform variates in the interval

[Bni∗ ,T (n
φ̂

i∗(T )−1),Bni∗ ,T (n
φ̂

i∗(T ))] and then should, if the model is appropriate, follow a uniform
distribution. The p-p plot relates the cumulative frequencies from the model to the empirical
frequencies which assumes a uniform distribution. If the plot is close to the diagonal line, this
supports the validity of the hypothesis of model correctness.
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Secondly, we computed a criterion which measures how close the p-p plot is from the diagonal
line :

Cφ̂ (QT ) = 1−2
1

nvalid

nvalid

∑
i∗=1
|Bni∗ ,T (n

φ̂

i∗(T ))− Ĥi∗ | (15)

Cφ̂ (M ) = 1−2
1

nvalid

nvalid

∑
i∗=1
|Kni∗ (F̂

φ̂

i∗ (Xmax i∗))− Ĥi∗ | (16)

where nvalid is the total number of sites in the validation set and Ĥi∗ is the appropriate empirical
frequency. When Cφ̂ (·) = 1 this means perfect fit whereas Cφ̂ (·) = 0 means bad fit.

5.2. Sensitivity to training data

In addition to the training/validation splits, pairs of training sets are defined in order to assess
the sensitivity of each regional method to the training set. Fig. 3b illustrates one such pair with
medium spatial coverage, that is there are 309 stations in each training set which are chosen so as
to cover the whole region. Two other pairs are defined with low spatial coverage (154 stations)
and full spatial coverage (522 stations). The sensitivity is measured in terms of span of high-level
quantile estimates computed for fictitious validation sites which are taken to lie on a 1 km grid
covering the region. For a given method, let φ̂1 and φ̂2 be the intrinsic parameters estimated on the
first and the second training set respectively. For a given validation site i∗, let qT

i∗(φ̂1) and qT
i∗(φ̂2)

be the return levels with period T computed with the parameters estimated on the first and the
second training set respectively. Then the span is defined as :

S T
i∗ (φ̂1, φ̂2) =

|qT
i∗(φ̂1)−qT

i∗(φ̂2)|
[qT

i∗(φ̂1)+qT
i∗(φ̂2)]

. (17)

When S T
i∗ (φ̂1, φ̂2) = 0, the regional method is not sensitive to the training set as it yields always

the same return level estimates. As the span increases, it indicates a greater sensitivity to the
training set. The span is bounded above by 1; this can be seen as T ↑ ∞ with qT

i∗(φ̂1) is bounded
above, but qT

i∗(φ̂2) ↑ ∞ when T ↑ ∞. To summarize the span over all the validation grid, we look at
the average span :

S T (φ̂1, φ̂2) =
1

nvalid

nvalid

∑
i∗=1

S T
i∗ (φ̂1, φ̂2) (18)

where nvalid = 102734 is the number of grid boxes on the the 1 km grid validation set.

6. Results

For RFA and SIGEV, over all training sets, a SIR-subspace of dimension six to eight (depending
on the training set) is required to explain 95% of the variance of the dependent variable in the
spatial interpolator functions, see section 4. We first compare the regional methods for each
performance criterion on all training/validation splits in section 6.1, then the comparisons are
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made in terms of training/validation splits for all performance criteria in section 6.2 and finally,
the sensitivity to the training set is evaluated in section 6.3.

6.1. Comparisons per criterion

In Fig. 4, we can assess how the training/validation splits affect each regional method (RFA in
the left column, SIGEV in the middle column and SHYPRE in the right column) in terms of
the quantile violation criterion QT for 5, and 10 years (top and middle rows) and in terms of
maximum of maxima criterion M (bottom row).

The RFA method is generally less affected by the challenging training/validation splits A and
B than SIGEV. Despite short observations period of training sets A and B, RFA increases the
sample size by including observations in the homogeneous neighborhood, whereas SIGEV is
limited to the observations in each station. In addition, RFA performs better at capturing higher
quantiles (T = 10) than lower quantiles (T = 5). However, SIGEV performs surprisingly well in
terms of M despite relying only on local information. Yet, its performance deteriorates noticeably
for the short observation period and smaller number of stations of split B. On the other hand, the
performance of the SHYPRE method is unaffected by the training set since all the p-p curves
are grouped together, whatever the return level. Similarly to RFA, the performance of SHYPRE
decreases for lower quantiles.

6.2. Training/Validation split comparisons

The comparisons for all three criteria Q5, Q10 and M for each split are depicted in Fig. 5. The
spider plots rely on the measure of distance Cφ̂ between the p-p plots and the diagonal line defined
in Eqs.(15-16).

The performance of SHYPRE and RFA for the Q10 criterion is higher than for the SIGEV
method. The same is true for Q5 except for the first C/V split (C25 / V75) for which SHYPRE
is worst than SIGEV. For the M criterion, the performances of the three methods are variable
except for the C/V split B. For the latter, which is the most challenging C/V split, we clearly see
that the SHYPRE and RFA methods outperform the SIGEV method for Q5, Q10 and M .

6.3. Sensitivity to training data

The sensitivity is evaluated thanks to the average span, see Eq.(18), represented in Fig. 6, for
return periods T = 10, T = 100 and T = 1000 for the three pairs of training sets (low, medium
and full spatial coverage). The sensitivity is higher for sparser training set (lower spatial coverage)
and for higher return periods, as expected. SIGEV is the method most sensitive to the spatial
coverage since its average span, as a measure of sensitivity, decreases steadily with increasing
spatial coverage. SHYPRE and RFA have a sharp decrease in average span from the low to the
medium spatial coverage. However, there is only a tiny decrease in sensitivity when we switch
from medium to full spatial coverage. For the return period of T = 10, RFA and SIGEV are
very similar whereas SHYPRE has a higher average span. For the return period of T = 100, the
ordering in terms of increasing sensitivity is : RFA, then SIGEV and last SHYPRE. Finally for
T = 1000, SIGEV has a larger sensitivity whereas RFA and SHYPRE are similar.
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(a) RFA, Q5 (b) SIGEV, Q5 (c) SHYPRE, Q5

(d) RFA, Q10 (e) SIGEV, Q10 (f) SHYPRE, Q10

(g) RFA, M (h) SIGEV, M (i) SHYPRE, M

Figure 4: Quantile violations p-p plots for return levels 5 and 10 years (top and middle rows)
and maximum of maxima p-p plots (bottom row) on all five train/validation splits for the
regional frequency analysis method (left), the spatial interpolation method (middle) and the
SHYPRE method (right).
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(a) C25 / V75 (b) C33 / V66 (c) C50 / V50

(d) C /V split A (e) C /V split B

Figure 5: Comparisons of RFA, SIGEV and SHYPRE on each training/validation splits for
the quantile violations (Cφ̂ (Q5) and Cφ̂ (Q10) for return periods 5 and 10 years respectively)
and the maximum of maxima (Cφ̂ (M )).

Figure 6: Average span for return periods T = 10, T = 100 and T = 1000 years for pairs of
training sets with low, medium and full spatial coverage evaluated on a 1 km grid covering
the region.
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7. Discussion and Conclusion

We compared two families of regional methods which address the question of extreme rainfall
estimation in completely different ways. On one hand, there are two regional methods (SIGEV
and RFA) which rely on the asymptotic behaviour of extreme events to approximate their finite
behaviour. The Generalized Extreme-Value Distribution parameters are estimated, either locally
or regionally, and extreme return levels are estimated from this distribution. SIGEV interpolates
spatially the three local GEV parameter estimates and is thus sensitive to the size of the local
sample. RFA makes the assumption of a homogeneous neighborhood around the site of interest and
the observations from all the sites in the neighborhood contribute to the estimation of the regional
GEV parameters. This increased sample size, compared to the local sample size, decreases the
variance of the shape parameter estimate. In addition, only one parameter, the index value, has to
be spatially interpolated. However, if the homogeneity assumption is not fulfilled, the regional
approach might introduced bias in the GEV parameter estimates.

On the other hand, the SHYPRE method is based on the characterization of various features
of rainfall events to build a stochastic hourly rainfall generator from which return levels can be
estimated empirically. SHYPRE has evolved considerably over the years in order to improve its
description of rainfall events while keeping a parsimonious parametrization.

The evaluation framework applied here draws from Renard et al. (2013). It consists in two types
of performance measures : the fitness of the quantile estimates through the number of quantile
violations and the fitness of the probability attributed to the maximum of the annual maxima.
The evaluation framework also includes a measure of sensitivity to the training set which is the
average span between extreme quantile estimates computed from a pair of training sets. The goal
of the evaluation framework is to compare the regional methods without relying on parametric
hypothesis testing, to avoid the complexity involved with spatial dependencies and to focus on
extreme rainfall.

We draw the following main conclusions from the comparisons conducted in this work. The
performance results presented above do not highlight a clear preferred regional method. SIGEV,
which can be thought of as the benchmark method, is to be applied with caution for sparsely
sampled data sets. Indeed, SIGEV is sensitive to the size of the rainfall samples which affect the
variance of the local GEV parameter estimates. This is the case for the training/validation split
B where the sample size is small and SIGEV’s performance deterioates. The sensitivity of the
SIGEV method is also noticeable from its high average span for the 1000-year return level and
lower spatial coverage pair of training sets (see Fig. 6). A possibility to increase the robustness of
SIGEV along the lines of the RFA approach would be to keep the tail index constant across the
region. However, this seems like a fairly restrictive and unrealistic assumption given the variability
of rainfall extremes in the region. A middle ground solution would be to find sub-regions with
constant tail index parameter but this is exactly what RFA does.

The performance of the SHYPRE method is very stable across data sets. It might be thanks
to the relationships between hourly and daily variables which are derived a priori on separate
data sets. Also, the SHYPRE method has overall higher average span but this is due to the spatial
interpolation of its parameters which could be improved. Finally, we found that, overall, RFA and
SHYPRE, two very different approaches, lead to similar performance. One point in favor of RFA
is its ease of implementation. In favor of SHYPRE, simulations at sub-daily time step, e.g. hourly
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time-step, are also provided. The key issue and challenge regarding these three regional methods
is a proper spatial interpolation of their parameters.
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