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approach with application to near-infrared

spectrometry

Titre: Régression sur données fonctionnelles : démarche méthodologique et applications à la spectrométrie
dans le proche infrarouge

Frédéric Ferraty1

Abstract: We consider the situation when one observes a scalar response and a functional variable as predictor. For
instance, in our petroleum industry problem, the response is the octane number of a gasoline sample and the functional
predictor is a curve representing its near-infrared spectrum. The statistician community developed numerous models for
handling such datasets and we focus here on four regression models: two standards as the functional linear model and
the functional nonparametric regression, and two recently developed: the functional projection pursuit regression and a
parsimonious model involving a nonparametric variable selection method. Each of these models are implemented with
two datasets containing near-infrared spectrometric curves. A comparative study of these models is provided in order
to emphasize their possible advantages and drawbacks. At last, a simple but useful methodological approach is then
proposed in order to boost the two most recent regression models by combining the most relevant informations obtained
by each of the studied models. We show on the spectrometric data how such an approach may lead to important
improvements.

Résumé : On s’intéresse à la situation où on observe une variable réponse réelle ainsi qu’une variable fonctionnelle
comme prédicteur. Pour fixer les idées, dans notre problème issu de l’industrie pétrolière, la variable réponse correspond
à l’indice d’octane d’un échantillon d’essence alors que la variable explicative représente son spectre dans le proche
infrarouge. La communauté statisticienne a développé de nombreux modèles pour traiter de tels jeux de données et
nous nous concentrerons particulièrement sur quatre d’entre eux : deux standards à l’instar du modèle de régression
linéaire fonctionnelle et de la régression nonparamétrique fonctionnelle, et deux récemment développés : la régression
fonctionnelle à directions révélatrices et un modèle parcimonieux basé sur une méthode de sélection nonparamétrique
de variables. Chacune de ces méthodes sont mises en oeuvre avec deux jeux de données contenant des spectres dans
le proche infrarouge. Une étude comparative de ces modèles est réalisée afin d’identifier les éventuels avantages
et inconvénients de chacun d’eux. Pour finir, nous proposons dans une démarche méthodologique de rendre plus
performants les deux modèles de régression les plus récents en tenant compte des informations les plus pertinentes
obtenues par chacun des modèles étudiés. Nous montrons sur les données spectrométriques comment une telle démarche
peut conduire à d’importantes améliorations.
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1. Introduction

Popularized by Ramsay and Silverman (2005) and Ramsay and Silverman (2002), functional
data analysis (FDA) is a very active research area in the international statistical community.
The development of this topic is essentially due to the joint progress of monitoring devices
and computational tools allowing to collect and process highly dimensioned data. This kind
of datasets come from the observation of some underlying continuous processus sampled at
a grid of measurements. Near-infrared spectrometry provides benchmark examples coming
from chemometrics. This is a non-destructive technology able to measure numerous chemical
compounds in a wide variety of products (food industry, petroleum industry, wood industry,
etc); see among others Osborne and Fearn (1986), Kalivas (1997). For instance, let us consider
a sample of 60 gasoline samples. Each sample is illuminated by a light beam at 401 equally
spaced wavelengths (λ1, . . . ,λ401) in the near-infrared range 900-1700 nm. For each wavelength
λ and each gasoline sample i, the absorption Xi(λ ) of radiation is measured. The ith discretized
spectrometric curve is given by Xi(λ1), . . . ,Xi(λ401); Figure 1 displays the 60 spectrometric curves
(the last 21 wavelengths were dropped to make graphics readable). It is clear that all these
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FIGURE 1. 60 near-infrared spectra sampled at 401 equally spaced wavelengths

curves involve some continuum in their structure even if they are observed at discrete points.
The terminology functional data refers to this continuous feature. Figure 2 gives a benchmark
example of such data introduced in Borggaard and Thodberg (1992) and dealing with 215 finely
chopped pieces of pork meat. For the ith piece of meat one observes a spectrum of absorption Xi(·)
sampled at 100 equally spaced wavelengths λ1, . . . ,λ100 from 850 to 1050 nm. The ith discretized
spectrometric curve is given by Xi(λ1), . . . ,Xi(λ100). Throughout these two examples which will
be our connecting thread, one can remark that the grid of measurements (i.e. wavelengths) for
the spectrometric curves is quite dense. It is worth noting here that there exist more pathological
situations where one has at hand sparse measurements (i.e. each profile is observed at few points
possibly randomly distributed) which requires particular methods. Although this is an important
issue as demonstrated by the numerous publications around this topic (see for instance Müller
and Stadtmüller (2005); Yao et al. (2005b,a); Peng and Müller (2008); Yao and Müller (2010);
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FIGURE 2. 215 spectrometric curves sampled at 100 equally spaced wavelengths

Yang et al. (2011)), it is out of our purpose.
The main aim of this paper is to present various ways of modelling nonlinear relationship

in datasets containing functional data and to discuss methodological aspects. We focus on the
special case when one regresses a scalar response on an explanatory functional variable. As in
the standard multivariate setting, different families of regression models have been developed.
We especially concentrate our attention on four regression models of various dimensionalities.
Some of them are quite standard as the functional linear model (see Ramsay and Silverman
(2002) or Ramsay and Silverman (2005) and references therein) or the functional nonparametric
regression (see the monography Ferraty and Vieu (2006) and Ferraty and Romain (2011) for
general overview and related methods). Some others have been recently developed; this is the case
of the functional projection pursuit (see Chen et al. (2011), Ferraty et al. (2013) and Ferraty et al.
(work)) or the parsimonious nonparametric regression models involving nonparametric variable
selection (see Ferraty et al. (2010) and Ferraty and Hall (2014)). Contrarly to the functional linear
model, the three other models are able to catch nonlinear relationship. Given these models and
our two spectrometric examples, we propose a comparative study in order to emphasize their
possible advantages or drawbacks. It is out of question to present in detail each of these statistical
models as well as their theoretical properties. The reader will find useful references throughout
this work which is voluntarily oriented toward practical and methodological aspects. We first
describe the prediction problems in Section 2. The nonparametric functional regression, which
is a model of high dimensionality, is presented in Section 3. Conversely, Section 4 focuses on
a model of low dimensionality: the functional linear regression. Section 5 is devoted to two
recent regression models of intermediate dimensionality. The first is based on projection pursuit
regression ideas whereas the second is a parsimonious model involving a nonparametric variable
selection method. Section 6 proposes to boost the previous methods by taking into account the
most relevant informations derived from each of them. We show on the spectrometric data how the
combination of these models may lead to important improvements. Before concluding, Section
7 enumerates useful resources dealing with FDA, oriented towards practitioners and available
online.
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COVARIATE RESPONSE
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FIGURE 3. Petroleum prediction problem

2. Functional data and prediction problems

Petroleum prediction problem. For each of 60 gasoline samples one collects a spectrometric curves
(see Figure 1). Additionally, the octane number is known for each gasoline sample. The goal is to
predict the octane number from the observation of a new spectrometric curve. To this end, one
observes n pairs (Xi,Yi)i=1,...,n where Xi (resp. Yi) is the ith spectrometric curve (resp. response).
The prediction problem is very simple and can be formulated via the model Yi = r(Xi)+ εi for
i = 1, . . . ,n. Figure 3 schematizes the problematic. The two first spectrometric curves are very
similar and the responses also (the standard deviation is around 1.53).

Food prediction problem. For each of 215 pieces of meat one collects a spectrometric curve
(see Figure 2). Separately, and for each piece of meat, one measures as response the fat content by
means of analytic chemical process. The goal is to predict the fat content from the observation of
a new spectrometric curve. Once again, one has at hand n pairs (Xi,Yi)i=1,...,n where Xi (resp. Yi) is
the ith spectrometric curve (resp. response). The prediction problem is the same as previously (i.e.
Yi = r2(Xi)+ εi for i = 1, . . . ,n) and Figure 4 schematizes the analogous problematic. The shape
of both spectrometric curves are quite similar excepted with the occurence of a small secondary
bumb in the second spectrum; the responses are quite different (the standard deviation is around
12.74).

Finally, in these situations the statistical model admits the general writting Y = r(X)+ ε where
r(·) is an unknown operator modelling the relationship between X and Y ; the statistical challenge
consists in proposing a relevant estimator. Here, we focus our attention on regression models such
that

r(X) = E(Y |X) (i.e. E(ε|X) = 0) with the constraint that r belongs
to some set of C ; no additional assumption on the distribution of
(X ,Y ) is required.

(M )
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COVARIATE RESPONSE
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FIGURE 4. Chemometrics prediction problem

This general modelling covers numerous situations and the set C concentrates all the model
hypotheses. The nature and size of C , which determines what people call "the dimensionality of
the model", play a major statistical role. However, a general statistical principle claims that the
accuracy of the estimating procedure depends on the size of C ; the larger the size of C is, the
harder the estimation of the unknown operator r is. So, we propose in the remaining of this paper
to discuss these aspects, mainly from a methodological and practical point of views.

Before ending this section, let us remark that the functional nature of the near-infrared spectra
allows us to involve some infinitesimal calculus with a special attention on differentiation. Indeed,
we will see that considering the first order derivative of the near-infrared spectrum (or higher
order derivative) as a functional covariate instead of the original curve can sometimes lead to
great improvements of the predictive performances of the considered statistical models.

3. Models of high dimensionality: pure nonparametric regression

Numerous references, theoretical developments and practical studies can be found in Ferraty and
Vieu (2006) which popularized nonparametric methodologies in the functional data field. From a
mathematical point of view, functional data are defined as observations of some random variable X
taking its values in some infinite-dimensioned space F endowed with the inner product 〈·, ·〉. The
datasets introduced previously are typical examples where the considered infinite-dimensioned
spaces are just functions spaces. In this section, we especially focus on nonparametric regression
when one considers a functional explanatory variable X and a scalar response Y ; one observes n
pairs (Xi,Yi) identically distributed as (X ,Y ).

3.1. Nonparametric regression model

Considering a nonparametrically regression model amounts to refer to (M ) with the set of
constraints CFNPR containing only regularity constraints acting on r. For instance, CFNPR may be
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defined as the set of operators mapping F into R such that r is lipschitz:

∃ν > 0, ∃C > 0, ∀(x1,x2) ∈F ×F , |r(x1)− r(x2)| ≤C d(x1,x2)
ν ,

where d(·, ·) is a proximity measure (i.e. a metric or more generally a semi-metric 1) between two
elements of F . Of course, one can relax this set of constraints by considering only continuous
operator. In the opposite, there are numerous ways of enriching CFNPR; for instance one can
assume that for any (x,u) ∈F ×F , it exists rx such that:

r(x+δu) = r(x)+δ 〈rx,u〉+o(δ ), (1)

as δ tends to zero; rx is the Gateaux-derivative of r at x along the direction u. Whatever the set
CFNPR, it contains only regularity assumptions. Consequently, CFNPR contains nonlinear operators
and thus the nonparametric model is very flexible. This nonparametric feature is a key advantage,
especially when there is no standard tool for displaying graphically the relationship between a
scalar response and an explanatory functional variable. So, the difficulty of anticipating on the
shape of the regression operator combined with no a priori information makes the nonparametric
modelling a relevant method for exploring such a relationship.

3.2. Functional nonparametric regression in action

Before going on, let us remind how building an estimator of r. To this end, we focus on the kernel
estimator which is a very popular way of estimating nonparametrically the regression operator.
Let K be a positive asymmetric kernel function; then, the nonparametric kernel estimator rFNPR

of r is defined as:

rFNPR(u) =
∑

n
i=1Yi K

{
h−1d(Xi,u)

}
∑

n
i=1 K {h−1d(Xi,u)}

,

where h is the so-called bandwidth which plays the role of the smoothing parameter. The simplicity
of its writting as well as its ease of implemention makes the kernel estimator very useful.

In order to assess the predictive performance of the functional nonparametric regression, the
original dataset {(Xi,Yi); i = 1, . . . ,n} is split into two subsamples: L = {(Xi,Yi); i ∈ L} and
T = {(Xi,Yi); i ∈ T} with L∪ T = {1, . . . ,n} and L∩ T = /0. The learning sample L allows
to build the estimator rFNPR and to select automatically the bandwidth h via a cross-validation
procedure. The testing sample provides the relative mean squared error of prediction:

RMSEP(rFNPR) =
∑i∈T (Yi− Ŷi)

2

∑i∈T (Yi−Y )2
,

where, for all i in T , Ŷi = rFNPR(Xi) and Y is the average of Y based on the testing sample. The orig-
inal dataset is randomly split 100 times which allows to compute 100 values for RMSEP(rFNPR)
and to display their distribution by means of a boxplot. At last, for all datasets, the size of the
testing sample T represents 50% of the whole sample.

We focus here on the functional regression model Yi = r(Xi)+εi where the Xi’s are near-infrared
spectrometric curve of the Yi’s are corresponding scalar responses (octane number or fat content).

1 a semi-metric d(·, ·) is a metric such that d(x1,x2) = 0 does not imply that x1 = x2.
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(a) Food industry dataset (b) Petroleum prediction problem
●

0.
01

0
0.

02
0

0.
03

0

R
M

S
E

P
(r

F
N

P
R
)

●

●

●

●
● ● ●

● ●
●

●

●

●

●
●● ●●●

●
●
●

●
●●

●

●
●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●
● ● ●

●

●

●

0 10 20 30 40

10
20

30
40

observed fat content

pr
ed

ic
te

d 
fa

t c
on

te
nt

●

●

●

●

0.
1

0.
2

0.
3

0.
4

0.
5

R
M

S
E

P
(r

F
N

P
R
)

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

85 86 87 88 89

85
86

87
88

observed octane number

pr
ed

ic
te

d 
oc

ta
ne

 n
um

be
r

FIGURE 5. FNPR with original spectra: Out-of-sample predictive performance.

Based on the knowledge in the chemometrician community, near-infrared spectra suffers from a
calibration problem (see Martens and Naes (1992) for a general overview about this statistical
problem) due to the electronic devices. Considering successive derivatives of the spectrometric
curves instead of the original curves themselves allows to overcome this problem. Unfortunately,
we never know which derivative is the most informative. Ferraty and Vieu (2002) studied the
food dataset and pointed out that the twice differentiated curves are the most predictive. This
is why the kernel estimator rFNPR is used with the d(Xi,x) =

∫
{X ′′i (t)− x′′(t)}2dt where the

notation f ′′ stands for the second derivative of any real-valued univariate function f . The top
panel of Figure 5(a) displays the distribution of the relative mean squared error of prediction;
the values are concentrated around 0.02 (the median). The bottom panel gives an idea on the
accuracy of the predictions corresponding to one run (i.e. one pair of subsamples (L ;T )) where
RMSEP(rFNPR)' 0.02. The predictions and the observations are very close and the functional
nonparametric regression seems to be a relevant tool for predicting fat content. Concerning
the octane dataset, Figure 5(b) proposes similar plots than those given in Figure 5(a) but now
the kernel estimator involves the proximity measure d(Xi,x) =

∫
{X ′i (t)− x′(t)}2dt where the

notation f ′ stands for the first derivative of any real-valued univariate function f . The median
of RMSEP(rFNPR) is around 0.2. One can observe that the global predictive power is weaker
than previously but the functional nonparametric regression still works well for predicting octane
number.

3.3. Methodological aspects

It is worth noting that the functional nonparametric regression method involves some proximity
measure d(·, ·) (i.e. the set of constraints depends on d: CFNPR,d). According to the nature (fat
content, octane, or any other products like moisture, sucrose level, etc) of what we intend to
predict from spectrometric curves, the most informative proximity measure d(·, ·) may change as
explained in the previous section but we never know in advance which is the most relevant one.
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(a) Food industry dataset (b) Petroleum prediction problem
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FIGURE 6. Spectrometry datasets: out-of-sample performance obtained with proximity measure based on successive
derivatives

This is why from a methodological point of view, one can implement the functional nonparametric
regression by involving a family of proximity measures and select the most predictive one. This
amounts to consider for the regression operator r a more general set of constraints CFNPR =
∪d∈DCd where D stands for a family of proximity measures. This procedure is particularly
interesting because in some cases it allows to improve significantly the predictive ability of the
nonparametric regression model. For instance, when one focuses on our spectrometric datasets,
one can set D = {dk; k = 0,1, . . . ,K} with dk(u1,u2) :=

∫
{u(k)1 (t)− u(k)2 (t)}2dt and where f (k)

stands for the kth derivative of any function f (with the convention f (0) := f ). Here the family
D is just indexed by the K first integers. Figure 6 gives an idea on how much one can expect to
improve the predicitive power. Clearly, the twice (resp. once) differentiated spectrometric curves
for predicting the fat content (resp. octane number) lead to the best out-of-sample performance
and in any case the standard L2-norm (i.e. d0) degrades dramatically the results.

So, the proximity measure plays a major role from a practical point of view but not only.
Indeed, it is important to emphasize that the proximity measure plays also a crucial role in the
asymptotic behaviour of the kernel estimator (see for instance the discussion in Chapter 13 of
Ferraty and Vieu (2006)). To conclude this section, one can remark that flexibility of the functional
nonparametric regression model comes from the huge size of the set of constraints CFNPR; larger is
CFNPR, more flexible is the regression model. Equivalently to this notion of flexibility, statisticians
introduced the terminology dimensionality which is a similar way to express the amount of
flexibility of any model. When one says that a model is of high dimensionality, it expresses its
high flexibility feature which is especially the case of the functional nonparametric regression
model. However, considering models of high dimensionality may lead to several main drawbacks.
Firstly, functional nonparametric regression model is not designed to produce graphical outputs
allowing to interpret results. Secondly, considering model of high dimensionality produces lower
rate of convergence than in the parametric framework (but it is normal because one considers
model of higher dimensionality). Thirdly we have to face with the so-called curse of dimensionality
meaning that higher is the dimension of the explanatory variable, larger should be the sample size
to expect accurate predictions. Although the two first drawbacks are unescapable, the third one
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may be overcome. Indeed, amplified in the functional setting where explanatory variables live in
some infinite-dimensioned space, the curse of dimensinality well known in the nonparametrician
community is valid as soon as one considers a standard norm as proximity measure. But, if you
do not reduce the proximity measures to standard norms (for instance semi-metric) and plug them
as an additional "parameter" of the method, it is possible to weaken the curse of dimensionality
impact. Figure 6 supports clearly this idea; with the same sample size, the use of semi-metrics
significantly improves the predictive performance.

Before ending this section, let us remark that the functional nonparametric regression model is
an interesting exploratory tool in that sense it points out the major predictive role played by the
second (resp. first) derivative in the food (resp. petroleum) industry example.

4. Models of low dimensionality: the functional linear regression

4.1. Functional linear regression model

Another way of modelling the relationship between a functional explanatory variable and a scalar
response is to consider a set of constraint C much more rigid in the sense that one imposes
the linearity of the regression operator r. This linearity assumption reduces considerably the
dimensionality of the regression model and the set of constraints becomes:

CFLR = {r : F → R, ∀x ∈F , r(x) = 〈x,ρ〉} ,

where 〈·, ·〉 is the inner product in F and ρ is some unknown smooth functional parameter. This
linear modelling is very popular in the functional data analysis community and numerous papers
are available in the literature (see for instance the technical works Cardot et al. (1999), Cai and
Hall (2006), Cardot et al. (2007) as well as Ramsay and Silverman (2005) and Ferraty and Romain
(2011) for general overviews and related methods).

4.2. Functional linear regression model in action

Starting from the linear model Yi = µ+〈Xi,ρ〉+εi for i= 1, . . . ,n, a standard estimating procedure
consists in minimizing some penalized sum of squares of the form Qλ (ρ) := ∑

n
i=1(Yi−Y −

〈Xi,ρ〉)2 + Pλ (ρ) where Pλ (ρ) is a penalty term depending of some (possibly multivariate)
parameter λ and set ρ̂ := infρ∈S Qλ (ρ). Here, Y is the average of the Yi’s and stands for the
estimation of the real parameter µ . The last minimization operates over a set S of smooth
functions with good approximation properties and depending on the context (such as spline basis,
wavelet basis, tensor product of splines, etc). In our situation, we only use spline estimator for
deriving the unknonwn functional parameter ρ . Then, for all x ∈F , the estimator rFLR of r is
defined as

rFLR(x) = Y + 〈x, ρ̂〉.

To assess the predictive performance, we use the same criteria (i.e. RMSEP(rFLR)) and follow the
same procedure depicted previously (100 randomly splits for building 100 pairs of learning and
testing subsamples). In addition, the choice of the penalty (smoothing) parameter λ is derived
from a cross-validation procedure systematically based on the learning sample. Figure 7 displays
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(a) Food industry dataset (b) Petroleum prediction problem
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FIGURE 7. FLR with original spectra: out-of-sample performance and functional parameter.

the results for both datasets; top and middle panels are similar to that described in the previous
section whereas those at the bottom plot the estimated functional parameter ρ̂ . The estimated
functional parameter is an interesting interpretable tool. It allows to identify ranges of wavelengths
playing a minor (resp. major) role named the set of wavelengths λ such that |ρ̂(λ )| is smaller
(resp. greater) than some threshold value. However, the price to pay for getting interpretable tools
implies a significant loss in terms of prediction. The median of the RMSEP(rFLR) is around 0.07
(resp. 0.30) for the food (resp. petroleum) industry dataset.

5. Models of intermediate dimensionality

According to the previous developments, on one hand model with high dimensionality like the
functional nonparametric regression model may lead to powerful predictive performance but no
interpretable graphical tool is available. On the other hand, rigid model with low dimensionality
like the linear one offers interpretable graphical output but with a possible loss in terms of
predictive quality. In order to take advantages of each previous models, an interesting way consists
in proposing regression models of intermediate dimensionality balancing predictive performance
and interpretability need.
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5.1. Directional additive modelling

The terminology directional additive modelling encompasses models assuming that the functional
covariate impacts on the scalar response only through a few relevant directions via nonlinear addi-
tive link functions. One of the simplest, the functional index model (see for instance Amato et al.
(2006) or Ait-Saidi et al. (2008)), assumes that there exists a real parameter µ , one functional di-
rection ρ and one additive component g (i.e. real-valued function) such that r(X) = µ +g(〈X ,ρ〉);
the real parameter µ , the informative direction ρ and the link function g are unknown and have to
be estimated. Recent works (Chen et al. (2011) and Ferraty et al. (2013)) extended this idea to D
directions ρ1, . . . ,ρD by developing the more sophisticated modelling

r(X) = µ +g1 (〈X ,ρ1〉)+ · · ·+gD (〈X ,ρD〉)

where the D informative directions ρ1, . . . ,ρD and the D additive components g1, . . . ,gD (also
called link functions) are unknown smooth functions that have to be estimated; the unknown
real parameter µ is also unknown. This model, called functional projection pursuit regression
(FPPR) is an extension to the functional setting of the popular projection pursuit regression (see
for instance Friedman and Stuetzle (1981) and Huber (1985)). Of course, the number of functional
directions D has to be reasonable in order to avoid overparametrization situation and consequently
identifiability issue (see the recent works Lin and Kulasekera (2007) and Yuan (2011)). For this
model, the set of constraints can be expressed as:

CFPPR = {r : F → R, ∀x ∈F , r(x) = µ +g1 (〈x,ρ1〉)+ · · ·+gD (〈x,ρD〉)} .

Clearly, the FPPR dimensionality is much higher than the functional linear regression one (i.e.
CFLR ⊂ CFPPR); the FPPR is more flexible than FLR. Introducing several embedded functional pa-
rameters makes much more complex the estimating mechanism. Although various implementions
of FPPR are available in the litterature (see again Chen et al. (2011) and Ferraty et al. (2013) for
more details and references therein), in order to simplify this intensive computational algorithm,
Ferraty et al. proposed a new approach based on average derivative ideas. This last method
is used here for deriving the D estimated functional directions ρ̂1, . . . , ρ̂D and the D estimated
additive components ĝ1, . . . , ĝD. This new method, based on the nonparametric estimation of
the functional directional derivative rx defined in (1), allows to estimate simultaneously the D
functional directions ρ1, . . . ,ρD. Let rFPPR be the FPPR estimator of r:

rFPPR(x) = Y + ĝ1 (〈x, ρ̂1〉)+ · · ·+ ĝD (〈x, ρ̂D〉)

Out-of-sample performance. We compute RMESP(rFPPR) according to the same scheme as
for the previous models. Concerning the food industry dataset (Figure 8 (a)), the predictive ability
of rFPPR is higher than rFLR but lower than rFNPR; using more flexible model leads to better
predictive accuracy. About the petroleum example, Figure 8 (b) shows the nice out-of-sample
performance of FPPR which is much better than FLR but also better than FNPR.

Interpretable outputs. In addition of its good predictive behavior, the interest of FPPR is to
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(a) Food industry dataset (b) Petroleum prediction problem

●

●

0.
04

0.
08

0.
12

R
M

S
E

P
(r

F
P

P
R
)

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

●
●●
●
●
●

●●
●
●

●●

●●
●

●
● ● ● ●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

● ●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●

●
●

●

●
●

●

0 10 20 30 40

0
10

30

observed fat content

pr
ed

ic
te

d 
fa

t c
on

te
nt

0.
0

0.
1

0.
2

0.
3

0.
4

R
M

S
E

P
(r

F
P

P
R
)

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●●

●

● ●●

●
●

● ●

84 85 86 87 88 89

84
86

88

observed octane number

pr
ed

ic
te

d 
oc

ta
ne

 n
um

be
r

FIGURE 8. FPPR: out-of-sample performance.

produce graphical tools through the estimated functional directions and additive components.
To this end, FPPR is launched with the whole sample of both datasets. Figure 9 focuses on the
food industry example for which a 2-dimensional FPPR has been implemented for studying the
relationship between the fat content and the near-infrared spectra; one has at hand D = 2 estimated
functional directions (i.e. ρ̂1 and ρ̂2) and also D = 2 estimated additive components (i.e. ĝ1 and
ĝ2). To make easier the interpretation of the estimated functional directions (continuous black
thick line), they have been superimposed on the 215 original spectra (in gray) in the left panels.
One remarks two heavy peaks (vertical dashed lines) on the first estimated functional direction
ρ̂1 (top-left panel). The first one (minimum) around 930 nm identifies clearly a secondary bumb
which appears sometimes in the spectra; the second peak (maximum) corresponds to the hollow
between the secondary bumb and the main one (when it occurs). The second estimated functional
direction ρ̂2 (bottom-left panel) reduces the role played by the middle of the spectra emphasized
with ρ̂1. Regarding associated additive components (right panels), they point out the need of
considering some nonlinear shape. FPPR outputs for the petroleum dataset are displayed in Figure
10. Here, a simple one-dimensional FPPR is sufficient to describe the relationship between the
octane number and the spectra. Then, only one functional direction ρ̂1 and additive component
ĝ1 are estimated; remember that the one-dimensional FPPR (i.e. D = 1) is also called functional
index model. Similarly to left panels of Figure 9, ρ̂1 (continuous black thick line) is superimposed
on the 60 original spectra (in gray). This graphics indicates that the wavelengths playing a major
role in terms of prediction are located just after 1200 nm and just before 1400 nm; they do not
correspond to the peaks of the spectra. The right panel emphasizes again the nonlinear feature of
the link function ĝ1.

5.2. Parsimonious nonlinear regression model

In our examples, if we forget the implicit order of the wavelengths, the ith discretized spectrometric
curves Xi(λ1), . . . ,Xi(λp) can be viewed as a standard p-dimensional covariate X = {Xi,1, . . . ,Xi,p}
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FIGURE 9. FPPR outputs for food industry dataset: estimated functional directions and additive components.

with, for j = 1, . . . , p, X j = Xi(λ j). So, our challenge is to regress nonlinearly a scalar response
on a quite high-dimensional covariate. A different but useful way of handling such a situation
consists to propose, for i = 1, . . . ,n, the following parsimonious nonparametric regression:

Yi = rJ (XJ
i )+ εi,

where J is an unknown small subset of {1, . . . , p} and XJ
i stands for the subvector {Xi, j; j∈J }

and rJ is an unknown multivariate smooth function. This model is parsimonious in the sense

that it assumes E(Yi|Xi) = E(Yi|X
J
i ). This means that only few covariates are nonparametrically

active; the subset J is usually called active set of covariates. This model is a direct extension of
the sparse linear regression methods intensively studied in the literature (see for instance least
absolute shrinkage and selection operator Tibshirani (1996), smoothly clipped absolute deviation
Fan and Li (2001), least angle regression Efron et al. (2004), Dantzig selector Candès and Tao
(2007) and Bühlmann and van de Geer (2011) for a recent overview on this topic).

So, the main aim is to estimate the active subset J and the corresponding multivariate regres-
sion function rJ . Ferraty et al. (2010) developed a first approach by using a stepwise forward
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FIGURE 10. FPPR outputs for petroleum industry dataset: estimated functional direction and additive component.

algorithm based on minimizing a cross-validation criterion. Recently, Ferraty and Hall (2014)
improved significantly this last work by proposing a new algorithm enlarging the class of possible
combinations of covariates retained at each step. Here, we implemented this new algorithm in
order to estimate the active subset; a standard linear local regressor (see for instance Fan and
Gijbels (1996)) is used to derive the estimator rNOVAS of the corresponding multivariate regression
function rJ where the abbreviation NOVAS stands for NOnparametric VAriable Selection. In
this sparse model, the set of constraints CNOVAS is just the set of real-valued multivariate functions
satisfying regularity assumptions like continuity, differentiability, etc.

We again follow the same scheme for assessing the out-of-sample performance of NOVAS
which are displayed in Figure 11. It is worth noting that the predictive power of NOVAS is
similar to that obtained with the functional projection pursuit regression (FPPR). What about the

(a) Food industry dataset (b) Petroleum prediction problem
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FIGURE 11. NOVAS with original spectra: out-of-sample performance.
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(a) Food industry dataset (b) Petroleum prediction problem
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FIGURE 12. NOVAS with original spectra: selected wavelengths.

interpretability of the NOVAS method? Figure 12 gives an interesting answer to this question
which is obtained when NOVAS is rerun on the whole sample for both datasets. In our situation,
selecting covariates amounts to retain wavelengths. So, the vertical black lines, superimposed on
the original curves (in gray), identify the location of the selected wavelengths. About the food
industry example (Figure 12 (a)), four wavelengths are retained: 928 nm, 930 nm, 932 nm and
1048 nm. This result confirms what was observed with the FPPR: the secondary peak (around 930
nm) plays a major role. In addition, NOVAS retains the highest wavelength (1048 nm). Figure 12
(b) displays the four selected wavelengths for the petroleum industry dataset. It confirms also the
conclusions of FPPR: four wavelengths very concentrated just after the first main peak (1200 nm,
1202 nm, 1208 and 1214 nm) are selected.

6. Boosting approach

Boosting methodology is a generic statistical approach aiming to combine several methods.
Generally, one has at hand several statistical technics for analyzing a given dataset. Most of the
time, they are implemented step by step in order to extract all relevant informations. Another
strategy consists in combining the obtained informations and to rerun the methods by integrating
these new knowledges. This is what we propose to do here in a basic but efficient way.

1. Starting point: FNPR. The key point is the crucial information obtained thanks to FNPR
(functional nonparametric regression): the twice (resp. once) differentiated curves are much
more informative than the original ones for the food (resp. petroleum) industry dataset. So,
the simple idea is to apply NOVAS (nonparametric variable selection) on the differentiated
spectrometric curves.

2. Nonparametric variable selection (NOVAS). We propose to boost NOVAS by considering
the once or twice differentiated spectra according to the targeted dataset instead of the
original ones. Figure 13 details the results; the median of RMSEP(rNOVAS) is around 0.009
(resp. 0.05) for the food (resp. petroleum) example. The predictive power is significantly
improved when replacing original curves with their once or twice differentiated counterpart.
Next plots (see Figure 14) locates (vertical black lines) the selected wavelengths for each
dataset which are superimposed on their corresponding differentiated curves. About the
food industry example (see Figure 14 (a)), three selected wavelengths (924 nm, 930 nm and
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(a) Food industry dataset (b) Petroleum industry dataset
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FIGURE 13. Out-of-sample performance of NOVAS: (a) (resp. (b)) uses twice (resp. once) differentiated curves.

(a) Food industry dataset (b) Petroleum industry dataset
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932 nm) are concentrated in the range 900 nm - 950 nm, identifying the first main hollow
of the twice differentiated curves as an important predictive area for the fat content. The
larger selected wavelength (1040 nm) corresponds to the last small valley. In addition, it
is worth noting that the wavelengths retained when considering the raw spectra are very
similar to these ones. Figure 14 (b) focuses on the petroleum industry problem. For this
dataset, only two wavelengths (1224 nm and 1226 nm) have been selected emphasizing the
major role played by the wavelengths in the range 1200 nm - 1300 nm.
So, integrating in NOVAS the information derived from FNPR allows to observe a predictive
gain in comparison with what we obtained when NOVAS was applied on the original curves.

3. Back to the functional projection pursuit (FPPR). Considering informations coming from
FNPR and NOVAS, we propose to boost FPPR by taking benefit of our current knowledge.
FNPR indicates that the twice (resp. once) differentiated spectra are more informative for
the food (resp. petroleum) industry dataset. In addition, NOVAS tell us that the range 900
nm - 950 nm deserves a special attention for the food example whereas wavelengths in
the range 1200 nm - 1300 nm seems to be important for the petroleum predictive problem.
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(a) Food industry dataset (b) Petroleum industry dataset
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FIGURE 15. Out-of-sample performance of FPPR: (a) (resp. (b)) uses twice (resp. once) differentiated spectra.

Consequently: food industry dataset→ FPPR is applied to the twice differentiated spectra
in the range 900 nm - 950 nm, petroleum industry dataset→ FPPR is applied to the once
differentiated spectra and we take into account only wavelengths in the range 1200 nm -
1300 nm.

(a) Out-of-sample performance. Figure 15 gives an idea on the predictive quality of FPPR
with conditions of use detailed just before. When comparing the results of FPPR with
the original curves, it is clear that FPPR works much better in this setting.

(b) Interpretable outputs. For the food (resp. petroleum) industry example, a 2-dimensional
(resp. 1-dimensional) FPPR is estimated. Figure 16 displays the outputs for the food
industry example. The second derivatives of spectra are plotted in the background (in
gray) with a suitable scale. The first estimated functional direction fits the main valley
(around 930 nm) of the twice differentiated spectra and confirms what was obtained
previously with NOVAS; the second estimated functional direction identifies the peak
reached just after. About the petroleum industry dataset, FPPR outputs are displayed
in Figure 17; the first derivative of the rescaled spectra are plotted in the background
(in gray). The functional direction indicates a slight valley (around 1240 nm) which
seems to be important for predicting octane numbers.

As conclusion, one can say that combining informations derived from FNPR and
NOVAS allows to use FPPR in a more efficience way.

7. Resources available online for functional data analysis

It is worth noting that all analyses and figures presented in this work were carried out with
the R R Development Core Team (2012) programming environment and various materials for
implementing some of the presented methods are available online:
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FIGURE 16. FPPR outputs for food industry dataset: estimated functional directions and additive components from
twice differentiated spectra.

– the companion website of Ferraty and Vieu (2006) proposes nonparametric approaches for
handling functional data; datasets, R routines, examples of use and much more are available
at http://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA,

– R routines and case studies for implementing the NOVAS method are available at http://www.math.univ-
toulouse.fr/~ferraty/online-resources.html,

and the directional additive modelling (FPPR) will be soon available online.
We focused only on four regression models to analyze our datasets. Of course, many other

methods can be applied. So, before ending this work, one mentions for practitioners various R
packages available online dealing with functional data:

– the fda package (Ramsay et al., 2012) for linear models dealing with functional data analysis,
– the fdaMixed package (Markussen, 2011) for mixed model taking into account functional

data,
– the fda.usc package (Febrero-Bande and Oviedo de la Fuente, 2012) includes complementary

exploratory and descriptive tools dealing with functional data analysis,

Journal de la Société Française de Statistique, Vol. 155 No. 2 100-120
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



118 F. Ferraty

1200 1240 1280

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0

functional direction 1

−0.4 −0.2 0.0 0.2

−4
−3

−2
−1

0
1

2

additive component 1

●

●

●
●

●●

●●

● ●

●
●●

●●

●
●

●

●
●●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

−0.4 −0.2 0.0 0.2

−4
−3

−2
−1

0
1

2
FIGURE 17. FPPR outputs for food industry dataset: estimated functional directions and additive components from
twice differentiatrd spectra.

– the fds package (Shang and Hyndman, 2011) contains functional data sets; the petroleum
industry dataset can be found in this package,

– the fpca package (Peng and Paul, 2011) deals with the restricted maximum likelihood
estimation for functional principal components analysis,

– the ftsa package (Hyndman and Shang, 2012) for functional time series analysis,
– the MFDF package (Dou, 2009) is specially designed to model functional data in finance by

using generalized linear model,
– the rainbow package (Shang and Hyndman, 2012) for visualizing functional data,

In addition to the previous R packages, other useful resources are available online:
– the companion website of Ramsay and Silverman (2005) gives numerous complementary

materials at www.functionaldata.org,
– the PACE website which proposes useful materials and package for Functional Data Analysis

and Empirical Dynamics written in Matlab; these methods are able to handle sparsely as
well as densely sampled functional data.

8. Conclusion

The main contribution of this paper is to detail and compare the results of four regression models
when explaining a scalar response with near-infrared spectra. Although two of them are now
very standard (the functional linear model and the functional nonparametric regression), the two
others (functional projection pursuit and parsimonious model) are very recent. The intermediate
dimensionality of these two new functional regression approaches is a key point; it provides useful
interpretable outputs. Moreover, their flexibility is sufficiently high to catch nonlinear relationship
leading to good predictive behaviour. But, if we boost them by integrating the most relevant
informations coming from standard use of all these methods, it is possible to improve significantly
their predictive performance as well as their interpretability.

Of course, our connecting thread in this work was two spectrometric datasets but the same
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methodology can be extended to other kind of functional data. For instance functional processes
(time series may be viewed as a particular case of functional process; see for more details the
monography Bosq (2000)) provides numerous examples containing dependent functional data
and the implementation of the presented methods remains valid for such datasets. In the near
future, one can expect to develop useful interpretable tools for handling much more complex
data like collection of surfaces, hyperspectral images, etc. It is worth noting that the functional
projection pursuit and the nonparametric variable selection can be implemented easily with
high-dimensioned covariates (i.e. not necessary functional variable) with possible application to
genomics and more generally to all domains dealing with high-dimensional data.

To conclude, models of intermediate dimensionality in the high-dimensional setting is certainly
a highway for deriving new useful statistical methods.
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