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Abstract: At the age of Big Data, it is now common to have to deal with very large datasets of phenomena that evolve
over time. When the aim is to estimate simple quantities such as the mean or the median trajectory, as well as the main
modes of variation of the data, captured through a principal components analysis, survey sampling techniques may be
employed successfully. They can offer an interesting trade off between size of the data and accuracy of estimators. This
paper makes a review of survey sampling approaches recently developed to deal with large datasets of functional data.
We present different sampling techniques that can be employed to build confidence bands and improve, with the help
of auxiliary information, the accurary of estimators compared to simple random sampling without replacement. These
procedures are illustrated on a dataset of electricity load curves measured every half-hour over a period of one week.

Résumé : A l’ère des données massives, il n’est plus inhabituel d’avoir à gérer de très grandes bases de données
de phénomènes temporels. Quand l’objectif est d’estimer des indicateurs simples tels que la trajectoire moyenne ou
médiane ou bien encore les principaux modes de variation autour de la moyenne, capturés par l’intermédiaire d’une
analyse en composantes principales, les techniques de sondage sont des approches intéressantes. Elles offrent en
effet un bon compromis entre taille des données à traiter et précision de l’estimation. Ce travail présente une revue
des approches de sondage qui ont été developpées ces dernières années pour analyser de grandes bases de données
fonctionnelles. L’accent est mis sur les manières de prendre en compte l’information auxiliaire en vue d’améliorer
l’estimation en comparaison avec le sondage aléatoire simple sans remise et sur la construction de bandes de confiance.
Ces techniques sont illustrées sur un jeu de données de courbes de charge électrique mesurées chaque demi-heure
pendant une semaine.
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1. Introduction

Steve Lohr wrote in the New York Times (see Lohr (2012)) that we are now at "the Age of Big
Data", with "countless digital sensors worldwide in industrial equipment, automobiles, electrical
meters and shipping crates". An example of such large data of phenomena that evolve over
time is given by electricity load curves measured for households and companies thanks to new
smart electricity meters. Such data have been studied in Pauline Lardin’s thesis Lardin (2012),
1 EDF R&D - La Poste.

and E-mail: pauline.puech@laposte.fr
2 Université de Bourgogne. Institut de Mathématiques de Bourgogne, UMR CNRS 5584. 9 Av. Alain Savary, 21078

Dijon Cedex. France.
E-mail: herve.cardot@u-bourgogne.fr and E-mail: camelia.goga@u-bourgogne.fr

Journal de la Société Française de Statistique, Vol. 155 No. 4 70-94
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238

mailto:pauline.puech@laposte.fr
mailto:herve.cardot@u-bourgogne.fr
mailto:camelia.goga@u-bourgogne.fr


Analysing large datasets of functional data: a survey sampling point of view 71

with the financial support of Electricité de France (EDF), the major French electricity company.
In the presence of technical and budgetary constraints due to limited bandpass or storage cost
of huge databases, the analysis of the whole set may be impossible or very difficult. In Chiky
(2009), it is shown that if we are only interested in simple indicators, such as total or mean
trajectories, even very simple survey sampling techniques, such as simple random sampling
without replacement, are attractive alternatives to signal compression techniques since they permit
to obtain precise estimates at a reasonable cost. The aim of this work was to evaluate how survey
sampling techniques could be useful and how they can be adapted to deal with observations that
are functions of time when one aims at estimating functional parameters of interest such as the
mean load curves. Other references on this topic are Chiky et al. (2008) and Cardot and Josserand
(2011).

We consider a test population of N = 18902 French companies whose electricity consumption
has been measured every half an hour over a period of one week. A sample of 20 load curves
extracted from this dataset is drawn in Figure 1 as well as the mean and the median profiles.

The discretization scheme is very fine so that the statistical units can be considered as functions
of time. We can use the tools of functional data analysis to describe the data and build statistical
models. Even if some of these tools have been first proposed in the 1970s in Deville (1974)
and Dauxois and Pousse (1976), these methods only began to spread twenty years ago with the
increase of computer performances as well as storage capacities. The reader may refer to Ramsay
and Silverman (2005), Ferraty and Vieu (2006) and Ferraty and Romain (2011) for an overview
of the different techniques developed in the statistical literature in functional data analysis as well
as examples of application.

This work aims at giving a review of some recent works combining survey sampling techniques
and functional data analysis. We focus on the estimation of simple quantities such as mean,
principal components or medians and explain how auxiliary information can be taken into account
in order to improve the accuracy of the estimators compared to simple random sampling without
replacement. Under asymptotic normality assumptions, we also present how it is possible to build
confidence bands when we have at hand a consistent estimator of the variance.

The paper is structured as follows. Notations and functional parameters of interest are given in
Section 2. Estimators for the functional parameters are suggested in Section 3 and their asymptotic
properties are studied in Section 4. Section 5 deals with an application on electricity load curves
for stratified and πps sampling and we suggest in Section 6 an estimator that takes into account
the auxiliary information by considering a functional linear model. Finally, Section 7 contains
some concluding remarks.

2. Notations and parameters of interest

We consider a finite population U whose size N is not necessarily known. We suppose that for each
unit k from the population U , we can observe a deterministic function of time Yk = (Yk(t))t∈[0,T ]

that belongs to some space of functions. Depending on the objective, this space will be either the
space of continuous functions C[0,T ] endowed with the sup norm or the Hilbert space L2[0,T ],
i.e. the space of square integrable functions defined on the closed interval [0,T ], equipped with
the inner product < f ,g >=

∫ T
0 f (t)g(t)dt and the induced norm || f || = [

∫ T
0 f 2(t)d(t)]1/2 for

f ,g ∈ [0,T ].
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FIGURE 1. A sample of 20 electricity consumption curves measured every half an hour over a period of one week. The
mean consumption curve in the population is drawn in bold blue line and the median curve in red one.

In this functional setting, the statistician may be interested in estimating classical parameters
of interest such as the total or the mean curve and their definition and interpretation are obtained
easily by analogy with the non-functional case. The situation is more complicated for other
parameters of interest, such as quantiles. The median may be defined in several manners for
multivariate or functional data. Moreover, new functional parameters may be of interest now.

When the aim is to build confidence bands, the natural setting will be the space C[0,T ] since
we want to produce a confidence interval that is uniform in t. When the aim is to estimate the
principal components, it is required that the underlying functional space would be equipped with
an inner product, so that the natural setting is to consider that Yk are elements of L2[0,T ]. The
same functional space L2[0,T ] will be considered in the case of the median curve since the strict
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convexity of the norm || · || permits to obtain the uniqueness of this parameter.
We present below the functional parameters of interest that have been studied in a survey

sampling setting. The simplest ones are the total curve:

tY = ∑
k∈U

Yk

and the mean trajectory:

µN =
1
N ∑

k∈U
Yk. (1)

The value of tY or µN in a measurement point t ∈ [0,T ] is obtained directly as tY (t) = ∑k∈U Yk(t)
and µN(t) = 1

N ∑k∈U Yk(t), respectively.
For such high dimensional data, other useful statistical indicators are given by the principal

components that can exhibit the main modes of variation of the data around the mean curve (see
e.g Ramsay and Silverman (2005) and Cardot et al. (2010a)). To perform principal components
analysis, it is first required to estimate the covariance function of the data at the population level.
For r and t in [0,T ], the covariance function γ(r, t) between (Yk(r))k∈U and (Yk(t))k∈U is defined
as follows:

γ(r, t) =
1
N ∑

k∈U
(Yk(r)−µN(r))(Yk(t)−µN(t)), (r, t) ∈ [0,T ]× [0,T ].

Then, the associated covariance operator Γ, which maps any function a in L2[0,T ] to Γa in
L2[0,T ], is defined by

Γa(r) =
∫ T

0
γ(r, t)a(t)dt, r ∈ [0,T ]. (2)

The covariance operator has the following equivalent form:

Γ =
1
N ∑

k∈U
(Yk−µN)⊗ (Yk−µN), (3)

where the tensor product of two elements a and b of L2[0,T ] is the rank one operator such that
a⊗b(y) =< a,y > b for all y ∈ L2[0,T ]. The eigenvalues of Γ are non negative and supposed to
be sorted in decreasing order λ1 ≥ λ2 ≥ . . .≥ λN ≥ 0. They satisfy:

Γv j(t) = λ jv j(t), j = 1, . . . ,N, (4)

where the eigenfunctions v j, j = 1, . . . ,N can be chosen to form an orthonormal system in
L2[0,T ], namely < v j,v j′ >= 1 if j = j′ and zero otherwise.
With functional data, curves Yk usually span a subspace whose dimension can be very large, at
most N but with redundant information so that dimension reduction can be useful to analyze
and describe the data. A classical tool for dimension reduction is principal components analysis
(see Jolliffe (2002) or Ramsay and Silverman (2005)) which has been adapted in a finite popula-
tion context by Cardot et al. (2010a) to get the best representation, in a quadratic sense, of the
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74 Pauline Lardin-Puech, Hervé Cardot and Camelia Goga

curves Yk, in a subspace of dimension q much smaller than N. We consider the projection onto a
q-dimensional subspace of Yk−µN and we look for the subspace which can reproduce the best
the variability of the data in the population. In order to achieve this, we look for the minimum of
the following loss function:

R(q) =
1
N

N

∑
k=1
‖Rqk‖2 (5)

where

Rqk(t) = Yk(t)−µN(t)−
q

∑
j=1

< Yk−µN ,φ j > φ j(t), t ∈ [0,T ] (6)

among all the orthonormal systems φ1, . . . ,φq in L2[0,T ] which span a q-dimensional subspace
of L2[0,T ]. We can remark that ∑

q
j=1 < Yk−µN ,φ j > φ j is simply the orthogonal projection of

Yk−µN onto the subspace generated by φ1, . . . ,φq. It can be shown (see Cardot et al. (2010a)) that
the minimum of R(q) is attained when considering the subspace generated by the q eigenfunctions
v1, . . . ,vq associated to the q largest eigenvalues of Γ and that, at the optimum, R(q) = ∑

N
j=q+1 λ j.

Nevertheless, in practice we are not able to realize this decomposition since µN and Γ, as well as
the eigenvalues λ j and the eigenfunctions v j, are computed from the whole population, as seen
from equations (3) and (4). Instead, one can estimate µN , Γ, λ j and v j by drawing a sample as
studied in Cardot et al. (2010a).

With high dimensional data, it is not uncommon to have outlying curves, such as consumers
with very high levels of electricity consumption. In such a situation, it is advisable to consider
indicators which are more robust to outlying data than the mean profile, and the median is one of
them. However, the notion of median can not be generalized easily to multivariate or functional
data because of the lack of a natural ordering. There are several definitions of the median and
we present here the one used by Kemperman (1987) and Gervini (2008) for functional data.
The reader is referred to Small (1990) for a review of different definitions of the median with
multidimensional data. The median curve calculated from the elements Y1, . . . ,YN belonging to
L2[0,T ] is defined by:

mN = argminy∈L2[0,T ]

N

∑
k=1
‖Yk− y‖. (7)

If the points Yk, for k = 1, . . . ,N, are not concentrated on a line, the median mN exists and is
unique (see Kemperman (1987)). For Y1, . . . ,YN ∈ Rd , mN defined by the relation (7) arises as a
natural generalization of the well-known characterization of the univariate median Koenker and
Bassett (1978), mN = argminy∈R ∑

N
k=1 |Yk−y|. This indicator has been used for the first time at the

beginning of the 20-th century. It was called the spatial median by Brown (1983) because, from a
geometric point of view, the median is the point that minimizes the sum of distances to the points
in the population. For example, Weber (1909) considered the following problem: a company
wants to find the optimal location of its warehouse in order to serve the N customers with planar
coordinates given by Y1, . . . ,YN . The name of L1-median was used by Small (1990) because the
definition uses a L1-criterion. Finally, Chaudhuri (1996) called it the geometric median because it
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may be seen as a particular case of the geometric quantiles whose definition uses the geometry of
the data clouds by means of a direction and a magnitude.

The median defined in this way is a global indicator of the data in the sense that it takes into
account all the measurement instants. Besides, it is a central indicator of the distribution of the
data with nice robustness properties; see Ilmonen et al. (2012) for a recent review of the properties
of the L1-median.

It can also be shown that the median mN is the unique solution of the following estimating
equation (see Small (1990)),

N

∑
k=1

Yk− y
||Yk− y||

= 0 (8)

provided that we don’t have Yk = mN for any k = 1, . . . ,N.
The median defined by (7) or (8) may be computed by using fast iterative algorithms such

as Weiszfeld’s algorithm (see Weiszfeld (1937) and Vardi and Zhang (2000)) for multivariate
data or gradient algorithms (see Gervini (2008)) for sparse functional data. Note however that
these algorithms may be time-consuming, especially if both the population size and the number
of measurement instants are very large. To cope with this issue, Cardot et al. (2013a) suggest
in a recent work to use recursive algorithms that are very fast and allow to compute the median
when the data arrive sequentially. Alternatively, Chaouch and Goga (2012) suggested to employ
a weighted estimator of the L1-median curve obtained by using only a sample drawn randomly
from the population.

Considering again the electricity data presented in the Introduction we have plotted in Figure 2
the mean population curve as well as the L1-median curve. As it can be seen, the median curve
presents the same periodic patterns as the mean curve but with lower values.

3. The Horvitz-Thompson estimator and substitution estimators for functional
parameters

We consider a sample s drawn from U according to a fixed-size sampling design p(.), where p(s)
is the probability of drawing the sample s. The size n of s is nonrandom and we suppose that
the first and second order inclusion probabilities satisfy πk = P(k ∈ s) > 0, for all k ∈U, and
πkl = P(k & l ∈ s)> 0 for all k, l ∈U , k 6= l, so that each unit and each pair of units can be drawn
with a non null probability from the population.

Without any auxiliary information, Cardot et al. (2010a) proposed to estimate the total curve tY
by the (functional) Horvitz-Thompson estimator defined as follows:

t̂Y π = ∑
k∈s

Yk

πk
= ∑

k∈U

Yk

πk
Ik, (9)

where Ik is the sample membership indicator with Ik = 1 if k ∈ s and Ik = 0 otherwise. The
estimator t̂Y π belongs to L2[0,T ] and its value at instant t, for t ∈ [0,T ], is simply

t̂Y π(t) = ∑
k∈s

Yk(t)
πk

.
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FIGURE 2. The L1-median profile (in red) and the mean profile (in black) of the electricity consumption curves.

Let us remark that the curves Yk(t) are considered as fixed with respect to the sampling design
and it is the sample membership Ik that is random with respect to p(·). Using the fact that
Ep(Ik) = πk > 0, where Ep[·] is the expectation with respect to the sampling design, we obtain
easily that t̂Y π is design-unbiased for tY , namely Ep(t̂Y π) = tY . The Horvitz-Thompson estimator
of the mean curve µN is

µ̂ =
1
N

t̂Y π . (10)

Some properties of this functional estimator have been studied in Cardot et al. (2013c) and Cardot
et al. (2013d). Note that the mean curve may also be estimated by the Hájek-type estimator defined
as follows (see Cardot et al. (2010a), Hájek (1971)):

µ̂Ha j =
t̂Y π

N̂
, (11)

where N̂ = ∑s 1/πk is the Horvitz-Thompson estimator of N. This estimator may have better
performances than the Horvitz-Thompson estimator µ̂ in certain conditions.
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Analysing large datasets of functional data: a survey sampling point of view 77

The covariance between t̂Y π(r) and t̂Y π(t) computed with respect to the sampling design is
derived easily by using the fact that Covp(Ik, Il)= πkl−πkπl and it is given by a Horvitz-Thompson
variance-type formula:

γp(r, t) = ∑
k∈U

∑
l∈U

(πkl−πkπl)
Yk(r)

πk

Yl(t)
πl

, r, t ∈ [0,T ]. (12)

For r = t, we obtain the variance of t̂Y π(r). As πkl > 0 for all k, l ∈U, the covariance function
γp(r, t) is estimated unbiasedly with respect to the sampling design by:

γ̂p(r, t) = ∑
k∈s

∑
l∈s

πkl−πkπl

πkl

Yk(r)
πk

Yl(t)
πl

, r, t ∈ [0,T ]. (13)

3.1. Taking discretization effects into account

With real data, we generally do not observe Yk(t) at all instants t in [0,T ] but only for a finite set of
DN measurement times, 0 = t1 < ... < tDN = T . In functional data analysis, when the noise level
is low and the grid of discretization points is fine, it is usual to perform a linear interpolation or to
smooth the discretized trajectories in order to obtain approximations of the trajectories at every
instant t (see Ramsay and Silverman (2005)). Note that the discretization points are not required
to be the same for all curves. When there are no measurement errors and when the trajectories are
regular enough, it is shown in Cardot and Josserand (2011), under weak regularity conditions,
that linear interpolation can provide sufficiently accurate approximations of the trajectories to get
efficient estimators of the mean trajectories. Thus, for each unit k in the sample s, we build the
interpolated trajectory

Yk,d(t) = Yk(ti)+
Yk(ti+1)−Yk(ti)

ti+1− ti
(t− ti), t ∈ [ti, ti+1], (14)

and estimators can be constructed based on the interpolated values. For example, the Horvitz-
Thompson estimator of tY based on the discretized observations is as follows:

t̂Y π,d = ∑
k∈s

Yk,d

πk
,

and an estimator of the mean is obtained from relation (10):

µ̂d =
1
N

t̂Y π,d .

The covariance is then estimated by

γ̂d(r, t) = ∑
k∈s

∑
l∈s

πkl−πkπl

πkl

Yk,d(r)
πk

Yl,d(t)
πl

, r, t ∈ [0,T ]. (15)

When the observations are corrupted by noise, Cardot et al. (2013b) proposed to replace the
interpolation step by a smoothing step based on local polynomials. The smoothness of the mean
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estimator depends on a bandwidth whose value is selected by a cross-validation method that
accounts for the sampling weights. They have shown on simulations that smoothing does really
improve the accuracy of the Horvitz-Thompson estimator only when the noise level is high. On
the other hand, smoothing can lead, for low and moderate levels of noise, to estimators that are
outperformed by linear interpolation methods, specially when the value of the bandwidth is not
selected effectively (for instance, by usual cross-validation).

3.2. Non-linear parameters

The mean trajectory µN or the variance operator Γ are ratios of two finite population totals.
The eigenvalues and eigenfunctions of Γ as well as the median trajectory mN are also non-linear
functions of population totals as they are defined by the implicit equations (4) and (8), respectively.
To estimate these parameters, the strategy is simple and similar to the usual one for real parameters.
For a unified presentation, we use the approach suggested by Deville (1999). It consists in writing
the parameter of interest as a functional T of the discrete measure M defined on L2[0,T ] by:

M = ∑
k∈U

δYk ,

where δYk is the Dirac function taking value 1 if Y = Yk with k ∈U and zero otherwise. All the
non-linear parameters studied here can be written as functionals of M :

µN =

∫
Y dM∫
dM

, (16)

Γ =

∫
(Y −µN)⊗ (Y −µN)dM∫

dM
. (17)

The eigenvalues and eigenfunctions of Γ are also functionals of M as they are defined by the
implicit equation (4). As for the median curve, we consider the functional equal to the (Fréchet)
derivative with respect to y of the objective function defined in (7):

TmN (M;y) =−
∫ Y − y
||Y − y||

dM. (18)

Then, median is the unique solution of the implicit equation TmN (M;mN) = 0. Estimators of µ,Γ
and of mN respectively, are obtained by replacing M with :

M̂ = ∑
k∈s

δYk

πk
.

These estimators are also called substitution estimators. More exactly, the mean trajectory µN

is estimated by the Hájek-type estimator given in relation (11) and the variance operator Γ is
estimated by

Γ̂ =
1
N̂ ∑

k∈s

(Yk− µ̂Ha j)⊗ (Yk− µ̂Ha j)

πk
=

1
N̂ ∑

k∈s

Yk⊗Yk

πk
− µ̂Ha j⊗ µ̂Ha j.
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The estimators λ̂ j for λ j, and v̂ j for v j are the eigenvalues and eigenfunctions of Γ̂, namely

Γ̂v̂ j(t) = λ̂ jv̂ j(t), t ∈ [0,T ]. (19)

Considering now the median curve and assuming that all the Yk, for k ∈ s are not concentrated on
a line, we obtain with (18), that mN is estimated by m̂, the unique solution of

∑
k∈s

1
πk

Yk− m̂
‖Yk− m̂‖

= 0, (20)

provided that we don’t have Yk = m̂ for any k ∈ s (see Chaouch and Goga (2012)).

4. Some asymptotic properties

We briefly present in this section some asymptotic properties of the different estimators defined
before. We consider for that the asymptotic framework introduced by Isaki and Fuller (1982)
and a sequence of growing and nested populations UN of size N tending to infinity. A sample
sN of size nN growing to infinity is drawn from UN according to the sampling design pN(.).
The first and second order inclusion probabilities are respectively denoted by πkN and πklN . For
simplicity of notations and when there is no ambiguity, we drop the subscript N. We start by
giving the asymptotic properties of an estimator t̂Y π,d of the total curve tY or equivalently, of the
Horvitz-Thompson estimator of µN . We present next the asymptotic properties of the non-linear
estimators presented in Section 3.2. The following assumptions are needed.

Assumptions on the sampling design

A1. Assume that lim
N→∞

n
N

= π ∈ (0,1).

A2. Assume that min
k∈U

πk ≥ λ > 0, min
k 6=l

πkl ≥ λ
∗ > 0 and limsup

N→∞

n max
k 6=l∈U

|πkl−πkπl|<C1 < ∞.

A3. Assume that πkl = πkπl

{
1− (1−πk)(1−πl)

d(π) [1+o(1)]
}

and d(π) = ∑k∈U πk(1−πk)→+∞

as N tends to infinity.
A4. Assume that limN→∞ max(k,l,k′,l′)∈D4,n |Ep{(IkIl−πkl)(Ik′Il′−πk′l′)}|= 0 where D4,n is the

set of all distinct 4-tuples from UN .
Assumptions (A1) and (A2) are classical hypotheses in survey sampling and deal with the first

and second order inclusion probabilities but exclude situations in which the sampling fraction is
negligible. They are satisfied for many usual sampling designs with fixed size (see for example
Robinson and Särndal (1983) and Breidt and Opsomer (2000)) such as the SRSWOR and stratified
designs, but the condition on πkl is not satisfied for the systematic sampling design. Assumption
(A2) may be weakened as seen in Breidt and Opsomer (2008) including cluster sampling design.
Note however that the rates of convergence of the Horvitz-Thompson estimator are generally
slower. Assumptions (A3) and (A4) are stronger and are related to variance estimation. They
ensure that the sample membership indicators Ik are not too far from being independent and are
satisfied for sampling designs with high entropy (see Hájek (1964), Hájek (1981), or Cardot et al.
(2014)) such as SRSWOR, stratified sampling and the Poisson sampling conditioned to size or the
Sampford-Durbin sampling.
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Assumptions on the regularity of trajectories

A5. There are two positive constants C2 and C3 and 1≥ β > 1/2 such that, for all N and for
all (r, t) ∈ [0,T ]× [0,T ],

1
N ∑

k∈U
Yk(0)2 <C2 and

1
N ∑

k∈U
{Yk(t)−Yk(r)}2 <C3|t− r|2β .

A6. There are two positive constants C4 and C5 and 1≥ β > 1/2 such that, for all N and for
all (r, t) ∈ [0,T ]× [0,T ],

1
N ∑

k∈U
Yk(0)4 <C4 and

1
N ∑

k∈U
{Yk(t)−Yk(r)}4 <C5|t− r|4β .

Assumptions (A5) and (A6) deal with the regularity of the trajectories, which are supposed
to satisfy some moment as well as some Hölder conditions. The fact that β > 1/2 is required to
get the uniform consistency (see e.g. the discussion in Cardot et al. (2013d)). This smoothness
constraint is rather weak and do not impose that the trajectories are differentiable.

4.1. Uniform consistency of an estimator of the total or the mean curve

For each fixed value of t ∈ [0,T ], the estimator t̂Y π,d(t) is simply the estimator of a total of a real
variable, so that under assumptions (A1) and (A2) and under the moment condition in (A5), it is
consistent for tY (see e.g. Fuller (2009) and the references therein), namely

for all ε > 0, lim
N→∞

P
(

1
N
|t̂Y π,d(t)− tY (t)|> ε

)
= 0,

as well as asymptotically Gaussian,
√

n
N

(t̂Y π,d(t)− tY (t))→N (0, γ̃p(t))

where γ̃p(t) = lim
N→∞

n
N2 γp(t, t) with γp(t, t) given by (12) for r = t. In a functional setting, it is

often interesting to get the uniform consistency, namely:

for all ε > 0, lim
N→∞

P

(
sup

t∈[0,T ]

1
N
|t̂Y π,d(t)− tY (t)|> ε

)
= 0.

If assumptions (A1)-(A2) and (A5) hold and if the discretization scheme satisfies

max
i={1,..,DN−1}

|ti+1− ti|2β = o(n−1), (21)

then, it is proven in Cardot and Josserand (2011) that the estimator t̂Y π,d(t) satisfies:

Ep

{
sup

t∈[0,T ]

1
N
|t̂Y π,d(t)− tY (t)|

}
= O(n−1/2),
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namely, it is asymptotically design-unbiased and uniformly consistent. Note that condition (21)
ensures that the interpolation error is negligible compared to the sampling error. Under the
additional assumptions (A4) and (A6) on the regularity of the trajectories and on the fourth-order
inclusion probabilities, it has been shown that the variance function estimator γ̂d given by (15) is
uniformly consistent:

Ep

(
sup

t∈[0,T ]

1
N2 |γ̂d(t, t)− γp(t, t)|

)
= o(n−1).

4.2. Confidence bands for the mean curve

For each fixed measurement point t ∈ [0,T ], it is possible to construct pointwise confidence
intervals for µN(t) by using the pointwise asymptotic normality of µ̂d(t) :

P
(

µN(t) ∈
[

µ̂d(t)±qα

σ̂(t)√
n

])
= 1−α, ∀t ∈ [0,T ],

where α ∈ (0,1) and qα is the quantile of order 1−α/2 of the standard normal distribution
N (0,1). In a functional setting, we aim at building simultaneous confidence bands for µN of the
form

P
(

µN(t) ∈
[

µ̂d(t)± cα

σ̂(t)√
n

]
, ∀t ∈ [0,T ]

)
= 1−α, (22)

where the coefficient cα is unknown and depends on the desired level of confidence 1−α , and
σ̂(t) =

√
n

N2 γ̂d(t, t).
The calculation of cα is based on the asymptotic distribution of µ̂d which has been studied in

Cardot and Josserand (2011). Assuming the pointwise asymptotic normality of µ̂d and supposing
that there is some δ > 0 such that limN→∞ N−1

∑k∈U Y 2+δ

k (t) < ∞ for all t ∈ [0,T ], it can be
shown, if the discretization points are numerous enough (see condition (21)), that

√
n(µ̂d−µN)→ Z in distribution in C[0,T ]

where Z is a Gaussian random function taking values in C[0,T ] with mean 0 and covariance
function γ̃p(r, t) = lim

N→∞

n
N2 γp(r, t). Thus, for n large enough, we have that

P
(

µN(t) ∈
[

µ̂d(t)± cα

σ̂(t)√
n

]
, ∀t ∈ [0,T ]

)
' P

(
sup

t∈[0,T ]

|Ẑ(t)|
σ̂(t)

≤ cα

)

' P

(
sup

t∈[0,T ]

|Z(t)|
σ(t)

≤ cα

)

where Ẑ is a zero mean Gaussian random function with covariance n
N2 γ̂d . The cut-off point cα is

the quantile of order 1−α of supt∈[0,T ] |Ẑ(t)|/σ̂(t) which can not be computed exactly since the
distribution of the supremum of Gaussian processes is known only for few particular cases.

In a recent work, Cardot et al. (2013c) compared two methods for estimating the unknown
cut-off point cα . The first method relies on simulation of Gaussian processes and has been used
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in Degras (2011) in a non-sampling setting. This Monte Carlo method consists in simulating a
Gaussian process Ẑ with zero mean and covariance function equal to γ̂d in order to determine the
distribution of its supremum and then estimate cα . A rigorous mathematical justification of this
technique has been given in Cardot et al. (2013b), Cardot et al. (2013d) and Cardot et al. (2014).

The second method avoids the estimation of the variance of the mean estimator by using
bootstrap techniques adapted to the functional case. The variance function γp(r, t) and the value
cα are estimated from the bootstrap replications. The authors used the bootstrap suggested by
Gross (1980) for simple random sampling and its extensions to other sampling designs suggested
by Chauvet (2007).

Using a slightly different population of load curves, Cardot et al. (2013c) compared these two
methods for computing the value of cα . They conclude that the two methods give similar coverage
rates which are very close to the desired nominal rates but that the bootstrap method is much
slower.

4.3. Some consistency results for the estimators of non-linear parameters

The convergence has essentially been proven in the Hilbert space L2[0,T ] by extending the
functional approach of Deville (1999) to this space (Cardot et al. (2010a), Chaouch and Goga
(2012)). For the functionals defined above (equations 16, 17 and 18), a first-order von Mises
expansion (see von Mises (1947)) of the functional T may be given as follows:

T (M̂) = T (M)+∑
k∈s

uk

πk
− ∑

k∈U
uk +RT , (23)

where RT is the reminder associated to the functional T and uk is the linearized variable of T.
Under assumptions (A1) and (A2) and if supk∈U ||Yk||< ∞, it is proven in Cardot et al. (2010a) that
the reminder term corresponding to µN and Γ satisfy RµN = op(n−1/2) and RΓ = op(n−1/2). If all
the non null eigenvalues λ j, j = 1, . . . ,N are distinct, then Rλ j and Rv j are also of order op(n−1/2).
For the median curve, Chaouch and Goga (2012) use the fact that the functional T given by (18)
is Fréchet differentiable with respect to M and y and they obtain that RT = op(n−1/2).

The linearized variable uk appearing in the expansion (23) is related to the first derivative of
the functional T, called also the influence function, and computed at Y = Yk. If supk∈U ||Yk||< ∞,
Cardot et al. (2010a) prove that the influence function of Γ exists and that the linearized variable
is given by:

uk,Γ =
1
N
((Yk−µN)⊗ (Yk−µN)−Γ), k ∈U.

If moreover, the nonnull eigenvalues of Γ are distinct, then the linearized variables of λ j and v j

are:

uk,λ j =
1
N
(< Yk−µN ,v j >

2 −λ j), j = 1, . . .N

uk,v j =
1
N

(
∑
l 6= j

< Yk−µN ,v j >< Yl−µN ,vl >

λ j−λl
vl

)
, j = 1, . . .N
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for all k ∈U. Finally, if N−1
∑k∈U ‖Yk−mN‖−1 < ∞, then the linearized variable of the median

curve is given by (see Chaouch and Goga (2012)):

uk,mN = ∆
−1
(

Yk−mN

‖Yk−mN‖

)
, k ∈U (24)

where ∆ = ∑
k∈U

1
||Yk−mN ||

[
I− (Yk−mN)⊗ (Yk−mN)

||Yk−mN ||2

]
is the Jacobian operator of the functional

TmN from equation (18) with I the identity operator defined by Iy = y.
One can remark that the linearized variables uk are not even known for the sampled individuals,

so we need to estimate them. Moreover, except in the case of the eigenvalues λ j, uk is a curve
depending on t ∈ [0,T ].

The expansion given in (23) is important since it allows approximating the substitution esti-
mator T (M̂) by the Horvitz-Thompson estimator of ∑k∈U uk, provided that the reminder term
is negligible, RT = op(n−1/2). Therefore, the asymptotic variance function of the substitution
estimator T (M̂) is the Horvitz-Thompson variance:

AVp(T (M̂))(t) = ∑
k∈U

∑
l∈U

(πkl−πkπl)
uk(t)

πk

ul(t)
πl

and estimated by

V̂ (T (M̂))(t) = ∑
k∈s

∑
l∈s

πkl−πkπl

πkl

ûk(t)
πk

ûl(t)
πl

,

where ûk(t) is the estimator of uk(t). In order to prove that the variance function estimator is
consistent in the sense that

n{V̂ (T (M̂))(t)−AVp(T (M̂))(t)}= op(1),

the assumption (A4) on the fourth inclusion probabilities is needed as well as additional con-
sistency results of the linearized variable estimator ûk (Cardot et al. (2010a)). In the case of the
median curve, the behavior of the variance estimator function has been studied in Chaouch and
Goga (2012) by means of simulations only.

5. The particular cases of stratified and πps sampling designs

We distinguish two kinds of sampling designs, based on whether they use or do not use auxiliary
information. It may happen that the auxiliary information is also a curve (for example the electricity
consumption recorded during a previous period). If this information is used at the sampling stage,
as in the case of stratified or proportional-to-size sampling, then the selection of the sample is
more complicated than in the classical non-functional case.
Otherwise, if no auxiliary information is used at the sampling stage, the selection of the sample is
realized as in the classical case. For example, a simple random sampling without replacement
(SRSWOR) consists of taking n elements from the list of N elements of the population and of
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recording the curve Yk for each sampled individual k. The Horvitz-Thompson estimator of the
mean curve µN is µ̂ = 1

n ∑k∈sYk with the covariance function given by:

γSRSWOR(r, t) =
(

1
n
− 1

N

)
SY (r)Y (t),U

where SY (r)Y (t),U = 1
N−1 ∑U(Yk(r)−µN(r))(Yk(t)−µN(t)) is the population covariance function

between (Yk(r))k∈U and (Yk(t))k∈U . The estimator of the median is obtained from equation (20)
for πk = n/N for all k ∈U.

We present below two sampling designs that use auxiliary information: the stratified sampling
and the proportional-to-size sampling. For each design, we give the expressions of the mean and
the median curve estimators as well as their (approximated) variances. Several difficulties due
to the functional nature of the data are discussed along with the suggested solutions. A small
simulation study is conducted on the EDF population in order to compare these designs for
estimating the mean and the median curve.

5.1. Stratified sampling with simple random sampling within strata (STRAT)

Suppose that the population is divided into H strata U1, ...,UH of sizes N1, ...,NH and sample sh
of size nh is drawn by simple random sampling without replacement within each stratum Uh,
h = 1, ...,H.
The mean curve estimator with stratified sampling is given by:

µ̂strat(t) =
H

∑
h=1

Nh

N

(
1
nh

∑
k∈sh

Yk(t)

)
, t ∈ [0,T ], (25)

with the covariance function given by:

γstrat(r, t) =
1

N2

H

∑
h=1

N2
h

(
1
nh
− 1

Nh

)
SY (r)Y (t),Uh

r, t ∈ [0,T ], (26)

where SY (r)Y (t),Uh
= 1

nh−1 ∑k∈sh
(Yk(r)− µ̂h(r))(Yk(t)− µ̂h(t)) is the population covariance function

between (Yk(r))k∈U and (Yk(t))k∈U within each stratum Uh.
Stratified sampling can be also used to estimate any non-linear parameter of interest such as

the eigenvalues λ j and the eigenfunctions v j for j = 1, . . . ,N (see Cardot et al. (2010a)), or the
median curve (see Chaouch and Goga (2012)). For example, to obtain the estimator m̂strat of the
median curve with a stratified sampling, one can use the inclusion probabilities πk = nh/Nh for all
k ∈Uh,h = 1, . . .H in equation (20) and solve the following estimation equation:

H

∑
h=1

Nh

nh
∑

k∈sh

Yk− m̂strat

‖Yk− m̂strat‖
= 0. (27)

The asymptotic variance function of m̂strat is

AVstrat(m̂strat)(t) =
H

∑
h=1

N2
h

(
1
nh
− 1

Nh

)
S2

umN (t),Uh
, (28)

Journal de la Société Française de Statistique, Vol. 155 No. 4 70-94
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



Analysing large datasets of functional data: a survey sampling point of view 85

where S2
umN (t),Uh

is the population variance function of umN (t) = (uk,mN (t))k∈Uh within stratum h
and uk,mN is the linearized variable of the median curve given in equation (24). That is, the lower
the variation of the linearized variable within stratum, the lower the asymptotic variance of m̂strat.
If the dispersion of the linearized variable within strata is indeed small, stratified sampling is
efficient for estimating the median curve but may be poor for the estimation of other parameters.
In such a situation, poststratification may be used (see Chaouch and Goga (2012)).

To choose the size nh of the sample sh, it is possible to use the proportional allocation nh =
nNh/N, h = 1, ...,H or the optimal allocation as suggested by Cardot and Josserand (2011):

nh = n
Nh

√∫ T
0 S2

Y (r)Y (r),Uh
dr

∑
H
h=1 Nh

√∫ T
0 S2

Y (r)Y (r),Uh
dr

, h = 1, . . . ,H. (29)

This allocation minimizes the mean variance of the stratified estimator:

min
(n1,...,nH)

∫ T

0
γstrat(t, t)dt subject to

H

∑
h=1

nh = n with nh > 0, for h = 1, . . . ,H.

This allocation is similar to that of the multivariate case when considering a total variance criterion
(Cochran (1977)) and has the same interpretation, namely strata with higher variability should be
sampled with a higher sampling rate than the other strata. In practice, S2

Y (r)Y (r),Uh
are unknown

for all h = 1, ...,H. An auxiliary variable X known for all individuals k ∈U and highly correlated
with the interest variable can be used instead and the resulting allocation is called the x-optimal
allocation.

Using the allocation given by (29) may not be optimal for estimating non-linear parameters
of interest. In order to derive the optimal allocation for estimating the median, for example, one
should minimize the asymptotic variance of m̂strat(t). The resulting allocation depends in this case
on the linearized variable (see Chaouch and Goga (2012)).

5.2. An illustration on load curves

Consider the test population of N = 18902 French companies whose electricity consumption has
been measured every half-hour over a period of two weeks. Data recorded over the first week
Xk are used as auxiliary information, while data recorded over the second week Yk are the study
variable. More exactly, we have 336 instant measures per week and let Xk = (Xk(td))336

d=1 and
Yk = (Yk(td))336

d=1. The goal is to estimate the mean curve µN and the median curve mN by using a
sample of size n = 2000 selected according to SRSWOR and STRAT designs.

The population is divided into H = 4 strata constructed according to the maximum level
of Xk and based on the quartiles, so that all the strata have almost the same size (see Cardot
and Josserand (2011)). The stratum 1, corresponds to consumers with low global consumption,
whereas stratum 4 corresponds to consumers with high global levels of consumption. We plot in
Figure 3(a), the mean of Yk within each stratum and in Figure 3(b), the mean of the linearized
variable of the median uk,mN = (uk,mN (td))

336
d=1 within each stratum. Note that the population of

the linearized variable curves is also stratified.
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FIGURE 3. Stratification based on the consumption curve: (a) Mean of the consumption curve Yk within each stratum.
(b) Mean of the linearized variable uk,mN within each stratum.

To select a STRAT sampling, we use the proportional allocation (PROP) and the x-optimal
allocation (x-OPT) computed with respect to the consumption Xk recorded during the previous
week. Table 1 gives the size of strata and the size of samples for both types of allocation.

TABLE 1. Strata sizes, proportional and x-optimal allocations for a sample size of n = 2000.

Stratum number 1 2 3 4
Stratum size Nh 4725 4726 4725 4726
PROP allocation 500 500 500 500
x-OPT allocation 126 212 333 1329

We draw I = 500 samples and we give in Tables 2 and 3 statistics about the estimation errors
computed according to the following loss criterion:

R(θ̂) =
∫ T

0
|θ̂(t)−θ(t)|dt ' 1

336

336

∑
d=1
|θ̂(td)−θ(td)|,

with θ̂ an estimator of θ .
We can remark that clustering the space of functions by performing stratified sampling leads to

an important gain compared to simple random sampling without replacement especially for the
estimation of the mean curve. STRAT with proportional allocation gives slightly better results for
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TABLE 2. Estimation errors of the mean curve µN with SRSWOR and STRAT sampling.

Mean 1st quartile median 3rd quartile
SRSWOR 4.624 2.405 3.694 6.073
STRAT+PROP 3.731 2.116 3.041 4.803
STRAT+OPTIM 2.507 1.605 2.198 3.128

TABLE 3. Estimation errors of the median curve mN with SRSWOR and STRAT sampling.

Mean 1st quartile median 3rd quartile
SRSWOR 2.697 1.362 2.274 3.527
STRAT+PROP 1.632 1.048 1.402 2.017
STRAT+OPTIM 2.263 1.444 1.969 2.865

the estimation of the median than those obtained with the optimal allocation. This is due to the
fact that the optimal allocation is computed by minimizing the variance of the estimator for the
mean curve; we are, however, interested in the second case in estimating the median curve.

5.3. Probability proportional-to-size sampling: π ps sampling

Unequal probability designs are used in practice because they are usually more efficient than the
equal probability designs. To estimate the mean curve, Cardot et al. (2013c) and Cardot et al.
(2014) consider the fixed-size without replacement designs and to estimate the median curve,
Chaouch and Goga (2012) consider with replacement probability proportional-to-size designs.
We give below a description of results obtained in the first case.

For a sampling design of fixed size n, it is possible to give the equivalent of the Yates and
Grundy (Yates and Grundy (1953)) and Sen formula (Sen (1953)) in the functional case. The
covariance γp(r, t) of t̂Y π between two instants r and t, verifies

γp(r, t) =−
1
2 ∑

k∈U
∑

l∈U,l 6=k
(πkl−πkπl)

(
Yk(r)

πk
− Yl(r)

πl

)(
Yk(t)

πk
− Yl(t)

πl

)
. (30)

Using equation (30), we clearly see that the covariance γp(r, t) will be small if the first-order
inclusion probabilities πk are approximately proportional to Yk(t), for all instants t ∈ [0,T ].
In practice, we can take πk to be proportional to a real auxiliary variable X which is nearly
proportional to the variable of interest and whose value xk, supposed to be positive, is known for
all k ∈U . The inclusion probabilities are then given by:

πk = n
xk

∑k∈U xk
. (31)

If some xk values are very large, it may happen that the above πk > 1 for some elements. In this
situation, we could set πk = 1 for all k such that nxk > ∑k∈U xk and let πk be proportional to X for
the remaining elements k. Without replacement designs satisfying (31) are called πps designs.
For given first-order inclusion probabilities πk, there are many such sampling designs (see e.g
Brewer and Hanif (1983) and Tillé (2006)).
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TABLE 4. Estimation errors of the mean curve µN and the median curve mN with the πps sampling.

Mean 1st quartile median 3rd quartile
π ps for µN 1.816 1.447 1.709 2.081
π ps for mN 7.263 2.901 5.918 9.733
π ps for mN with B-spline 1.947 1.364 1.711 2.209

Again, non-linear parameters may be estimated by using π ps sampling designs. For example, the
Horvitz-Thompson estimator for the median with this π ps design is obtained by using in (20) the
πk given by equation (31).

5.4. An illustration on load curves

We aim at selecting a πps sample of size n = 2000 from the same test population of N = 18902
electricity curves with first-order inclusion probabilities πk proportional to the mean consumption
recorded during the previous week:

xk =
1

336

336

∑
d=1

Xk(td), k ∈U. (32)

To draw such a sample, one may use the fast version of the cube algorithm (see Chauvet and Tillé
(2006)) balanced on the vector of first-order inclusion probabilities π = (π1, ...,πN) with πk given
by (31) and xk by (32). As suggested in Chauvet (2007), a random sort of the population is made
before the sample selection.

We give in Table 4 the estimation errors of the mean and median curve with this π ps sampling.
We remark that this design performs very well for the estimation of the mean curve but very
poorly for the estimation of the median. The good performance of the πps sampling for estimating
the mean curve can be explained by the fact that Yk is approximately proportional to πk, namely

Yk(t) = πkβ (t)+ εkt

where the errors εkt are centered. In our case, the relationship between the linearized variable
uk,mN and πk is not linear as it can be remarked from (24). In order to improve the estimation of
the median with a πps design, Goga suggests an estimator of mN which consists in modifying the
sampling weights 1/πk by using a superpopulation model explaining the relationship between the
uk and πk as follows:

uk,mN (t) = f (πk, t)+ηkt ,

where f is unknown and the errors ηkt are centered. We can estimate f by using the B-spline
regression as proposed by Goga and Ruiz-Gazen (2014) and obtain the following smoothed
weights:

wks =
1
πk

(
∑
l∈U

b′(πl)

)(
∑
l∈s

b(πl)b′(πl)

πl

)−1

b(πk)

where b = (B1, . . . ,Bq)
′ is the vector of the B-spline basis of degree m and with K interior knots,

q = K +m. The improved estimator of the median is obtained from (20) by replacing 1/πk with
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the weights wks. Work is actually in progress in order to obtain the asymptotic properties of this
improved estimator of mN and it will be addressed elsewhere. We give in Table 4 the estimation
errors of the median estimator obtained by using the B-spline smoothed weights wks for m = 3,
K = 8. We can remark that the performance of the π ps design for estimating mN was greatly
improved.

5.5. Variance estimation and confidence bands with π ps sampling

The covariance function γp given by (30) depends on the second-order inclusion probabilities
πkl which are very difficult or even impossible to calculate for many π ps designs. Recently, a
functional Hájek approximation for the covariance function γp was suggested in Cardot et al.
(2013c). More exactly, suppose that the second-order inclusion probabilities satisfy the assumption
(A3) given in Section 4, namely:

πkl = πkπl

{
1− (1−πk)(1−πl)

d(π)
[1+o(1)]

}
where d(π) = ∑k∈U πk(1−πk) is supposed to tend to infinity. Then, we can approximate γp by
the following covariance function γH which contains only the first-order inclusion probabilities:

γH(r, t) = ∑
k∈U

πk(1−πk)

(
Yk(t)

πk
−R(t)

)(
Yk(r)

πk
−R(r)

)

= ∑
k∈U

1−πk

πk
Yk(t)Yk(r)−

1
d(π)

(
∑
k∈U

(1−πk)Yk(t)

)(
∑
l∈U

(1−πl)Yl(r)

)
, r, t ∈ [0,T ],

(33)

where R(t) =
∑k∈U Yk(t)(1−πk)

d(π)
. This approximation appears to be very efficient when the

sample size is large enough and the entropy of the sampling design is close to the maximum
entropy, in particular for the rejective sampling and the Sampford-Durbin sampling (see Cardot
et al. (2014)).
Using a slightly different population of load curves, the following estimator of the covariance
function has been successfully used by Cardot et al. (2013c) to build confidence bands for the
mean curve estimator:

γ̂
∗
H,d(r, t) = ∑

k∈s
(1−πk)

(
Yk,d(t)

πk
− R̂(t)

)(
Yk,d(r)

πk
− R̂(r)

)

= ∑
k∈s

1−πk

π2
k

Yk,d(t)Yk,d(r)−
1

d̂(π)

(
∑
k∈s

1−πk

πk
Yk,d(t)

)(
∑
l∈s

1−πl

πl
Yl,d(r)

)
, r, t ∈ [0,T ],

(34)

where R̂(t) = ∑
k∈s

Yk,d(t)(1−πk)

πk
/d̂(π) and d̂(π) = ∑k∈s(1−πk). The simulation study has shown

that the confidence bands have the desired coverage rates and their widths were greatly reduced
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compared to the ones obtained with simple random sampling without replacement. The estimator
(34) is the functional version of the variance estimator suggested by Deville and Tillé (2005).
Consider also the following covariance estimator:

γ̂H,d(r, t) =
d̂(π)
d(π)

γ̂
∗
H,d(r, t), (35)

which is a slightly modified functional analogue of the variance estimator proposed by Berger
(1998) in the real case. Assuming assumptions (A1) and (A2), it can be easily proven that
limN→∞

d̂(π)
d(π) = 1. This results implies that the covariance estimators γ̂∗H,d and γ̂H,d have the same

asymptotic behavior.
Under assumptions (A1)-(A6) and if the discretization scheme satisfies limN→∞ maxi∈{1,...,DN−1}

|ti+1− ti|= 0, the estimator γ̂H,d(t, t) is uniformly consistent for γp(t, t) as shown by Cardot et al.
(2014):

lim
N→∞

n Ep

(
sup

t∈[0,T ]

1
N2 |γ̂H,d(t, t)− γp(t, t)|

)
= 0.

In particular, they note that the errors due to the Hájek approximation is negligible. By using the
approximations of the multiple inclusion probabilities given by Boistard et al. (2012), a sharper
result can be obtained for the rejective sampling:

Ep

(
1

N2 (γ̂H,d(r, t)− γp(r, t))
)2

= O(n−3).

The accuracy of the proposed variance estimators has been evaluated by Cardot et al. (2014)
on the population of load curves considered before. They notice that even if this estimator
generally provides good estimations of the true covariance function, for a few "bad" samples,
its performances could very poor. These bad performances, which fortunately occur in very rare
occasions, are in fact due to a few individuals in the population that have both a very small
inclusion probability πk and a high consumption level Yk. Further work is needed in order to build
modified variance estimators that are more robust to the presence of influential individuals. More
work is also needed to test the performance of this variance estimator in the case of non-linear
parameters.

6. Using auxiliary information at the estimation stage

In a recent work, Cardot et al. (2013d) suggested to improve the accuracy of the Horvitz-Thompson
estimator µ̂ of the mean curve µN(t) by using a model-assisted estimator based on a functional
linear model (see Faraway (1997)). This estimator can be seen as a direct extension, to the
functional context, of the generalized regression estimator or GREG estimator studied in Robinson
and Särndal (1983) and Särndal et al. (1992). Its main advantage is that it only requires the
knowledge of the total of the auxiliary variable at the population level.

Let X1, ...,Xp be p real auxiliary variables and let also xk = (Xk1, ...,Xkp)
′ be the value of

the vector of auxiliary variables for the k-th individual from the population. The following
superpopulation model ξ , also called functional linear model (see Faraway (1997)) is introduced:

ξ : Yk(t) = x′kβ (t)+ εkt , t ∈ [0,T ] (36)
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where β (t) = (β1(t), . . . ,βp(t))′ is the vector of functional regression coefficients, εkt are indepen-
dent (across units) and centered continuous time processes, Eξ (εkt) = 0, with covariance function
Covξ (εkt ,εkr) = Γ̃(t,r), for (t,r) ∈ [0,T ]× [0,T ].

The functional model-assisted or GREG estimator for µN with interpolated values Yk,d is given
by (see Cardot et al. (2013d)):

µ̂MA,d(t) =
1
N ∑

k∈U
Ŷk,d(t)−

1
N ∑

k∈s

(Ŷk,d(t)−Yk,d(t))
πk

, (37)

where Ŷk,d(t) = x′kβ̂ a,d(t), t ∈ [ti, ti+1], β̂ a,d(t) = Ĝ−1
a

1
N ∑k∈s

xkYk(t)
πk

and i = 1, ...,DN . Here, Ĝa is
a regularized estimator of G = 1

N ∑k∈U xkx′k (see Cardot et al. (2013d)).
It is shown in Cardot et al. (2013d) that, under assumptions (A1)-(A2), (A5) and additional

assumption on the moments of the auxiliary variables, the estimator µ̂MA,d converges uniformly
to the mean curve µN . Moreover, they also prove that

µ̂MA,d−µN = µ̃−µN +op(n−1/2),

where µ̃ =
1
N ∑

k∈U
x′kβ̃ − 1

N ∑
k∈s

x′kβ̃ −Yk

πk
and β̃ (t) = G−1 1

N ∑k∈U xkYk(t). This results allows to

approximate the covariance function of µ̂MA,d between two instants r and t by the covariance of
µ̃ :

γMA(r, t) =
1

N2 ∑
k∈U

∑
l∈U

(πkl−πkπl)
Yk(r)−x′kβ̃ (r)

πk

Yl(t)−x′l β̃ (t)
πl

. (38)

A covariance estimator is given by

γ̂MA,d(r, t) =
1

N2 ∑
k,l∈s

πkl−πkπl

πkl
·
Yk,d(r)−x′kβ̂ a,d(r)

πk
·
Yl,d(t)−x′l β̂ a,d(t)

πl
, r, t ∈ [0,T ]. (39)

It is proven in Cardot et al. (2013d) that the covariance estimator γ̂MA,d is consistent and the
variance function estimator is uniformly convergent. Thus, under additional asymptotic normality
assumptions, it is also possible to build confidence bands with the Monte Carlo procedure
described in Section 4.2.

Note that previous model can be extended without difficulties for auxiliary variables that vary
in time, so that we have for each unit of the sample xk(t) = (Xk1(t), ...,Xkp(t))′ for t ∈ [0,T ].
As in Cardot et al. (2010b) nonparametric models can also be considered by first reducing the
dimension of the data with principal components, as described in Section 3.2, and then consider a
single index or an additive model on the principal component scores.

7. Concluding remarks

Even if some work has already been done, there are still many fields to explore, at the frontier
between survey sampling and functional data analysis, in the near future.
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So far the methods of estimation combining functional data analysis and survey sampling
techniques do not take into account the presence of non-response in individual curves. Trajectories
with missing observations during some intervals of time may not be so rare because of transmission
problems. In order to reconstruct the missing parts of the trajectories, classical methods of
imputation (see Haziza (2009) for a review) can be applied, instant by instant. The disadvantage
of these methods, which are essentially univariate, is that they do not take into account the
history (the temporal correlation) of the individuals. Note also that a further difficulty arises
from the fact that this history can also contain non-response. A second possibility would be to
apply interpolation or smoothing techniques, by adapting to a survey sampling context previous
works (see Staniswalis and Lee (1998)) in nonparametric estimation, on the missing part of the
trajectories. This latter approach would allow the reconstruction of the individual trajectories
by taking into account not only their history but also the shape of the other trajectories. Further
work is needed to build an imputation method that allows to impute the trajectories by taking into
account all the points of observation of the variable of interest for each individuals in our sample
as well as auxiliary information. The nearest neighbor imputation technique (see Chen and Shao
(2000), Shao and Wang (2008) and Beaumont and Bocci (2009)) by its nonparametric nature and
its simplicity seems to be a good candidate.

When working over a long period of study, our sampling strategy which can be chosen to be
well adapted at the beginning of the period, is likely to be less effective at the end. For instance,
homogeneous strata at the beginning of the period may be heterogeneous after some time. Another
promising direction for future investigation would be to consider samples that can change over
time. A first work by Degras (2014) clearly shows that, in the case of stratified sampling, the
performance of the Horvitz-Thompson estimator can be greatly improved when the sample can
vary over time.

With unequal probability sampling designs, Cardot et al. (2014) noted that the Horvitz-
Thompson estimator and its covariance estimator are not robust to the presence of atypical
individuals. Such outlying data may not be uncommon in large samples and another interesting
direction of research would be to consider correction techniques of the samplings weights of the
most influential units of the sample (see e.g. Beaumont and Rivest (2009)) in order to get a more
stable variance estimator. Some work is also needed to adapt what already exists to the functional
context.
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