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Abstract: The identification of typical environmental conditions from multiple time series of linear and circular
observations requires classification methods that account for the dependence across variables and in time. Motivated
by a case study of sea conditions, we take a latent-class approach to classification, relying on a multivariate hidden
Markov model. The model integrates multivariate von Mises and log-normal densities to describe the distribution that
wind speed and wave height as well as wind and wave direction take under different latent regimes, with parameters
that depend on the evolution of an unobserved Markov chain. The estimation of the model is facilitated by a hybrid
algorithm that combines an EM algorithm with direct maximization of the log-likelihood.
Our analysis of marine data from two locations in the Mediterranean shows that a hidden Markov approach to
classification can be successfully employed for identifying interpretable marine conditions in complex orographic
settings.

Résumé : L’identification des conditions environnementales typiques basée sur plusieurs séries chronologiques
d’observations linéaires et circulaires nécessite des méthodes de classification qui tiennent compte des dépendances
aussi bien temporelles que dans l’ensemble des variables. Motivé par une étude de cas centré autour de caractéristiques
marines, nous adoptons une analyse de structure latente comme classification, en s’appuyant sur un modèle de Markov
caché multivarié. Le modèle intègre des densités multivariées von Mises et log-normales pour décrire la distribution
que la vitesse du vent et la hauteur des vagues ainsi que la direction du vent et des vagues prennent sous différents
régimes latents, avec des paramètres qui dépendent de l’évolution d’une chaîne de Markov non observée. L’estimation
du modèle est facilitée par un algorithme hybride qui combine un algorithme EM avec maximisation directe de la
log-vraisemblance.
Notre analyse des données marines de deux régions de la Méditerranée montre qu’une approche de Markov caché
comme classification peut être utilisée avec succès pour identifier les conditions marines interprétables dans les milieux
orographiques complexes.
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Environmental conditions in semi-enclosed basins 115

1. Introduction

In the past decades, hidden Markov models (HMMs), introduced in the second half of the sixties
Baum and Petrie (1966) Baum and Eagon (1967), have found widespread application in the
analysis of environmental phenomena. Details can be found, e.g., in Zucchini and Guttorp (1991),
Hughes and Guttorp (1994), Hughes et al. (1999), Bellone et al. (2000), Robertson et al. (2004),
Lagona (2005), Ailliot et al. (2009), Betró et al. (2008), Lagona et al. (2011). In an environmental
context, HMMs assume the existence of weather states, which are identified as latent classes when
fitting the model.
Most of the existing approaches, however, have been specified in a univariate setting, where envi-
ronmental variables are modelled separately or, in a multivariate setting, by assuming conditional
independence given the weather state (see, e.g., Holzmann et al., 2006), with few exceptions
Lagona and Picone (2013), Lagona and Picone (2012), Bulla et al. (2012). The advantage of
using a multivariate HMM approach for environmental data modelling consists in the ability to
capture complex data correlation structures and to decompose them into interpretable relations. In
the following, a multivariate HMM serves for studying air-sea interactions between mixed-type
(linear-circular) environmental variables. We specify a multivariate HMM in the spirit of Bulla
et al. (2012) for multivariate wind/wave data where wind and wave directions as well as wind
speed and wave heights are recorded at multiple buoys over a period of one year. This work focuses
on the detection of time-stable environmental conditions in areas of basin and semi-basin type,
respectively, in the Mediterranean Sea. We were driven by the assumption that the wind-wave data
analyzed possesses unobserved characteristics, most notably being generated by distinct weather
conditions. We accordingly propose a dynamic latent variable model in an HMM framework for
the analysis of wind-wave measurements. More specifically, we use a mixture of multivariate
densities, given by the product of bivariate circular and log-normal distributions, and assume
that the parameters of the mixture evolve in time according to an unobserved (hidden) Markov
chain. This assumption allows clustering measurements within toroidal groups (when circular
measurements are considered) and skewed ellipses (when linear measurements are modelled).
We cluster the circular and linear data part of the data separately to avoid the definition of hyper-
cylindrical clusters (which would be obtained without the previous assumption), as such clusters
may lead to highly non-interpretable results. Nevertheless, we would remark that toroidal and
skew-elliptical clusters are not independent, just conditionally independent, as they are paired
according to the weather states of the Markov chain. The inclusion of a dynamic latent process
(described by the Markov chain) has several appealing features. The transition probability matrix
of the Markov chain captures weather-switching in time, accounting for temporal autocorrelation.
Consequently, the classification is not only based on similarities in the variables space, but also
on similarities that occur in a temporal neighbourhood.

The paper is outlined as follows: We first discuss the environmental data in Section 2. Then,
we present our modelling approach in Section 3, including the formal specification of bivariate
circular and linear distributions along with the estimation procedure and a brief discussion on
model selection. Subsequently, we present our results in Section 4 and close with a discussion in
Section 5.
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2. Wind Wave Data

The data motivating this work are time series of hourly wave and wind directions as well as wind
speeds and significant wave heights, recorded in 2011 by the Italian data buoy network (Rete
Ondametrica Nazionale, RON), owned and managed by the Institute for Environmental Protection
and Research (Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA). This network
was completely redesigned in 2009 to acquire oceanographic variables and to increase nautical
capabilities, reducing accidental buoy adrift events.

In particular, we examine two different cases, which are characterized by specific features
that need to be properly accounted for. The first time series of environmental measurement were
recorded at Ancona, where the buoy is located in the Adriatic Sea about 30 km from the coast.
The second data set was generated at Civitavecchia, where the buoy is in the Tyrrhenean Sea
about 5 km from the coast (see Fig. 1)

The environmental situation at these two locations is considerably different. Ancona is located
at the Adriatic Sea, which is a semi-enclosed basin. This area is subject to three relevant wind
events: Bora, Mistral and Sirocco winds (see roses in Fig. 2). Sirocco arises from a warm, dry,
tropical air mass that is pulled northward by low-pressure cells moving eastward across the
Mediterranean Sea. It typically blows in the period March-October and generates effects along
the major axis of the Adriatic basin (i.e., along the southeast-northwest direction). Bora episodes
occur when a polar high-pressure area sits over the snow-covered mountains of the interior
plateau behind the coastal mountain range and a calm low-pressure area lies further south over
the warmer Adriatic. It transfers a great amount of energy to the northern portion of the Adriatic
basin essentially in wintertime. Finally, the Mistral is a sea-breeze wind blowing northwesterly
when the east Adriatic coast gets warmer than the sea.
While Bora and Sirocco episodes are usually associated with high-speed flows, Mistral is in
general linked with good meteorological conditions. The orography of the Adriatic Sea plays a
key role and most of the waves tend to travel from north, northwest and southeast along the major
axis of the basin, where they can travel freely, without being obstructed by physical obstacles,
such as coastlines. In wintertime (November to March) the dominant winds are Mistral and Bora.
The first one generates low waves that travel along the Italian coast from northwest to southeast.
The Bora wind generates high waves coming from north, reaching heights up to five meters. In
summertime (April to October) the dominant winds are Mistral and Sirocco with waves never
higher than three meters.

Civitavecchia is characterized by different geographical features. The Tyrrhenian Sea is
bounded by the Sardinia and the Corsica islands (west), the Tuscan Archipelago (north), the coast
of the Italian peninsula (east) and partially by Sicily (south). However, the Sardinian Channel,
the Strait of Bonifacio, and the Strait of Messina allow water exchange with the Mediterranean
Sea. Again, three relevant wind events characterize this area: Tramontane, Sirocco and Libeccio
winds (see roses in Fig. 3). Tramontane is a northeasterly or northerly wind, which is prominent
on the west coast of Italy, typically in winter. It is a fresh wind of the fine-weather mistral type, it
does not often reach gale force, and it is associated with a depression over the Adriatic that acts
simultaneously with an anticyclone further west. The Libeccio is the westerly or southwesterly
wind, which predominates central Tyrrhenian sea all the year round; it may frequently give
violent westerly squalls. It is persistent during summer, while it alternates with the Tramontane in
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Environmental conditions in semi-enclosed basins 117

The two locations where data were recorded are Ancona in the north-east and Civitavecchia in the southwest

FIGURE 1. Map of Italy

wintertime.
Even in this case the orography plays a key role. The Tramontane, for example, has very low
effects on waves because of the Tuscan archipelago north of Civitavecchia that narrows the
formation of the waves. On the other hand, the Libeccio frequently raises high seas blowing
through the Sardinia Channel and the Strait of Bonifacio.

The identification of relevant regimes in a particular area is usually exploited by using numerical
models, such as WAM (WAve Models), introduced in the late 1980s Hasselmann et al. (1988).
Several works Christopoulos (1997), Ponce de Leòn and Guedes Soares (2008) highlight that
the Mediterranean Basin has a unique character, resulting from geographic conditions. It is a
semi-enclosed basin surrounded by a complex orography, which strongly affects and often controls
the local climate and the wind/wave conditions in particular. This results in many interactions and
feedback among marine-atmosphere-land processes, which make the Mediterranean area a unique
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The top panel shows wave height and wind speed. The lower panel displays wind direction (left) and wave direction
(right). For the directional plots, the periods start with January/February on the inside.

FIGURE 2. Wind and Wave date from the buoy of Ancona

system.
In particular, waves and winds are only partially correlated due to the orographic conditions.
Therefore, the observed environmental regimes are a combination of atmospheric events, marine
circulation, orography of coastal areas, and local conditions. As a result, numerical wind-wave
models, traditionally used for ocean waves, are not flexible enough and provide biased results
in studies of the Adriatic (Bertotti and Cavaleri, 2009). Other statistical techniques of wave data
clustering are based on distance-based methods (Boukhanovsky et al., 2007) or hierarchical
agglomerative clustering methods (Hamilton, 2010). The statistical properties of these methods
are generally unknown, precluding the possibility of formal inference on the clustering results
(Fraley and Raftery, 2002). An interesting alternative could be provided by state-space models.
Ailliot et al. (2011) consider such a framework (strictly related to our approach) to capture wind
effects in generating waves and to account for heterogeneity leading to different sea-states.

3. Methods

3.1. Model

For describing our model, we use the following notation. Let {zt}t=1,2,...,T = {xt ,yt}t=1,2,...,T
be a multivariate time series with bivariate circular, xt = (x1t ,x2t) ∈ [0,2π]2, and linear, yt =
(y1t ,y2t) ∈ R2, components. Thus, in our context xt corresponds to wave and wind direction,
while yt includes wave height and wind speed. Similarly, let St be an unobserved latent variable
representing the weather state, and taking values from 1 to K, for t = 1,2, . . . ,T . Sequences of
circular and linear variables and hidden weather state are denoted by x1:T ,y1:T ,S1:T . Finally, let
f (zt | S1:t ,z1:t−1) be the conditional distribution of zt , given the latent and the observed process.
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The top panel shows wave height and wind speed. The lower panel displays wave direction (left) and wind direction
(right). For the directional plots, the periods start with January/February on the inside.

FIGURE 3. Wind and Wave date from buoy of Civitavecchia

Furthermore, let f (St | S1:t−1) be the conditional distribution of St given the latent process. By
imposing

f (zt | S1:T ,z1:t−1) = f (zt | St) (1)

f (St | S1:t−1) = f (St | St−1) (2)

this time series becomes a multivariate HMM. Equation (1) states that for fixed t the observed
process zt is conditionally independent of the other elements of the time series given the current
weather state. In other words, all the temporal dependence in environmental conditions is captured
by the persistence in the weather state described by equation (2). Furthermore, equation (2) states
that, given the history of the weather state up to time t−1, the weather state at time t depends
only on the previous weather state. Of course, several extensions of (2) can be introduced (see e.g.
Bartolucci and Farcomeni, 2010).

3.2. Parameterization for the environmental measures

The bivariate von Mises distribution (Singh et al., 2002) is adopted for the circular components
xt , i.e. wind and wave directions, while a bivariate log-normal distribution is employed to model
wind speeds and wave heights. Instead of the selected distributions, a wrapped normal (Lasinio
et al., 2012) and a Gamma distribution (Lagona and Picone, 2011) can be adopted for the
circular and linear components, respectively. Loosely speaking, conditional on the current weather
state, the environmental measurements are modelled as bivariate von Mises and log-normal
distributions with state-specific parameters. Furthermore, circular and linear components are
assumed conditionally independent, given the weather state.
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120 J. Bulla, F. Lagona, A. Maruotti and M. Picone

Formally, the resulting parameterization for the circular components is

f (xt ;β ) =
exp(β11 cos(x1t −β1)+β22 cos(x2t −β2)+β12 sin(x1t −β1)sin(x2t −β2))

C(β )
(3)

where β indicates the parameter vector characterizing the location and the shape of a toroidal
cluster and C(β ) is a normalizing constant. The density in (3) can be viewed as a bivariate
generalization of the von Mises distribution, where β12 accounts for the statistical dependence
between x1t and x2t .

For the linear part, we specify a bivariate log-normal density by

f (log(yt);γ) =
1

2π|Σ|
exp

(
−1

2
(yt −µ)t

Σ
−1(yt −µ)

)
, (4)

where

µ =

(
γ1
γ2

)
and Σ =

(
γ11 γ12
γ21 γ22

)
.

3.3. Parameterization of the weather state process

Let qt jk = f (St = k | St−1 = j) for j,k = 1,2, . . . ,K be the probability that state k is visited at
time t given that at time t− 1 the j-th weather state was visited. The simplest specification in
this framework is the homogeneous Markov chain, which assumes constant (over time) transition
probabilities, that is

qt jk = q jk (5)

where q jk ∈ [0,1] for all j,k = 1,2, . . . ,K and ∑
K
k=1 q jk = 1 for all j = 1,2, . . . ,K. One may note

that this setting could be easily extended to a non-homogeneous model, e.g., by taking exogenous
(atmospheric) variables into account. Then, the transition probabilities of the hidden Markov
chain could be parameterized as functions of the exogenous covariates ν t by

qt jk =
exp(c jk0 +ν ′tc jk)

1+∑
K
h:h6= j exp(c jh0 +ν ′tc jh)

, (6)

where c jk is a vector of fixed regression parameters (of course, c jk = 0 and c jk0 = 0 if j = k).
This model specification, also known as non-homogeneous hidden Markov model, is usually
adopted when the interest is to gain understanding of the evolution of weather conditions which
are affected by the exogenous covariates. Other specifications can be used (see e.g. Maruotti and
Rocci, 2012). Unfortunately, we do not have any (reliable) covariate available. Thus, throughout
the paper, we consider parameterization of type (5) to model the dynamics of the hidden process.

To complete the specification of the hidden process, we need to define the initial probabilities
{δk}k=1,...,K , where δk = f (S1 = k), i.e., the probability of being in state k at time 1. These
quantities may be parameterized via a logit-type specification close to the one in Equation (6) as
well. However, in this study we do not estimate them separately from the transition probability
matrix, but set them to be the stationary distribution of this matrix, following, e.g. Bellone et al.
(2000).
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Environmental conditions in semi-enclosed basins 121

3.4. Parameter estimation

Let θ be the vector of the unknown model parameters, the likelihood of the observed data is given
by

L(θ) = f (z1:T ;θ) = ∑
S1,...,ST

f (S1:T ;θ) f (z1:T | S1:T ;θ)

= ∑
S1,...,ST

f (z1 | S1) f (S1)
T

∏
t=2

f (St | St−1) f (zt | St). (7)

In environmental data modelling, the number of observation time points T is usually large and
computation of the (log-)likelihood is intensive. Using the statistical software R (R Development
Core Team, 2013), we maximize the log-likelihood via a hybrid algorithm: First, we executed
several iterations of the EM algorithm, and then we switched to direct numerical maximization
via quasi-Newton methods. This approach has the advantage of combining stability of the EM
algorithm with high convergence speed of the quasi-Newton approach in the neighbourhood
of a maximum (Bulla and Berzel, 2008). More precisely, we started the EM algorithm from
20 random initial parameter values and stopped after 50 iterations. Subsequently, the resulting
parameters served for initializing a direct maximization of the likelihood via the function nlm().
This maximization procedure was stopped when the relative increase of the log-likelihood in
two successive steps fell below 10−6. This stopping criterion was determined in preliminary
experiments to ensure that the estimated parameters are sufficiently stable to conclude that a
maximum has been reached. The technique worked well: We observed that direct maximization
of the log-likelihood is numerically stable and rapid when initial parameters are in the close neigh-
bourhood of a maximum. Moreover, in most cases the same maximum was reached, independent
of the initial values.
From a more technical perspective, one needs to take care of some computational problems in
order to maximize the likelihood with respect to the parameters. For example, numerical under-
flow has to be avoided and the model needs to be re-parameterized in terms of unconstrained
parameters when using unconstrained maximization algorithms. For details on how to deal with
these problems see, e.g., Chapter 3 of Zucchini and MacDonald (2009). Details on computational
aspects for model fitting of multivariate HMM with linear-circular components, in particular
detailed steps of the EM algorithm, can be found in Bulla et al. (2012).

3.5. Model order

Fitting HMMs to environmental data involves the choice of a model order, i.e., the number of
weather states. However, while the estimation of the parameters of an HMM has been studied
extensively, the consistent estimation of the number of hidden states is still an unsolved problem.
The AIC and BIC methods are used most commonly, but their application in this context has
not been justified theoretically. Therefore, we use these criteria mainly as indicator to avoid
over-fitting. More importantly, we consider the interpretability of the resulting weather states as
main criterion. This concerns in particular the situation where our model is fitted to the full data
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set, where AIC and BIC would allow justifying a significantly higher number of states, which,
however, provide only little additional insight. Thus, the algorithm is defined for a fixed number
of states K and reaches a K-based solution which can be successively used to estimate model
parameters as the number of components is increased to K +1. Various authors have discussed
alternative algorithms for joint estimation of K and model parameters, such as VEM or VDM
(Böhning, 2000). However, a possible solution is to update estimates for a fixed K and improving
step by step (as in EMGFU; Böhning, 2003). We follow the latter approach by evaluating the
obtained results for varying K-based model.

4. Results

For each buoy, the environmental dataset has been split into six bimesters, and for each bimester
we fit a different multivariate HMM following the strategy described in the previous section. We
decided to split the data into several shorter samples to conveniently capture seasonal differences
within the dominant weather states. A preliminary analysis indicated that fitting the model to the
full sample is a less attractive alternative, because this requires a much higher number of states
which basically result from slightly different ’sub-states’ of the main weather states and occur
only during specific periods of the year. The choice of the period length of two months results
from a compromise: on the one hand, the data available has to be of sufficient length for stable
estimation results of our relatively complex model. On the other hand, the periods have to be
sufficiently short to account for intra-annual heterogeneity patterns.
Four- and three-state models have been selected for fitting the data from Ancona and Civitavec-
chia, respectively. This choice is driven by physical interpretability, which is one of the major
requirements of an empirical work. The different numbers of states for the two locations result
from different environmental characteristics of the data at the two buoys. Two different environ-
mental settings can be inferred from the fitted models, and they seem to be closely related to the
orography of the Adriatic and the Tyrrenean Sea, respectively. In the Adriatic, waves origin from
two main directions (northwest and southeast), whilst at Civitavecchia the prevailing direction of
origin of the waves is only one (south to southwest). In the models finally selected, weather states
correspond to well-recognized environmental conditions in terms of sea-states and wind-fields.

4.1. Weather states at Ancona

At Ancona, the following weather conditions can be recognized see Figure 4 for the marginal
distributions and Table 3 for parameter estimates): State 1 is characterized by high wave heights
in the same direction as the wind. This environmental condition is mainly due to Sirocco, which –
blowing south/southeast – generates waves on the same axis of the basin. State 2 identifies Bora
winds (from north to northeast) which correspond to waves from the north. Waves are very high
due to the high energy of the wind, which typically blows in the form of powerful bursts. State 3
identifies to Mistral winds (north to northwest), which generate modest waves from the north. At
last, State 4 corresponds to calm sea conditions. All the combinations of winds, not capable of
transferring large amounts of energy to the sea, are clustered in such a State. These conditions are
common, e.g., when wind blows from land.
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Environmental conditions in semi-enclosed basins 123

Looking at estimated transitions, states are extremely persistent, i.e., essentially diagonal
transition probability matrices are estimated (Table 1). We would like to point out that Sirocco
(State 1) and Mistral (State 2), linked to waves from southeast and northwest, are distributed
throughout the year. On the contrary, Bora, generating waves from the north (State 3), occurs
mainly in autumn and winter and is substituted by calm wind-sea conditions (State 4) during
spring and summer. A dynamic evolution of weather states can be also discussed. Once the State
4 is visited, State 1 and State 3 are most likely to follow. This condition is well reflected in
the observed and well-known alternations between cyclones and anticyclones over central and
southern Europe, which affect weather conditions on the Adriatic Sea. Cyclonic events generally
proceed in the direction west-east (State 4) and may lead to winds from the southern quadrants
(Sirocco, State 1). Persistence of such weather conditions yields higher wave heights. When
cold temperatures come from northern Europe into the semi-basin, strong Bora wind conditions
(State 2) arise as anticyclones up to stabilize the weather with mistral events. This phenomenon is
less evident in summertime when there is an alternation of winds (usually weak) from the south
(Sirocco) and north (Mistral). The following Figures 5 and 6 report the classification of data in the
second and sixth bimester for the buoy of Ancona. Comparing all bimesters, these two selected
periods show the two most distinct situations in terms of heterogeneity.

As to comparing the annual distributions in Figure 4 to those from the different bimonthly
periods, one can observe the following: The weather phenomena identified on annual and bi-
monthly basis, respectively, seem not too different in general. An exception is the second State 2,
which captures Bora conditions for the bimonthly data, but also captures some of the stronger
southeastern Sirocco events on annual level. Apart from this, one may note that the seasonal
distributions have higher concentrations and lower variances, respectively, than the annual distri-
bution. This is a direct consequence of the slightly varying inter-period characteristics present in
the four states, and teir period-varying proportions. Naturally, bimonthly distributions are able to
better capture the variability of the directional and linear data in time. For example, Sirocco winds
blow mostly from southeast in wintertime, but predominantly from south during summertime. As
a result, the waves generated by Sirocco winds come from southeast in wintertime and from a
wide sector from southeast to southwest during summertime. As expected, winds blow stronger
in wintertime than in summertime, resulting also in higher waves during winter. Therefore, the
marginal distributions of both linear variables are approximately centred at zero for summertime
periods (see Table 4). Last but not least, all states show a high persistence with all elements of the
main diagonal being greater than 0.9 (see Table 2).

4.2. Weather states at Civitavecchia

A similar analysis can be provided on the data from Civitavecchia (see Figure 7 for the marginal
distributions and Table 7). For each bimester, State 1 corresponds to north winds (north and
northwest). As these winds blow very strongly from the mainland, they do not transfer a large
amount of energy to the sea, and, as a result, we observe waves of low height. State 2 identifies
Libeccio, which blows from southwest along the main axis of the basin. It generates high waves
resulting from winds occurring in bursts. Finally, State 3 identifies calm sea and south winds (with
a modal south-southeast direction).

The estimated transition probability matrices (Table 5) indicate that persistence in single
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The figure displays the marginal distributions of the models fitted to annual data (dot-dashed solid black lines) and
bimonthly data (black solid Jan/Feb, grey solid Mar/Apr, black dotted May/Jun, grey dotted Jul/Aug, black dashed

Sep/Oct, grey dashed Nov/Dec) at Ancona.

FIGURE 4. Univariate (marginal) distribution at Ancona
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The figure displays the conditional distributions of the fitted model at Ancona in the bimester March/April. The
circular components are on the left, and the linear components on the right, starting with the first state from the top.

Observations classified to the respective state by local decoding are coloured black, while the remaining observations
are gray.

FIGURE 5. Conditional distributions at Ancona in March/April
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The figure displays the conditional distributions of the fitted model at Ancona in the bimester November/December.
The circular components are on the left, and the linear components on the right, starting with the first state from the top.
Observations classified to the respective state by local decoding are coloured black, while the remaining observations

are gray.

FIGURE 6. Conditional distributions at Ancona in November/December
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TABLE 1. Estimated transition probability matrices for Ancona, bimester data
The table summarizes the estimated transition probability matrices for Ancona. Standard errors, reported in
parentheses below each estimated, result from parametric bootstrap with 200 repetitions. Rows and columns,

respectively, indicate the origin and destination states.

Jan-Feb Mar-Apr May-Jun

State 1 2 3 4 1 2 3 4 1 2 3 4

1 0.973 0.013 0.007 0.007 0.968 0.007 0.008 0.018 0.936 0.026 0.02 0.018

(0.012) (0.01) (0.005) (0.005) (0.008) (0.003) (0.004) (0.006) (0.029) (0.019) (0.012) (0.015)

2 0.014 0.969 0.014 0.003 0.003 0.972 0.025 0 0.009 0.956 0.022 0.014

(0.006) (0.008) (0.005) (0.003) (0.003) (0.013) (0.012) (0) (0.005) (0.015) (0.012) (0.008)

3 0 0.019 0.957 0.024 0.003 0.012 0.957 0.028 0.002 0.015 0.963 0.02

(0) (0.01) (0.015) (0.01) (0.004) (0.008) (0.012) (0.01) (0.002) (0.005) (0.008) (0.006)

4 0.007 0.002 0.02 0.971 0.04 0.006 0 0.954 0.012 0.004 0.02 0.964

(0.005) (0.003) (0.01) (0.012) (0.014) (0.006) (0) (0.017) (0.005) (0.004) (0.006) (0.009)

Jul-Aug Sep-Oct Nov-Dec

State 1 2 3 4 1 2 3 4 1 2 3 4

1 0.927 0 0.031 0.043 0.949 0.012 0.023 0.016 0.971 0.002 0.014 0.013

(0.01) (0) (0.009) (0.008) (0.011) (0.006) (0.009) (0.008) (0.009) (0.003) (0.008) (0.006)

2 0 0.941 0.044 0.015 0.003 0.969 0.025 0.003 0.004 0.975 0.016 0.005

(0) (0.042) (0.039) (0.021) (0.003) (0.012) (0.011) (0.004) (0.006) (0.016) (0.008) (0.008)

3 0.004 0.005 0.937 0.054 0 0.017 0.938 0.045 0 0.008 0.951 0.041

(0.003) (0.003) (0.011) (0.011) (0) (0.008) (0.011) (0.011) (0.003) (0.004) (0.011) (0.01)

4 0.07 0.004 0.022 0.904 0.038 0 0.023 0.939 0.033 0.003 0.037 0.928

(0.012) (0.003) (0.006) (0.012) (0.013) (0) (0.007) (0.014) (0.012) (0.004) (0.012) (0.017)

TABLE 2. Estimated transition probability matrices for Ancona, annual data

The table summarizes the estimated transition probability matrices for Ancona. Standard errors, reported in
parentheses below each estimated, result from parametric bootstrap with 200 repetitions. Rows and columns,

respectively, indicate origin and destination states.

Jan-Dec

State 1 2 3 4

1 0.942 0.009 0.022 0.027
(0.007) (0.003) (0.004) (0.004)

2 0.001 0.960 0.017 0.022
(0.001) (0.005) (0.003) (0.004)

3 0.002 0.010 0.951 0.037
(0.001) (0.002) (0.004) (0.003)

4 0.034 0.012 0.032 0.922
(0.004) (0.002) (0.004) (0.006)
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TABLE 3. Estimated parameters for Ancona, bimester data

The table summarizes the estimated parameters for Ancona. The parameters β1 - β12 belong to the circular component,
and γ1 - γ12 are the parameters of the linear component. In addition, the last column reports the initial/stationary

distribution hidden Markov chain. Standard errors, reported in parentheses below each estimated, result from
parametric bootstrap with 200 repetitions.

β1 β2 β11 β22 β12 γ1 γ2 γ11 γ22 γ12 δ

1 1.981 -3.088 8.258 0.881 0.028 -0.212 1.301 0.169 0.2 0.08 0.206

(0.023) (0.116) (0.71) (0.102) (0.326) (0.022) (0.024) (0.015) (0.017) (0.014) (0.081)

2 0.599 0.604 21.818 9.629 12.259 0.39 1.903 0.235 0.19 0.182 0.266

Jan (0.021) (0.026) (2.02) (0.745) (1.285) (0.023) (0.02) (0.017) (0.013) (0.014) (0.095)

Feb 3 -0.595 -0.781 6.135 11.246 4.137 -0.256 1.767 0.144 0.056 0.076 0.246

(0.021) (0.021) (0.481) (0.852) (0.592) (0.022) (0.012) (0.01) (0.004) (0.006) (0.068)

4 0.575 -1.681 0 1.414 -1.48 -1.378 0.864 0.224 0.201 0.123 0.282

(0.086) (0.063) (0) (0.09) (0.124) (0.025) (0.024) (0.018) (0.013) (0.013) (0.089)

1 1.942 2.393 2.942 2.055 0.348 -0.794 1.106 0.97 0.28 0.341 0.353

(0.033) (0.034) (0.166) (0.14) (0.166) (0.043) (0.023) (0.067) (0.02) (0.031) (0.075)

2 0.787 0.745 11.066 12.311 6.316 0.339 1.883 0.275 0.144 0.166 0.211

Mar (0.017) (0.02) (0.834) (1.047) (0.94) (0.03) (0.018) (0.029) (0.014) (0.019) (0.082)

Apr 3 0.146 -0.654 2.076 7.933 1.253 -0.427 1.452 0.157 0.182 0.135 0.187

(0.048) (0.021) (0.209) (0.704) (0.373) (0.024) (0.025) (0.017) (0.018) (0.016) (0.06)

4 -1.432 -1.181 0.489 3.194 0.431 -1.254 1.179 0.153 0.117 0.108 0.248

(0.163) (0.035) (0.085) (0.219) (0.177) (0.021) (0.02) (0.01) (0.01) (0.01) (0.077)

1 2.017 1.909 37.37 0.487 0.729 -0.222 1.351 0.101 0.245 0.104 0.102

(0.017) (0.323) (5.976) (0.121) (0.832) (0.026) (0.049) (0.012) (0.027) (0.015) (0.039)

2 0.463 0.145 9.001 4.129 1.678 -0.206 1.573 0.412 0.354 0.344 0.218

May (0.021) (0.037) (0.662) (0.35) (0.446) (0.044) (0.044) (0.036) (0.028) (0.031) (0.073)

Jun 3 -0.858 -0.929 1.358 4.548 1.159 -1.147 1.271 0.189 0.134 0.133 0.358

(0.048) (0.021) (0.069) (0.304) (0.184) (0.018) (0.015) (0.011) (0.008) (0.009) (0.065)

4 2.263 2.468 2.107 2.622 1.16 -1.333 1.086 0.232 0.192 0.16 0.322

(0.04) (0.03) (0.141) (0.155) (0.164) (0.019) (0.021) (0.017) (0.01) (0.012) (0.08)

1 -2.89 -2.795 5.568 5.949 10.799 -0.879 1.548 0.274 0.132 0.178 0.327

(0.015) (0.013) (0.366) (0.334) (0.537) (0.026) (0.018) (0.017) (0.008) (0.011) (0.052)

2 0.259 0.292 21.145 11.982 3.893 0.015 1.718 0.059 0.068 0.043 0.047

Jul (0.029) (0.053) (4.784) (2.641) (1.545) (0.04) (0.033) (0.01) (0.017) (0.011) (0.03)

Aug 3 -0.551 -0.693 2.841 7.684 3.697 -0.974 1.337 0.337 0.166 0.214 0.303

(0.031) (0.021) (0.167) (0.489) (0.26) (0.026) (0.02) (0.017) (0.009) (0.011) (0.05)

4 1.524 1.749 1.369 0.941 0.843 -1.211 0.869 0.337 0.19 0.137 0.323

(0.054) (0.067) (0.11) (0.079) (0.108) (0.025) (0.017) (0.021) (0.013) (0.014) (0.041)

1 -2.986 -2.747 4.768 4.187 7.57 -0.722 1.67 0.243 0.097 0.137 0.215

(0.031) (0.024) (0.34) (0.293) (0.47) (0.024) (0.017) (0.018) (0.009) (0.012) (0.048)

2 0.53 0.442 3.737 2.839 1.754 0.186 1.717 0.161 0.205 0.128 0.233

Sep (0.032) (0.042) (0.269) (0.26) (0.232) (0.023) (0.029) (0.014) (0.014) (0.01) (0.082)

Oct 3 -0.756 -0.69 6.759 10.265 6.538 -0.859 1.449 0.112 0.055 0.064 0.276

(0.024) (0.021) (0.539) (0.761) (0.633) (0.016) (0.011) (0.008) (0.004) (0.005) (0.058)

4 0.98 0.687 0.749 0.155 0.556 -1.397 0.712 0.239 0.147 0.073 0.276

(0.084) (0.158) (0.084) (0.083) (0.1) (0.026) (0.022) (0.018) (0.01) (0.01) (0.062)

1 2.374 2.944 3.843 3.201 2.7 -0.238 1.704 0.424 0.163 0.13 0.29

(0.031) (0.037) (0.232) (0.163) (0.264) (0.035) (0.022) (0.027) (0.013) (0.014) (0.082)

2 0.149 0.149 10.844 13.412 11.005 0.332 1.985 0.078 0.079 0.06 0.157

Nov (0.037) (0.03) (0.895) (1.335) (1.1) (0.018) (0.021) (0.008) (0.009) (0.007) (0.085)

Dec 3 -1.054 -1.007 19.659 17.858 10.069 -0.437 1.733 0.201 0.086 0.117 0.312

(0.026) (0.013) (2.999) (2.636) (1.886) (0.088) (0.106) (0.018) (0.009) (0.011) (0.062)

4 -0.933 -0.876 1.218 1.318 -0.204 -1.067 0.962 0.234 0.125 0.115 0.24

(0.072) (0.053) (2.301) (2.518) (1.357) (0.096) (0.113) (0.02) (0.011) (0.011) (0.059)
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|t]
TABLE 4. Estimated parameters for Ancona, annual data

The table summarizes the estimated parameters for Ancona. The parameters β1 - β12 belong to the circular component,
and γ1 - γ12 are the parameters of the linear component. In addition, the last column reports the initial/stationary

distribution hidden Markov chain. Standard errors, reported in parentheses below each estimated, result from
parametric bootstrap with 200 repetitions.

β1 β2 β11 β22 β12 γ1 γ2 γ11 γ22 γ12 δ

1 2.465 2.710 5.307 4.091 3.079 -0.978 1.451 0.254 0.129 0.162 0.179

(0.013) (0.016) (0.200) (0.148) (0.157) (0.014) (0.010) (0.009) (0.005) (0.006) (0.022)

2 1.139 1.247 9.770 5.701 11.363 0.287 1.845 0.197 0.136 0.121 0.209

Jan (0.008) (0.010) (0.260) (0.134) (0.239) (0.010) (0.008) (0.007) (0.005) (0.005) (0.027)

Dec 3 -0.882 -0.922 3.199 7.144 3.620 -0.717 1.536 0.294 0.126 0.173 0.332

(0.013) (0.009) (0.077) (0.187) (0.116) (0.010) (0.007) (0.007) (0.003) (0.005) (0.028)

4 1.239 -0.982 0.832 0.346 -0.525 -1.122 0.819 0.477 0.169 0.159 0.280

(0.033) (0.063) (0.034) (0.026) (0.042) (0.014) (0.009) (0.014) (0.005) (0.006) (0.019)

weather conditions is the norm. State 1, termed Tramontane, is very common in winter and is
often followed by of State 2, the Liberico, especially during summer. As for Ancona, a physical
interpretation of the states is possible as well. The cyclonic circulation directly affects the
Tyrrhenian Sea basin producing winds from southwest (State 2) and a strong swell from the south
to southeast. After these rather extreme conditions, Sirocco (State 3) with calm sea conditions
follows. At the opposite, the anticyclonic circulation generates events from the north (State 1)
with relatively low waves. The following Figures 8 and 9 show the data classification in the first
and fifth bimesters for the buoy of Civitavecchia. Similar to Ancona, these two bimesters represent
two very different situations, and are most representative for showing the heterogeneity of the six
bimesters analyzed.

When comparing the results from fitting a model with three states to annual and bimonthly
data at Civitavecchia, the comments provided in the previous section for Ancona are in principle
the same. Tables 8 and 6 summarize the estimated parameters. However, for Civitavecchia the
three states do not mix as it happens for State 2 in Ancona.
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The figure displays the marginal distributions of the models fitted to annual data (dot-dashed solid black lines) and
bimonthly data (black solid Jan/Feb, grey solid Mar/Apr, black dotted May/Jun, grey dotted Jul/Aug, black dashed

Sep/Oct, grey dashed Nov/Dec) at Civitavecchia.

FIGURE 7. Univariate (marginal) distribution at Civitavecchia
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The figure displays the conditional distributions of the fitted model at Civitavecchia in the bimester January/February.
The circular components are on the left, and the linear components on the right, starting with the first state from the top.
Observations classified to the respective state by local decoding are coloured black, while the remaining observations

are gray.

FIGURE 8. Conditional distributions at Civitavecchia in January/February
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The figure displays the conditional distributions of the fitted model at Civitavecchia in the bimester September/October.
The circular components are on the left, and the linear components on the right, starting with the first state from the top.
Observations classified to the respective state by local decoding are coloured black, while the remaining observations

are gray.

FIGURE 9. Conditional distributions at Civitavecchia in September/October
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TABLE 5. Estimated transition probability matrices for Civitavecchia, bimester data

The table summarizes the estimated transition probability matrices for Civitavecchia. Standard errors, reported in
parentheses below each estimated, result from parametric bootstrap with 200 repetitions. Rows and columns

respectively indicate origin and destination states.

Jan-Feb Mar-Apr May-Jun

State 1 2 3 1 2 3 1 2 3

1 0.975 0.009 0.016 0.948 0.011 0.041 0.933 0.05 0.018

(0.009) (0.007) (0.007) (0.015) (0.008) (0.013) (0.015) (0.017) (0.015)

2 0.006 0.969 0.025 0.008 0.966 0.026 0.009 0.924 0.067

(0.004) (0.011) (0.01) (0.005) (0.01) (0.009) (0.007) (0.011) (0.013)

3 0.01 0.012 0.978 0.016 0.021 0.963 0.019 0.077 0.904

(0.005) (0.005) (0.007) (0.004) (0.006) (0.007) (0.01) (0.018) (0.014)

Jul-Aug Sep-Oct Nov-Dec

State 1 2 3 1 2 3 1 2 3

1 0.96 0 0.04 0.958 0.005 0.037 0.958 0.022 0.02

(0.087) (0.004) (0.087) (0.013) (0.005) (0.012) (0.008) (0.006) (0.008)

2 0.001 0.987 0.012 0 0.952 0.048 0.026 0.953 0.021

(0.001) (0.003) (0.003) (0) (0.013) (0.013) (0.008) (0.01) (0.007)

3 0 0.023 0.977 0.014 0.015 0.971 0.012 0.024 0.964

(0.001) (0.007) (0.007) (0.004) (0.004) (0.006) (0.004) (0.008) (0.01)

TABLE 6. Estimated transition probability matrices for Civitavecchia, annual data

The table summarizes the estimated transition probability matrices for Civitavecchia. Standard errors, reported in
parentheses below each estimated, result from parametric bootstrap with 200 repetitions. Rows and columns

respectively indicate the origin and destination states.

Jan-Dec

State 1 2 3

1 0.958 0.007 0.035

(0.005) (0.002) (0.005)

2 0.005 0.955 0.040

(0.002) (0.005) (0.004)

3 0.010 0.018 0.972

(0.001) (0.002) (0.002)
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TABLE 7. Estimated parameters for Civitavecchia, bimester data

The table summarizes the estimated parameters for Civitavecchia. The parameters β1 - β12 belong to the circular
component, and γ1 - γ12 are the parameters of the linear component. In addition, the last column reports the

initial/stationary distribution hidden Markov chain. Standard errors, reported in parentheses below each estimated,
result from parametric bootstrap with 200 repetitions.

β1 β2 β11 β22 β12 γ1 γ2 γ11 γ22 γ12 δ

1 0.847 0.589 2.939 30.968 9.736 -0.575 2.132 0.072 0.049 0.046 0.25

(0.046) (0.014) (0.195) (2.206) (0.645) (0.015) (0.011) (0.006) (0.003) (0.004) (0.095)

Jan 2 -3.06 0.323 18.978 0 -7.492 0.078 2.009 0.213 0.073 0.105 0.263

Feb (0.009) (0.04) (1.302) (0) (0.516) (0.027) (0.015) (0.014) (0.005) (0.007) (0.092)

3 -2.34 0.822 3.188 0.773 -2.189 -1.087 1.18 0.282 0.139 0.114 0.487

(0.024) (0.051) (0.159) (0.064) (0.123) (0.025) (0.016) (0.015) (0.008) (0.01) (0.097)

1 1.251 0.707 2.485 28.617 7.136 -0.568 2.068 0.113 0.082 0.07 0.197

(0.044) (0.014) (0.262) (2.429) (0.737) (0.018) (0.015) (0.009) (0.007) (0.007) (0.061)

Mar 2 3.084 2.471 13.76 2.253 2.939 -0.267 1.565 0.519 0.22 0.229 0.345

Apr (0.014) (0.036) (0.815) (0.141) (0.312) (0.034) (0.023) (0.038) (0.013) (0.019) (0.088)

3 -2.219 0.018 3.037 1.322 -1.6 -1.079 1.243 0.24 0.133 0.101 0.458

(0.028) (0.045) (0.188) (0.068) (0.137) (0.019) (0.017) (0.012) (0.006) (0.008) (0.066)

1 0.438 0.436 0 5.644 3.296 -1 1.628 0.197 0.146 0.142 0.17

(0.465) (0.029) (0.888) (0.944) (0.737) (0.034) (0.087) (0.061) (0.013) (0.016) (0.059)

May 2 -2.557 0.273 6.667 0.345 -1.454 -1.086 1.047 0.61 0.126 0.194 0.472

Jun (0.491) (0.077) (1.001) (0.718) (0.64) (0.034) (0.084) (0.064) (0.007) (0.015) (0.074)

3 -2.456 -2.426 6.558 2.648 6.88 -0.758 1.559 0.259 0.104 0.147 0.359

(0.018) (0.027) (0.324) (0.186) (0.4) (0.019) (0.014) (0.017) (0.006) (0.01) (0.048)

1 -0.238 0.514 1.232 98.993 5.667 -0.746 1.875 0.064 0.012 0.002 0.016

(0.345) (0.029) (0.787) (54.216) (4.495) (0.06) (0.022) (0.021) (0.004) (0.007) (0.041)

Jul 2 -2.356 -2.367 8.179 0.286 3.395 -0.315 1.463 0.186 0.123 0.044 0.634

Aug (0.014) (0.05) (0.352) (0.08) (0.292) (0.251) (0.123) (0.015) (0.008) (0.006) (0.081)

3 -2.383 -2.42 9.307 0 2.002 -1.592 0.85 0.118 0.093 0.046 0.35

(0.014) (0.104) (0.751) (0.065) (0.359) (0.249) (0.122) (0.018) (0.009) (0.005) (0.076)

1 0.256 0.322 1.003 16.644 8.514 -0.663 2.004 0.123 0.076 0.081 0.194

(0.048) (0.016) (0.135) (1.339) (0.71) (0.021) (0.019) (0.01) (0.006) (0.007) (0.063)

Sep 2 -2.981 2.883 13.808 4.683 8.359 -0.274 1.73 0.431 0.187 0.256 0.211

Oct (0.022) (0.033) (1.218) (0.445) (0.847) (0.037) (0.026) (0.041) (0.019) (0.027) (0.062)

3 -2.53 0.246 3.781 0.845 -1.723 -1.068 1.156 0.505 0.123 0.134 0.595

(0.018) (0.044) (0.157) (0.062) (0.118) (0.025) (0.013) (0.027) (0.006) (0.01) (0.058)

1 0.555 0.531 0 19.81 5.648 -0.914 1.701 0.223 0.152 0.156 0.31

(0.052) (0.01) (0) (1.228) (0.391) (0.022) (0.018) (0.015) (0.01) (0.012) (0.061)

Nov 2 -2.438 -1.737 8.481 0.436 0.307 -0.109 1.533 0.795 0.436 0.452 0.329

Dec (0.017) (0.134) (0.606) (0.065) (0.19) (0.045) (0.031) (0.052) (0.029) (0.036) (0.074)

3 3.06 1.602 53.176 2.381 0.435 -0.221 1.708 0.396 0.242 0.281 0.36

(0.005) (0.039) (2.921) (0.107) (0.558) (0.031) (0.024) (0.024) (0.014) (0.018) (0.08)
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TABLE 8. Estimated parameters for Civitavecchia, annual data

The table summarizes the estimated parameters for Civitavecchia. The parameters β1 - β12 belong to the circular
component, and γ1 - γ12 are the parameters of the linear component. In addition, the last column reports the

initial/stationary distribution hidden Markov chain. Standard errors, reported in parentheses below each estimated,
result from parametric bootstrap with 200 repetitions.

β1 β2 β11 β22 β12 γ1 γ2 γ11 γ22 γ12 δ

1 0.528 0.512 1.008 21.044 6.991 -0.685 1.980 0.131 0.097 0.093 0.171

(0.024) (0.006) (0.048) (0.747) (0.246) (0.009) (0.007) (0.004) (0.004) (0.004) (0.023)

Jan 2 -3.038 2.622 10.563 2.775 5.116 -0.223 1.786 0.443 0.159 0.245 0.256

Dec (0.008) (0.015) (0.283) (0.082) (0.170) (0.015) (0.009) (0.015) (0.005) (0.009) (0.026)

3 -2.411 0.260 4.145 0.596 -1.695 -0.951 1.175 0.506 0.157 0.162 0.573

(0.008) (0.020) (0.087) (0.022) (0.053) (0.010) (0.006) (0.010) (0.003) (0.005) (0.025)

5. Discussions

We propose a dynamic-latent class approach to identify weather states under various wind and
wave conditions, by estimating state-specific parameters, observed at different locations. Using
mixtures of product densities to model multivariate data allows for a relatively simple specification
of the dependence between mixed-type variables. We exploited bivariate von Mises and log-normal
distributions, but a variety of alternative parametric families could be considered.

Our analysis shows that the HMM framework can be successfully employed for identifying
different environmental conditions in rather complex settings. In our case study, we provide
evidence that our approach is able to distinguish different environmental conditions at two
geographical locations. This helps in reconstructing environmental conditions, as well as the
dependence among environmental phenomena.

The estimated parameters and inferred states of the model allow for establishing a direct link
to various, commonly accepted weather conditions. At Ancona, the four states correspond to
Sirocco, Boral, Mistral, and a calm state. The three states at Civitavecchia are associated with
Tramontane, Sirocco, and Libeccio conditions. These different states can be well-identified and
observed in varying frequencies over the entire year. Nevertheless, the parameters of the model,
in particular those of conditional distributions of the observations, evolve in time to adapt to the
different periods. These patterns seem natural given the impact of different seasons throughout a
year.

The comparably simple structure implied by our approach allows for a straightforward im-
plementation for different environmental problems for which a hidden time-dependent structure
could be assumed. A limitation of our approach concerns the so-called sojourn time distribution.
In standard HMMs, sojourn time is geometrically distributed as a consequence of the Markov
property of the underlying Markov chain. However, in some real-world problems this is an unreal-
istic assumption because the probability of a state change depends on time spent in the current
state. Moreover, the median of the geometric distribution is always at one, an assumption to be
discussed. An interesting alternative may be represented by hidden semi-Markov models, HSMMs
(see, e.g., Barbu and Limnios, 2008, Bulla et al., 2010, Langrock and Zucchini, 2011) which
represent a generalization of the HMMs, allowing for more general sojourn-time distributions.
Moreover, the implementation of seasonal dependence in the parameters of the observation com-
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ponent or relationships to covariates may allow for better accounting for seasonal heterogeneity
of the model.
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Bulla, J., Bulla, I., and Nenadić, O. (2010). hsmm - an R package for analyzing hidden semi-Markov models.
Computational Statistics and Data Analysis, 54(3):611–619.

Bulla, J., Lagona, F., Maruotti, A., and Picone, M. (2012). A multivariate hidden markov model for the identification of
sea regimes from incomplete skewed and circular time series. Journal of Agricultural, Biological, and Environmental
Statistics, 17(4):544–567.

Christopoulos, S. (1997). Wind-wave modelling aspects within complicate topography. Annales Geophysicae,
15:1340–1353.

Fraley, C. and Raftery, A. (2002). Model-based clustering, discriminant analysis and density estimation. Journal of
American Statistical Association, 97:611–631.

Journal de la Société Française de Statistique, Vol. 156 No. 1 114-137
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Environmental conditions in semi-enclosed basins 137

Hamilton, L. (2010). Characterising spectral sea wave conditions with statistical clustering of actual spectra. Applied
Ocean Research, 32:332–342.

Hasselmann, S., Hasselmann, K., Janssen, P., Bauer, E., Komen, G., Bertotti, L., Lionello, P., Guillaume, A., Cardone,
V., and Greenwood, J. (1988). The wam model - a third generation ocean wave prediction model. Journal of
Physical Oceanography, 18:1775–1810.

Holzmann, H., Munk, A., Suster, M., and Zucchini, W. (2006). Hidden markov models for circular and linear-circular
time series. Environmental and Ecological Statistics, 13(3):325–347.

Hughes, J. and Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional
hydrologic phenomena. Water Resources Research, 30(5):1535–1546.

Hughes, J., Guttorp, P., and Charles, S. (1999). A non-homogeneous hidden markov model for precipitation occurrence.
Journal of the Royal tatistical Society - Series C, 48:15–30.

Lagona, F. (2005). Air quality indices via non homogeneous hidden markov models. In Proceeding of the Italian
Statistical Society Conference on Statistics and Environment, Contributed Papers, CLEUP, pages 91–94, Padova.

Lagona, F., Maruotti, A., and Picone, M. (2011). A Non-Homogeneous Hidden Markov Model for the Analysis of
Multi-Pollutant Exceedances Data. IntechOpen.

Lagona, F. and Picone, M. (2011). A latent-class model for clustering incomplete linear and circular data in marine
studies. Journal of Data Science, 9:585–605.

Lagona, F. and Picone, M. (2012). Model-based clustering of multivariate skew data with circular components and
missing values. Journal of Applied Statistics, 39:927–945.

Lagona, F. and Picone, M. (2013). Maximum likelihood estimation of bivariate circular hidden markov models from
incomplete data. Journal of Statistical Computation and Simulation, 83(7):1223–1237.

Langrock, R. and Zucchini, W. (2011). Hidden markov models with arbitrary state dwell-time distributions. Computa-
tional Statistics and Data Analysis, 55(1):715–724.

Lasinio, G., Gelfand, A., and Lasinio, M. (2012). Spatial analysis of wave direction data using wrapped gaussian
processes. The Annals of Applied Statistics, 6(4):1474–1498.

Maruotti, A. and Rocci, R. (2012). A mixed non-homogeneous hidden markov model for categorical data, with
application to alcohol consumption. Statistics in Medicine, 31(9):871–886.

Ponce de Leòn, S. and Guedes Soares, C. (2008). Sensitivity of wave model predictions to wind fields in the western
mediterranean sea. Coastal Engineering, 35:920–929.

R Development Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Robertson, A., Kirshner, S., and Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast brazil using
a hidden markov model. Journal of Climate, 17(22):4407–4424.

Singh, H., Hnizdo, V., and Demchuk, E. (2002). Probabilistic model for two dependent circular variables. Biometrika,
89(3):719–723.

Zucchini, W. and Guttorp, P. (1991). A hidden markov model for space-time precipitation. Water Resources Research,
27(8):1917–1923.

Zucchini, W. and MacDonald, I. (2009). Hidden Markov for Time Series: An Introduction Using R. CRC Monographs
on Statistics and Applied Probability. Chapman & Hall, London.

Journal de la Société Française de Statistique, Vol. 156 No. 1 114-137
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238


	Introduction
	Wind Wave Data
	Methods
	Model
	Parameterization for the environmental measures
	Parameterization of the weather state process
	Parameter estimation
	Model order

	Results
	Weather states at Ancona
	Weather states at Civitavecchia

	Discussions
	Acknowledgements
	References

