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Titre: Modélisation des séries de température de l’air : prétraitement, réduction à un processus
stationnaire, extrêmes, simulation.

Didier Dacunha-Castelle1 , Thi Thu Huong Hoang2 and Sylvie Parey2

Abstract: Our first goal is to give a complete methodology to get a simulation model valid for a very large number
of air temperature series. Existing simulators have quite good properties for the bulk of the distribution but they are
unable to reproduce extreme values as well as cold or hot waves. Thus we focus on this aspect in order to cover both
the bulk of the data and extreme values. First we give some new results on preprocessing (the phase during which
trends and seasonalities are removed). In this context, the choice of non parametric trends requires some new results on
cross validation. Once additive (mean) and multiplicative (variance) trends and seasonality are suppressed, we test
the cyclo-stationarity of the reduced series. In almost all cases, there does not remain any trend even for extremes
values. To model the observations, we start from non parametric estimates of the expectation and variance from a
day conditional to the previous one and from studies of correlations. The best class of model seems the seasonal
FARCH class. Then for mathematical improvements supported by physical ones, FARCH process is interpreted as the
Euler scheme of continuous-time diffusions and thus as misspecified models and modified by adaptive truncation of
innovations using new results of extreme theory on diffusions. These results are plugged in the likelihood of FARCH
processes to get a convenient estimation. We detail some results of the application to about 200 stations from Eurasia
and United States, including the validation procedures for the model. The comparison to some existing models is also
considered.

Résumé : Notre but premier est de donner une méthodologie complète pour construire un simulateur valide pour un
très grand nombre de séries de température de l’air. Les simulateurs existants ont un comportement plutôt bon pour
le cœur de la distribution mais sont incapables de reproduire les valeurs extrêmes comme les vagues de chaud ou de
froid. Nous nous focalisons particulièrement sur cet aspect de qualité tant pour les valeurs ordinaires que pour les
valeurs plus extrêmes Nous donnons d’abord des résultats nouveaux sur le prétraitement des séries visant à extraire les
saisonnalités et les tendances. Nous obtenons alors un processus réduit cyclostationnaire, la plupart du temps sans
tendances résiduelles même pour les extrêmes. Pour bâtir le modèle, nous partons d’une étude non paramétrique des
espérances conditionnelles et des variances conditionnelles d’un jour sur les jours précédents. Nous construisions alors
un modèle FARCH cyclostationnaire sur l’année. Pour améliorer l’estimation, à partir de considérations physiques
faites en temps petit, nous interprétons la chaine FARCH comme le schéma d’Euler d’une diffusion cyclostationnaire.
Pour cette diffusion nous obtenons des résultats nouveaux liant le coefficient de diffusion et les paramètres d’extrêmes.
Par plug-in dans la vraisemblance du modèle FARCH nous obtenons une bonne estimation de ce coefficient de
diffusion. Le plug-in est justifié par l’ergodicité géométrique du FARCH vu comme une chaî́ne de Markov squelette de
la diffusion (bien que le coefficient de diffusion ne soit pas lipchitzien au voisinage des frontières). Nous illustrons les
résultats sur 200 stations en Eurasie et aux USA.
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1. Introduction

Statistics are of crucial importance in climate studies as recent debates about data treatments have
emphasized, for example around the well-known “Hockey stick”. Nevertheless, collaborations
with statisticians remain unusual. Climate results can strongly depend on the considered period or
geographical area, and some arbitrary choices like linear trends for non linear phenomena or the
use of statistical tests without any power computation are still common practice. However climate
data strongly differ from econometric ones and very specific tools are needed.

In this work we focus on air temperatures with a particular goal: we try to give a treatment of
these series as complete as possible in order:

– To give an accurate data analysis of the data,
– To design a simulation model that can reproduce the bulk of the distributions as well as the

extremes values. The simulation model allows estimating the probability of rare events like
very hot waves.

Stochastic models for simulation of air temperatures are more frequently used as part of pric-
ing weather derivatives, especially in the framework of energy prices, than as tools for climate
studies. They are now commonly used in financial studies as a way of simulating key properties of
observed meteorological parameters. This necessitates some knowledges on this Şweather noiseŤ
over space and time, which motivated the development of such stochastic models (Campell and
Diebold, 2005, Mraoua and Bari, 2007, Benth and Benth, 2011).

The general principle of such models consists in modeling the temperature (daily maximum or
minimum or mean for instance) as the summation of a deterministic part and a stochastic process,
designed to represent the random fluctuations: X(t) = Λ(t)+Φ(t)Y (t), where Λ(t) and Φ(t) the
deterministic parts and Y (t) the stochastic one. Λ(t) contains at least a seasonal component, and
usually also a trend (low frequency) component. The stochastic part generally presents a stationary
autoregressive structure, more or less sophisticated: from an AR(1) to an AR(3) for the linear
part and from a constant to a GARCH model for the innovation’s variance. For some models, the
standard deviation is considered as seasonal (Richardson, 1981).

We address in this paper the behavior of the extremes in order to study rare events as heat waves.
The interest in the extremes further motivates the use of such models; however they generally
must be improved to adequately reproduce extreme events (Furrer and Katz, 2008) mainly because
the conditional variance is not well reproduced. In fact, all studies performed with observations,
say during the last 60 years, show that temperature distributions are bounded thus with a negative
shape parameter (Katz, 2011). This result does not depend on the method used to study extremes:
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140 D. Dacunha-Castelle, T.T. Hoang et S. Parey

GEV, POT, Hill estimator for rough or standardized data. This point is decisive and explains why
linear Gaussian models or GARCH processes with heavy tails give poor representations of the
extremes events if the bulk of the distributions is quite well fitted. Then what kind of stochastic
processes have to be selected to model air temperatures?

Let us explain now how to choose a model for the stochastic part. The first step is a non
parametric qualitative analysis of E(Yt/Yt−1) and Var(Yt/Yt−1). If the expectation is clearly a
linear function by, the variance a(y) decreases or increases in the bulk of the distribution of Yt−1
following the season and it diminishes drastically out of a compact interval. It seems difficult to
get such a behavior using a GARCH or bilinear model as they have been used in the previous
models. At the opposite a FARCH model given by:

Yt = b(Yt−1)+a(Yt−1)εt (1)

with a = 0 out of an interval seems able to support the qualitative behavior of the conditional
variance.

However if εt is Gaussian, the distribution of Yt is unbounded but the observation gives a
negative shape parameter strictly negative thus associated with a bounded distribution. Thus (1) is
not satisfactory. Then, another manner to consider a FARCH model is to take it as the first Euler
scheme of a continuous time diffusion whose discrete observations Zt define a Markov chain M,
the skeleton of the diffusion Z given by:

dZt = b(Zt)dt +a(Zt)dWt (2)

where W is a Brownian motion.

The transition of M is too complicated (see Dacunha-Castelle and Florens-Zmirou, 1986 to use
it as a simulation model and more to estimate a and b). It is why often the FARCH approximation
is used for this statistical goal. Nevertheless if we consider M as the Ştrue modelŤ we obtain a
satisfactory estimate of the extremes parameters and more using the embedding in a continuous
time diffusion and a new theoretical result, we can not only estimate the support of the distribution
but also, this is a difficult point, the behavior of a near the boundary.

Once this work done we come back to the FARCH likelihood in order to estimate a and b but us-
ing the constraint obtained on the support and the behavior of a at the boundary in a Şplug-inŤ step.

The last step is to modify the FARCH model in order to get bounded distributions. This is
done taking for the residues a truncated distribution with adaptative (depending on the data Yt−1)
bounds. The new chain is easy to simulate.

We do not enter in this paper in physical considerations. Temperature is a continuous time
process with continuous trajectories, like wind although generally smoother. Arguments for diffu-
sions can be found for instance in Sura (2012) starting from physical models of non linearity.
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Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation 141

From a purely mathematical point of view, to support the hypothesis of diffusive phenomena,
we have to test if the process is of a Markov type; the Markov property implies the diffusive
character. Markov property can be tested only on discrete observations with a fixed interval
between observations. Thus the Markov property can be checked only for some “scale” associated
to the lag between measures. We can test by a non parametric method the Markov property
associated to the data interval (minute, hour, day). We can also test directly the goodness of fit of
a parametric class of Markov processes. Both methods have been used in our work and lead to a
diffusion (with inaccessible boundaries) of the form (2).

The use of purely stochastic models such as diffusions with time depending coefficient is
not convenient because of the existence of very low frequency and seasonal dynamics in the
temperature. Thus the first intend is to get stationary data from the rough data X(t) by removing
the additive and multiplicative estimations of trends and seasonality to obtain the “reduced series”
Ŷt =

Xt−ût−m̂t
v̂t ŝt

where û, v̂2 are respectively the estimated seasonalites in mean and in variance and
m̂, ŝ2 are the estimated trends in mean and in variance.

The reduced series is potentially stationary but it is not because the short term correlations, the
higher order moments (skewness, kurtosis), remain seasonal despite the first preprocessing. Thus
we have to work with a non stationary, but instead a cyclo-stationary process whose distribution is
invariant by time shifts kA,k ∈ Z, A length of the period, here a year. We test the cyclo-stationarity
of the reduced series.

After this preprocessing step, we model the reduced series Ŷ (t) by the model explained previ-
ously.

Our work presents four main steps (including applications) now detailed.

1- Preprocessing: we go from the rough data X to the reduced data Ŷ , and then check the
cyclo-stationarity of Ŷ . Preprocessing is here difficult because of trends. Trends are often modeled,
without any discussion, by a linear function. This implies a loss of information. It can be seen that
the slope depends highly on the period of observation. We choose a non parametric estimation,
which needs the choice of a smoothing parameter here difficult because the observations are highly
dependent. Moreover, it is necessary to consider multivariate trends: trends in variance are crucial
for climate. Once trends and seasonalities have been removed, nothing proves that there does not
exist any other trends, for instance for short interval correlation. A more difficult question concerns
the trends in extremes: are they correctly explained as a non random function of the trends in mean
and variance? If it is not the case, it is almost impossible to get a simulation model valid for ex-
tremes. For the geographical area studied here the answer is yes (see Parey et al., 2013 for details ).

Once detrending and deseasonalisation have been done, we have to check the cyclo-stationarity
of the reduced series. We suggest a new test of stationarity which is not only adapted to climatic
data but also useful in many other practical situations.

2- Estimation: we estimate a and b taking into account specific results for extreme values of
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142 D. Dacunha-Castelle, T.T. Hoang et S. Parey

a diffusion. Then we have to work with a cyclo-stationary diffusion discretely observed. From
the geometric ergodicity of the diffusion we are able to estimate the extreme parameters and the
bounds using only this discrete skeleton. We give here only the main mathematical ideas. These
informations are then plug-in as constraints in the likelihood of the Euler scheme to estimate
coefficients a and b. This technical point is new and allows getting coefficient giving a good
representation of the extreme behavior.

3- Improve the Euler scheme whose extremes cannot be bounded and thus which is not
adapted to our purpose.

Once the statistical work achieved, we build the simulation model as a Markov chain.

Zt = c([t],Zt−1)+a([t],Zt−1)ηt(Zt−1) (3)

where ηt(Zt−1) is a particular Markov chain subordinated to Z, the distributions of ηt being
adaptively truncated in order to satisfy the extreme constraints. The coefficients c and a depend
on the time [t], the days of year, which allows taking into account the remained seasonality in the
reduced series.

4- Applications We give a complete treatment of air temperature series. The quality of simu-
lations is tested for different characteristics as marginal distributions, correlations, but also, of
course, for extreme properties.

In the bulk of the distribution, many models, which are essentially linear models with a Gaussian
noise (so non bounded), are close to our model in terms of performance. Nevertheless, our model
seems to take into account seasonalities and trends in a better way. For the high quantiles or the
extremes, our model clearly shows a better performance compared with the existing simulation
models. This is the result of our better representation of the shape parameter : our model takes
into account the boundedness of the temperature.

2. Preprocessing

2.1. The model for preprocessing

Temperature series at a daily time scale exhibit clearly a seasonal cycle and trends. Thus we
consider the model:

Xt = mt +ut + stvtYt , t ∈ [1,T ]⊂ N (4)

m and s are to be looked as trends, they take into account slow dynamics (low frequency). u and
v are periodic functions with period A (A=365 days in our applications). t means the day. Y is a
centered and normed process, EYt = 0,EY 2

t = 1. We do not suppose that Y is a white noise, it can
be non stationary.
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Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation 143

The model (4) is identifiable if the following conditions are verified:

T

∑
t=1

m(t) = 0,
T

∑
t=1

s(t)2 = 1 (5)

The trends are estimated by Loess (locally weighted scatterplot smoothing, Cleveland, 1979)
and the seasonalities are estimated using the trigonometric functions. In practice, when the
smoothing parameter (large enough) of Loess, or any other non parametric method, is fixed, the
estimation order of m and u has no importance. In our case, the bandwidth which is used for
detrending gives a low frequency corresponding to a window of 10 to 15 years large enough
with respect to one year, corresponding to the frequency of the seasonality. Here we estimate
the seasonality first because the cross-validation algorithm to choose the bandwidth for the trend
works better on the series without seasonality.

In our study, we estimate the parameters of (4) in the following way:
– estimate u from the series Xt ,
– estimate m from the series Xt − ût = X̂ (1)

t ,
– estimate v2 from the series (Xt − ût − m̂t)

2 = X̂ (2)
t ,

– estimate s2 from the series (Xt−ût−m̂t)
2

v̂2
t

= X̂ (3)
t ,

– series Ŷt =
Xt−ût−m̂t

v̂t ŝt
is called the “reduced series”.

Remark 2.1. - For the purpose of constructing simulation models for the temperature, many
authors model the trend m by a line. According to our studies, this linear trend shows its insuffi-
ciency and inadequacy. Even when a seasonally linear trend (with periodic coefficients α and β )
α(t)t +β (t) is used as an estimator, the trend in mean is not completely detected. The result of
this is that Ŷt still has a significant trend, which can be seen by simple graphics.

- In Parey et al. (2009), we show that the (increasing) trends for mean and variance are very
similar in many situations for all stations in Europe for instance, except for Iberian Perninsula
where the evolutions of mean and variance are opposite.

2.1.1. Estimation of seasonalitites and trends

The additive u and multiplicative v seasonal effects are estimated by trigonometric polynomials of
the form:

Pp(t) = θ0 +
p

∑
k=1

θk,1 cos
2πtk
365

+θk,2 sin
2πtk
365

(6)

The degree p is chosen through the use of an Akaike criterion. This parametric estimation
has been compared to the non parametric STL (Seasonal-Trend decomposition based on Loess
smoothing) method (Cleveland et al., 1990) and the two approaches have been found very similar
for temperature series.

For asymptotics of the estimation of m and s, we consider as usually the continuous functions
m and s defined on [0,1], then m(t) = m

( t
T

)
,s(t) = s

( t
T

)
with t = 1, ...,T . The details can be
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144 D. Dacunha-Castelle, T.T. Hoang et S. Parey

found in Hoang (2010), we just mention the main results.

Once the seasonalites ut estimated, to estimate m, we consider the model:

X̂1
t = mt + Ỹt (7)

where X̂1
t = Xt − ût .

We do not suppose Y stationary.

To get asymptotic results, we need to control the non stationarity, this is done in the following
way, using only the covariance function:

Let W be a stochastic process, t ∈ N,supEW 2
t < ∞. We suppose that W follows the following

condition:
sup

T
CT (W ) =C(W )< ∞ (8)

with

CT (W ) =
1
T

T

∑
i=1

T

∑
j=1
|Cov(Wi,Wj) | (9)

The condition (9) for a stationary process implies L2 weak-dependence. For non stationary
case, it controls the degree of non stationarity, which allows to apply the framework valid for iid
observations to dependent and non-stationary data. Using (9), we obtains an asymptotic result
close to that of an ordinary regression.

In order to apply Loess, let K be a compact support kernel, a bandwidth is a positive sequence
hT such that hT → 0 and T hT → ∞ as T → ∞.

Theorem 2.1. (m estimate, see Hoang, 2010)

Let Xt − ût = mt + Ỹt . Suppose m ∈C2 and (8) verified for Ỹ . Let m̂T be the Loess estimator of
m. It means that m̂(x) = β̂0(x) where β̂0(x) is obtained by minimizing:

T

∑
i=1

([
Xt −β0−β1

(
x− t

T

)]2
KT

(
x− t

T

))
(10)

with Kt(.) =
1

hT
K(./hT ). Then we have:

E(m̂T (x)−m(x))2 =

(
1
2

h2
T m(2)(x)µ1

2

)2

+
1

T hT
µ

2
0CY (T )+o

(
1

T hT
+h4

T

) (11)

where µr
j is the moment of order j of Kr.
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The proof of this theorem is shown in Hoang (2010), as an extension of Ruppert and Wand
(1994) .

For the estimation of s2, consider now:

X̂2
t =

(Xt − m̂t − ût)
2

v̂t
= s2

t + s2
t (Y

2
t −1) = s2

t +Rt (12)

Suppose that the stochastic process Rt satisfies the condition (9) (which is equivalent to a
condition on fourth order cumulants of Y ).

Theorem 2.2. (estimation of s2 (see Hoang, 2010))
Let kT be a bandwidth for the kernel K used to estimate s, suppose that
k4

T +(T kT )
−1 = o(h2

T ) then

E(ŝ2(x)− s2(x)) =
k2

T

2
µ

1
2 (s

2)′′(x)+o(k2
T )

Var(ŝ2(x))≤ 1
T k2

T
µ

1
0CT (η)+o

(
1

T kT

) (13)

Remark 2.2. : 1- The speed of the estimation of s2 does not depend on the knowledge of m. Opti-
mal choice of hT using theorem 2.1 is difficult, we do not know the constants like m(2)(t),CY (t).
We come back below to this choice.

2- We can use block-bootstrap to compute confidence intervals for m and s if Y is stationary. In
the case of temperature series, we can use 10 days as the size of blocks of bootstrap as we show
later.

Now we address the choice of the bandwidth hT and kT . To our knowledge, it does not exist
today any theoretical cross-validation (CV) result under the hypothesis of dependence and non
stationarity of Yt .

In Hoang (2010), a new algorithm of CV is suggested and called MPCV (modified partitioned
cross-validation), a modified version of PCV (partitioned cross-validation) of Marron (1987).
Through simulations, we show that MPCV gives better results than PCV but also than other algo-
rithms as MCV (Chu and Marron, 1991), plug-in CV (Francisco-Fernández and Vilar-Fernández,
2005), block bootstrap (Hall et al., 1995). Details on MPCV can be found in Hoang (2010).

In our study, we take kT = hT .

3. Stationarity of the reduced series

Let Ŷt =
Xt−ût−m̂t

v̂t ŝt
the reduced series.
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146 D. Dacunha-Castelle, T.T. Hoang et S. Parey

If we neglect estimation errors, we can suppose that:

EŶt = 0,EŶ 2
t = 1,1≤ t ≤ T (14)

In application to temperature series T ∼ 104 days, we have enough data to test condition (14)
without any problem using the test theory developed in this part.

We want to test H0: “Ŷt is a stationary process” or H ′0: “Ŷt is a cyclo stationary process” against
H1: “Ŷt is non stationary” or H ′1 for non cyclo-stationarity.

Stationarity means that all multidimensional distribution of Ŷ are invariant for every time
translation and cyclo-stationarity of a period A means invariance for the group of translations of
kA,k ∈ Z.

We treat jointly both stationarity and cyclo-stationarity. We take the following convention:
Every time that we talk about a constant estimation for stationarity, we can take place by a
periodic function estimation for cyclo stationarity.

H0 and H1 are too large to have some practical meaning. In fact, we can first informally limit
H1 to “Ŷ have a low frequency trend for some important characteristics” and H0 can be changed
into an hypothesis which can be statistically tested using simple and meaningful statistics rather
than checking an infinity of conditions.

For T fixed and for every t (1≤ t ≤ T ), consider a finite set

Φ(t) = (ϕ1(t), ...,ϕk(t)) of real functionals of (Ŷ1, ...,ŶT ).

We distinguish now some kinds of functionals of Ŷ : the moments, the density and the charac-
teristics of extremes.

Moments

Univariate moments: ϕmom
j (t) = EŶ j

t , j ≥ 1.

Bivariate moments: ϕcor
h (t) = E(Ŷt −EŶt)E(Ŷt+h−EŶt+h).

Density: ϕdens(t) = ft(Ŷ ).

Extremes:

Let N =⊕∞
j=1A j where A j are disjoint blocks of Ŷ of size ‖ A ‖. Let N(T ) the number of blocks

belonging to [0,T ]. Let M j = maxt∈A j Zt . We consider:

ϕext
1 (t) = EM j for t ∈ A j
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Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation 147

ϕext
2 (t) =Var(M j) for t ∈ A j

If we suppose that the distribution of M j is approximated, for ‖ A ‖ large enough, by a
GEV distribution with parameters (µ j,σ j,ξ j). In this case, we will consider: ϕGEV

1 (t) = µ(t),
ϕGEV

2 (t) = σ(t), ϕGEV
3 (t) = ξ (t).

Definition 3.1. Z is said Φ-stationary if Φ is constant.

Let HΦ
0 be the hypothesis “Φ is constant”. Rather than testing HΦ

0 against HΦ
1 : “Φ is not

constant”, we test HΦ
0 against HΦ

LF : “Φ has a low frequency non zero trend”.

3.1. Theory of test of stationarity and cyclo-stationarity

The main idea of our test bases on the distance between the constant estimator and the non
parametric one. Let ∆(ϕ,ψ) be the distance between two sequences on [1,T ] defined by:

∆
2(ϕ,ψ) =

1
T

T

∑
t=1
| ϕ(t)−ψ(t) |2 (15)

and ∆2(Φ,Ψ) be the distance between two sets of functionals:

∆
2(Φ,Ψ) =

k

∑
j=1

∆
2(ϕ j,ψ j)δ j (16)

where Φ(t) = (ϕ1(t), ...,ϕk(t)), Ψ(t) = (ψ1(t), ...,ψk(t)) and δ j is the weight linked to ∆2(ϕ j,ψ j)
in the set (Φ,Ψ).

Now let Φ̂T be a non parametric estimator of Φ and Φ̄T an estimator of Φ by a constant
(stationary case) or a p-periodic function (p = 365) (cyclo stationary case).

The theoretical support to our test is developed below. Suppose that ϕT (.) = ϕ
(
.
T

)
where ϕ is

the “true” function defined on [0,1]. The following conditions need to be verified ∀ j = 1, ...,k :
i/ ∆T (ϕ̂

T
j ,ϕ

T
j )→ 0 for H0 as for H1

ii/ Under H0, ∆T (ϕ̄
T
j ,ϕ

T
j )→ 0.

iii/ Under H1, ∆T (ϕ̄
T
j ,ϕ

T
j )> a > 0 for a independent of T .

Let us remark that if ϕT
j is non constant, then:

a≤
∫ 1

0
| ϕT

j (t)− c(t) |2 dt (17)

for every constant (stationary case) or every periodic function c (cyclo stationary case).

So to get an asymptotic result, we need to know the behavior of a “good” estimation of ϕ by a
constant even under H1.
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148 D. Dacunha-Castelle, T.T. Hoang et S. Parey

If the conditions i/, i// and iii/ are verified, then:
Under H0: ∆T (ϕ̂

T
j , ϕ̄

T
j )→ 0 as T → ∞

Under H1: ∃a > 0 so that ∆T (ϕ̂
T
j , ϕ̄

T
j )> a/2 > 0 for every T large enough.

Then a test of level α of H0 can be associated to a rejected region:(
∆(ϕ̂T

j , ϕ̄
T
j )> cα

)
= υα with PH0(υα) = α . The test is asymptotically consistent.

In practice, depending on the situation, we use two ways to estimate the distribution of
∆(ϕ̂T

j , ϕ̄
T
j ). When we do not know the true distribution of the considered functional (moments,

density), we can have a good approximation of the distribution of ∆ using a group of permutations.
The principle of this method can be summarized as follows: Let (P1, ...,Pk) be a partition of [0,T ]
in k disjoint intervals of the same length (for instant years) and π ∈Π a permutation of (P1, ...,Pk).
Thus π gives also a permutation of the data. We note πϕ j for ϕ j ◦π . We have then πϕ̄T

j = ϕ̄T
j

and {∆(πϕ̂T
j ,πϕ̄T

j ) = ∆(πϕ̂T
j , ϕ̄

T
j ),π ∈Π} gives an approximation of the distribution of ∆ under

H0. When we know the true distribution of the considered functional (GEV for the maxima), the
distribution of ∆ can be approximated through simulation. We simulate the trajectories of ϕ(t)
with parameter ϕ̄T

j . For each trajectory, we calculate two estimators: constant and non parametric.
The distance of these two estimators gives an approximation of the distribution of ∆ under H0.

Now in order to calculate the power of test for a function ϕ j, we should know the distribution
of ∆(ϕ̂T

j , ϕ̄
T
j ) under H1. We can have an approximation of this distribution by using the bootstrap

technique or by simulation.

In the case of functionals of moments, when we do not know the true distribution of the consid-
ered functional, let Rt the residuals of the estimator ϕ̂T

j . Let now R∗t be a block bootstrap sample
of Rt , by adding the estimator ϕ̂T

j to this block bootstrap sample, we obtain a block bootstrap
sample of the observed sample. By estimating the constant estimator and the non parametric
estimator from this bootstrap sample, we obtain an approximation of ∆(ϕ̂T

j , ϕ̄
T
j ) under H1. Thus

we can compute PH1(∆(ϕ̂
T
j , ϕ̄

T
j )> ζ ) which is the power of the test.

When we know the true distribution of the considered functional, we can obtain an approxima-
tion of ∆(ϕ̂T

j , ϕ̄
T
j ) from the simulated sample with parameter ϕ̂T .

4. Complete model and model for simulation

4.1. Continuous time process and extremes

Considering air temperatures, many statistical problems, linked with the mean, the extreme values
or the construction of simulation models, require for physical coherence to consider the obser-
vations as a discrete sample of a continuous time process. Air temperatures are measured at
different fixed lag ∆, from 10 minutes to 24 hours. Tests can be made in order to check the Markov
property for these discrete time sampled data. If the Markovianity is not rejected, the continuous
time process of temperatures, whose trajectories are continuous, can be considered as a diffusion
process. Deeper physical considerations on the diffusive character of climate temperatures can be
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found in Sura (2012).

In this part, we work with reduced variables, tested as being cyclo-stationary. Thus if Marko-
vianity is accepted as a physical hypothesis, we can consider that discrete reduced observations are
provided by a cyclo stationary diffusion. For applications to temperatures, for different theoretical
points, we suppose first that the reduced continuous time process Z(t) is a stationary diffusion
with inaccessible boundaries given by the stochastic differential equation:

dZt = b(Zt)dt +a(Zt)dWt (18)

where b is the drift, a the diffusion coefficient and Wt a Brownian motion. We choose a≥ 0 in
order to have an identifiable model. Let ν be the invariant probability of Z(t) given by:

ν(x) =
e
∫ x 2 b(v)

a2(v)
dv

a2(x)
(19)

then this means that there is no seasonality in the coefficients a and b. The cyclo-stationarity is
considered in a second time.

We first address the behavior of the extreme values of Zt , more specifically for the case where
Zt is bounded.

The seminal theory on the behavior of extremes is due to Berman (Berman, 1973) and reformu-
lated by Davis (Davis, 1982). In the general case, Davis has shown that for any GEV distributions
G and H, it is possible to find cT and dT such that the limit distribution of the centered and normed
(by cT and dT ) maximum MT of the diffusion observed on (0,T ) tends to H as t→ ∞, although ν

is in the domain of max-attraction of G.

From now on, we are concerned by a specific situation. The support of Z, say (r1,r2), is
bounded so r1,r2 are inaccessible boundary points. We suppose that at the boundary, the following
hypothesis are verified:

j/ a and b are defined and continuous on [r1,r2]

jj/ b(r1)b(r2) 6= 0 (checked in the applications)

We prove that in this situation, if there exists a limit distribution for suitably centered and
normalized maxima MT = {maxZt ,0≤ t ≤ T} then the same is true for an iid sample of ν and
the two limit distributions are the same GEV one.

Now consider the theorem 3.2 in Davis (1982).

Theorem 4.1. Let s be the scale function of the process (18):

s(x)=
∫ x

e
∫ u -2 b(v)

a2(v)
dv

du (20)
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Define the function F by:
F(x) = exp(−1/s(x)) (21)

If there exist some functions T → AT ∈R∗ and T → BT ∈R and a proper distribution G such that

MT −BT

AT
→ G in distribution

then G is a GEV distribution such that F is in the extreme domain of attraction of G.

We now prove the following theorem and its corollary which is very useful in our applications:

Theorem 4.2. Under hypothesis j/ and jj/:
1- If the distribution of the maximum of the diffusion is in the domain of attraction of a GEV
distribution with ξ < 0 then the marginal distribution ν of the diffusion is in the same domain.
2- Suppose that F is in the extreme domain of attraction of some GEV distribution G with shape
parameter ξ < 0, let r2 be the common upper bound of F and G.
We have the following behavior of a as x→ r2:

a2(x) =−2b(r2)ξ
′(r2− x)+o(r2− x) (22)

with 1
ξ
+ 1

ξ ′ = 1

The proof is given in the Appendix.

Corollary 4.1. as x→ r2:

ν(x)' −(r2− x)−
1
ξ

2b(r2)ξ ′
(23)

4.2. Discrete observations: statistical application of geometric ergodicity and extremes

The Markov chain Zn of discrete observations is geometrically ergodic with invariant measure ν .
In Dacunha-Castelle and Florens-Zmirou (1986), it is proved that the chain Zn is L2-positively
contractive and thus geometrically ergodic. This implies that if Mn = max(Z1, ...,Zn) and MT =
max(Zt ,0≤ t ≤ T ), if there exist sequences An,Bn and functions AT ,BT such that:

Mn−Bn

An
→ G1,

MT −BT

AT
→ G2 (24)

then G1,G2 have the same shape coefficient ξ and an iid sample of ν satisfies a limit theorem for
its extremes, with ξ as shape coefficient. This result is of course very useful for statistics, the data
being discrete.

The behavior of ν given by (23) implies that the extremes of an iid sample of ν , suitably
normalized, converges to a GEV distribution with shape coefficient ξ .

The lower and upper bounds of ν can then be estimated from the discrete data. Let µ̂n, σ̂n, ξ̂n

be the estimators of the parameters of GEV associated to Zn. r̂2,n = µ̂n− σ̂n/ξ̂n is the estimator of
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the upper bound of ν . We have an equivalent formula for the lower bound.

The coefficients a and b of the diffusion can be estimated directly by using the sequence (Zn)
but computations are very complicated in general(see Dacunha-Castelle and Florens-Zmirou,
1986). So we need an approximation.

The first order Euler scheme approximation is given by:

Zn∆ = c(Z(n−1)∆)+a(Z(n−1)∆)εn (25)

where εn is a white noise or more precisely a sequence of iid random variables with distribution E
and ∆ is the time interval between observations, we choose here ∆ = 1.

There is an important literature about these processes. The most important results concern
stationarity, geometric ergodicity and the existence of an invariant density λ such that the extremes
of an iid sample of λ have the same asymptotic properties than the extremes of the chain Zn.
Some important cases and tools can be found in Doukhan (1994) where various criteria are given
for the geometric ergodicity. Some papers (Chen and An, 1999 , Wang, 2008) give more specific
conditions. If c(x) = cx with |c|< 1, the main conditions are: a > 0, a is bounded on R and the
density of ε is almost everywhere positive. So bounded supported noises are excluded. Now if a is
uniformly Lipschitzian, the existence of a unique stationary solution as the geometrical decrease of
the covariance and strong mixing properties are proven. But in our application, from the previous
results of the extreme theory, a is not Lipschitzian at the boundary for ξ < 0. Moreover, a is zero
out of a bounded interval I = (r1,r2).

We have to look for a model with bounded marginals, but unfortunately we have the following
almost evident (and thus given without proof) negative result.

Lemma 4.1. If E has a non bounded support (for instance E Gaussian) then there are not
bounded supported stationary solutions of (25).

It is thus impossible to have such an Euler first order scheme with the following wanted
properties: it is stationary with bounded inaccessible boundary and Gaussian innovation. Then
what are the possible improvements for this situation?

First we try keeping at least in the first step a Gaussian noise. We prove results for stationarity
and geometric ergodicity adapted to this situation.

We give only one of the results obtained by applying the work of Cline and Pu (1999).

Theorem 4.3. If E is a Gaussian distribution, c(x) = cx, |c|< 1 and a(x) is continuous and null
outside a bounded interval then the process Z is geometrically ergodic.

These results will be used only to justify the simulation process.
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We now modify the Euler scheme in order to obtain a bounded process. We define a new
Markov chain Z̃n by:

Z̃n = bZ̃n−1 +a(Z̃n−1)ηn(Z̃n−1) (26)

where ηn is conditionally independent of σ -algebra generated by(
Z̃n−2, ..., Z̃n−k, ...,ηn−1, ...,ηn−k

)
given Z̃n−1.

Let ψ2(x) = r2−bx
a(x) ,ψ1(x) = bx−r1

a(x) , Φ(x) the Gaussian cumulative distribution function,
R(x) = Φ(ψ2(x))−Φ(ψ1(x)), Nψ(x) the normal distribution truncated at ψ1(x) and ψ2(x) whose
density is f (η) = 1

R(x)
√

(2π)
exp−η2/2 1ψ1(x)<η<ψ2(x).

4.2.1. Estimation procedure with constraints for extremes

We start from:
Zn+1 = c(Zn)+a(Zn)εn, εn ∼ N(0,1) (27)

The informations of the theorem (4.2) on the behavior of a2 in the continuous-time process is
used in a plug-in manner: the likelihood of the Euler scheme is considered as a Gaussian contrast
function. As shown in part 4.2.1, we can estimate the lower and upper bounds r̂1, r̂2 by applying
the GEV method to the block maxima of the reduced series. It remains now the estimation of a
and b with bound constraints.

There is a very large literature about the estimation of parameters a and b from a discrete
observation, such as Florens-Zmirou (1989), Hansen et al. (1998), Kessler and Sorensen (1999)
and Gobet et al. (2004). We can separate the results into:

1. non parametric results, considering c and a respectively as the conditional mean E(Yn∆|Y(n−1)∆)

and conditional variance a2(Z(n−1)∆) = E(Z2
n∆
|Z(n−1)∆)−

[
E(Zn∆|Z(n−1)∆)

]2. In the following, we
will use these methods only to give preliminary results.

2. Methods working with a fixed ∆ using the likelihood of the first order Euler scheme associ-
ated to the diffusion (Florens-Zmirou, 1989).

For caution, we first estimate both the drift coefficient and the diffusion coefficient by nonpara-
metric methods. Knowing the distribution of ε , we can estimate at the same time a2 and c by the
cubic spline smoothing by maximizing the penalized likelihood.

The penalized likelihood is then given as a function of a2 and c by:

L(N,a2,c) =
N

∑
i=2

log p(Z̃n−1, Z̃n,a,c)−λ

∫
(a′′(x))2dx−µ

∫
(c′′(x))2dx (28)

The regularization parameters λ ,µ can be chosen by modified generalized cross-validation
in order to take into account the dependence. The method is shown in Hoang (2010) (chapter
5). However, to avoid a too heavy numerical computations, we estimate a2 and c separately. We
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estimate first the drift coefficient c in the supplied model by local smoothing Loess with c being
the conditional expectation E(Zn/Zn−1). Then with given ĉ, we estimate a2 by maximizing the
penalized likelihood for a2.

Our main interest is to find a parametric simulation model. Both coefficients are then estimated
parametrically. In general for temperatures, we can check that the drift c is linear. The drift
function has a quite clear physical meaning as the elastic part of the basic oscillator, which is the
deterministic justification of the diffusion. We can write then ĉ(x) = cx, with c < 0. The shape of
the diffusion coefficient a can be quite complicated. From previous non parametric studies and
the property of a in the continuous-time diffusion, we suggest a strictly positive a in the interval
(r1,r2) and zero outside.

To choose a parametric model which satisfies the constraints given by extreme theory, we
model a in the following way

a2(x,β ) = (x− r1)(r2− x) |Pk(β ,x)|2 1r1<x<r2 (29)

Pk(β ,x) is a trigonometric polynomial of order k with parameters β , k chosen using AIC, submitted
to the following quadratic constraints provided by the results in section 4.1:

(a2)′(r̂2,β ) = 2(1− c)(r̂2)ξ
′

so we plug in r̂2 and we consider the constraints given by the a behavior as coefficient of the
diffusion:

(c−1)r1ξ
′ = (r2− r1) |Pk(β ,r1)|2 and (1− c)r2ξ

′ = (r2− r1) |Pk(β ,r2)|2 (30)

Once r1 and r2 are estimated , we use a Gaussian constrast (which is not the likelihood of the
observed Markov chain) defined by:

L(N,k,c,β ) =
N

∑
i=1

−1
2
(Z̃i− c(Z̃i−1)

2∣∣∣Pk(Z̃
j
i−1,β )

∣∣∣2 − log
∣∣∣Pk(Z̃

j
i−1,β )

∣∣∣
 (31)

Estimating a2 and c turns now to maximize (31) with boundary constraints. In practice, we first
estimate c by least squares, then we estimate a from the series (Zt − ĉ(Zt−1))

2 with constraints.
The estimation of a becomes an optimization problem with equality and inequality constraints.
We first estimate a by least squares with constraints, using the algorithm in Golfarb and Idnani
(1982) and Godfarb and Idnani (1983). Then we use the results of least square estimation as the
initial values for the parameters in the likelihood maximization. Using the algorithm of Nelder
and Mead (1965), we obtain the estimation of a2.

Finally, outside the intervals (r̂1, r̂2), â2 is fixed as zero.
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5. Applications to temperatures and simulations

5.1. Data

The validation of the model is conducted for different climates in Eurasia and in the United-States.
For Eurasia, weather station time series of minimum daily temperature (TN) and maximum daily
temperature (TX) are obtained from the ECA&D project database. The project gives indications
of homogeneity through the results of different break identification techniques (A.M.G., 2002).
First, the series which could be considered as homogenous (stated as ŞusefulŤ in the database)
over the period 1950-2009 have been selected for both TN and TX. Then, only the time series
with less than 5% missing data are kept, leading to 106 series for TX and 120 for TN (many TX
series, mostly in Russia, have missing values from 2007 onward whereas the corresponding TN
ones have missing values only in 2009). For the United States, weather station TX and TN time
series are obtained from the Global Historical Climatology Network Ű Daily Database (GHCN
daily) (Menne et al., 2012). A similar selection procedure left us with 86 series for TX and 85 for
TN. The studied stations are shown in the figure 1.

FIGURE 1. Studied stations in Eurasia and USA

We will show just the results of some stations for example. To have a complete panorama, all
the results from the preprocessing to the simulation of the reduced series will be shown.

5.2. From the preprocessing to the reduced series

We give an example of the preprocessing applied to the minimum daily temperatures (Tmin)
in Berlin (Germany). Trends and seasonalities, are estimated by the procedure explained in the
section 2.

Figure 2 shows the estimated seasonalites and trends for Tmin in Berlin. We observe an annual
seasonality, for example the variance is more important in winter. For the estimation of trends,
our cross validation algorithm gives 0.17 as the optimal value for the smoothing parameter. This
parameter corresponds to a size of partitions g of 10 days. We remind that the main idea of this
algorithm is to partition the data in [n/g] sub-groups and in each sub-group, the observations of
time lag of g days, and so we have the sub-groups of “sufficiently independent” data. The optimal

Journal de la Société Française de Statistique, Vol. 156 No. 1 138-168
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation 155

0 100 200 300

0
5

10
15

Seasonality in the mean

days of year

°C

daily means
estimated seasonality

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Trend in mean

month/year

°C

04/56 01/70 09/83 05/97 01/11

annual mean
loess

0 100 200 300

5
10

15
20

25
30

35

Seasonality in the variance

days of year

°C

daily variances
estimated seasonality

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Trend in scale

month/year

°C

04/56 01/70 09/83 05/97 01/11

annual scale
loess

FIGURE 2. Estimated seasonalites and trends in preprocessing for Tmin in Berlin (with 95% bootstrap confidence
intervals)

choice of the bandwidth h is predefined by the optimal choice of the size g which is also supplied
in our algorithm.

Once the deterministic components removed, the stationarity or rather cyclo-stationarity of the
reduced series will then be checked.

5.3. Cyclo-stationarity of the reduced series

The reduced series is in fact not stationary in the usual way, but in an extended sense: cyclic
stationarity. As mentioned in Hoang (2010), the seasonality of the temperature has its own
dynamic which cannot be removed: after removing the trend and seasonal components in mean
and in variance from the observed series Xt , the seasonality still remains in the reduced series Ŷt .
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This behavior can be firstly seen in the boxplot of Ŷt for year (figure 3). The difference of the
winter compared with the rest of the year can be detected.
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FIGURE 3. Boxplot of the reduced series

With a push-over analysis, it can be seen that the seasonality affects on different characteristics
of the reduced series. Figures 4 and 5 which contain the optimal periodic approximations (by using
the AIC criterion) for the moments and correlations of the reduced series show an example of this
phenomenon. The seasonal effect is often found in skewness and kurtosis. In the correlations, the
seasonality is always present. For this reason, the model that we will use is SFHAR (seasonal
functional heteroscedastic autoregressive) model where both coefficients a and c are periodic.

The test of cyclo-stationarity presented in part 3 will be applied to different characteristics of Ŷ :
mean, variance, skewness, kurtosis, correlations and the extremes. For moments, the distribution of
the distance ∆ is estimated using yearly permutations and for extremes, the empirical distribution
of ∆ is obtained by simulation using GEV distribution.

According to the results of the tests with 10% confidence level, the cyclo-stationarity of the
reduced-series is not rejected for almost all the stations. In general, the non validation of the
cyclo-stationarity comes from the reject of a constant trend for the extreme parameters. The
constancy of the location parameter µ is rejected in 2% of the cases and for the scale parameter σ ,
that is about 10%. For both µ and σ , we have about 9% as the percentage of reject (for the details,
see Parey et al., 2013). For a multidimensional test (describe in part 3) with a 10% confidence
level, we can not reject the stationarity of the extremes. The validity of the cyclo-stationarity of
the extremes is necessary to use the extreme theory of the diffusion process for modeling the
extremes of the reduced series.
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FIGURE 4. Estimation of the seasonality in the moments of the reduced series: daily values and periodic estimation
(bold line)
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FIGURE 5. Estimation of the seasonality in the correlations of the reduced series: daily values and periodic estimation
(bold line)
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In order to compute the power of the test, we have to build the distribution of ∆ under H1
hypothesis. We compute then distances between constant and non-parametric estimates of the
GEV parameters from simulated trajectories for non stationary GEV. We calculate next the
percentage of values in the empirical table of ∆ which do not fall in the rejection region. The
results from different stations give 85% as the minimum value as the power of test.

5.4. Model, simulation and validation

5.4.1. The model

In this section, we will show an extended version of the Euler scheme model which is used to fit
the dynamics and different intrinsic characteristic of the reduced temperature.

Based on the previous preliminary study on the characteristics of the reduced series, we choose
a model adapted to different characteristics (especially for the extremes) for the reduced tempera-
ture (in the following Pq(t) is a trigonometric function of period A = 365 of order q):

Zt = c(Zt−1)+a(Zt−1)ηt(Zt−1)

where c(Zt−1) = Pp(t)Z(t−1)

ηt defined in section 4.2

(32)

The diffusion coefficient a is also seasonal and is constrained on the boundary. Then we define
a in the following way:

a2(t,Zt−1) = (r̂2− t)(t− r̂1)
5

∑
k=0

Pp′,k(t)Zk
t−1

(a2)′(r1) =
2(c(r1)− r1)

1−1/ξ1
, (a2)′(r2) =

2(c(r2)− r2)

1−1/ξ1

a2(t)> 0 ∀t

(33)

In practice, we first estimate the autoregressive part from the series Zt , the numbers p, p′ of
cosinus and sinus terms in Pp(t) and P′p(t) is chosen by the Akaike criterion. Then we estimate a
from the series (Zt − ĉ(Zt−1))

2 using the maximum likelihood with constraints (described in part
4.2.1).

We observe that a is not constant but linear in the central part. For example, for the daily
maximum temperature, a increase in summer and for the daily minimum temperature, the opposite
effect is observed, a decrease in winter. In the following, we give an example (the minimum daily
temperature in Berlin) of the form of estimated a (with constraints in the boundary) compared
with the estimations without constraints for one day in summer and one day in winter. Without
constraints in the boundary, the estimation of a for the high quantiles of Z has no sense because
of the lack of data. Moreover, when we use a parametric estimation for a without boundary
constraints, it tends to give high values near the boundaries for a and the results of this is the
unrealistic values (tend to infinity) obtained by the simulation.
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FIGURE 6. Left panel. Estimated diffusion coefficients by different methods for 11th July. Right panel. Estimated
diffusion coefficients by different methods for 21st January

5.4.2. Simulation and validation

Usually, calibration is done on a sample used for learning and validation on a sample test to make
predictions for instance. We do not detail here the predictive qualities. The main reason is that
the model is a martingale and thus the non linearity does not change the predictor at least for
prediction at one step.

We first consider the estimated residuals ε̂t of the model (32). ε̂t must be close to a stationary
white noise. Most values of the autocorrelation function of the residuals and squared residuals are
found in the confidence intervals of a white noise. The normality of the residuals is often rejected
by Komogorov-Smirnov and Shapiro Wilk tests as expected from the modification of the Euler
scheme for the tails.

In order to validate the model, we simulate 100 samples (with the same length of observed
sample) based on the model above. We compare the following items for the series Xt and their
simulated samples: moments, marginal distribution, quantiles, GEV parameters for Zt and the hot
and cold waves.

Compared to the other temperature generators found in the literature, our model differs in
its bounded property. This property is expected to really improve the ability of the model at
reproducing extremes. In order to have a better view on this point, we will compare the simula-
tion results of our model to those of simpler models, where the extremes are not taken into account.

Following the estimation and simulation procedure:

• Preprocessing : estimate the mean function m of X , the scale function s of X , the additive
and multiplicative seasonalities u and v
• Calculate Ŷ = (X− û− m̂)/(ŝv̂) and apply model (32) to Z
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FIGURE 7. Comparison of the observed and simulated (with 95% confidence intervals) daily means and variances

• Estimate a and c with the method described in the previous section.

• Use these â , ĉ to create 100 simulated samples of Z.

• Deduce 100 samples of X by adding m,u and multiplying s,v : X = svZ +m+u

The results are quite better when the observations are not too asymmetric and their kurtosis is
close to that of a Gaussian distribution.

The simulations represent correctly the daily characteristics:

– Daily distributions: 365 Komogorov-Smirnov tests are applied to test the homogeneity
between the daily distributions of simulations and of observations. With a 5% confidence
level, the homogeneity of simulated daily distributions with respect to observed ones is not
rejected. We do not discuss here the problem of multi-hypothesis,

– Daily mean and variance: the simulations represent well the observed daily mean and
variance (Figure 7 for Tmin in Fruholmen). It is normal that the estimators from simulations
are smoother because for each day, we have 100 times more values than the observations,

– Daily skewness and kurtosis: the results are nevertheless less good for daily skewness and
kurtosis (Figure 8 for Tmin in Fruholmen).

Remark 5.1. In figure 8, the skewness and kurtosis corresponding to the 42th day and 355th day
are remarkably low or high. The reason is that for these days, we have some very low temperatures:
-21.6řC for the 42th day and -24.5řC for the 355th day.

The quantiles between 1% and 99% are correctly represented: observed quantiles are found in
the 95% confidence intervals of the simulations.

Let us now consider, at the same time, other models: constant a or a2 is a trigonometric function
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FIGURE 8. Comparison of the observed and simulated (with 95% confidence intervals) daily skewness and kurtosis

f (t) which only depends on the dates, and not on the state Z(t−1).

The example below (Figure 9) on Tmin in Berlin shows the better performance of our model
for almost of quantiles deal with the others.

The construction of the model allows us to have bounded simulated trajectories, more concretely
with the values remaining inside two estimated bounds. We then go further in this characteristics
by considering the extreme events. For this, first the GEV parameters for the simulated reduced
series are compared to those of the observed ones, both for the lowest and the highest extremes.
The results show that the shape parameter, which determines the domain of max attraction, is
better reproduced in the simulations than the location and scale parameters. We note that the
estimation of the extreme parameters is very sensible to the size of block maxima.

According to the results, the simulations are less bounded. This fact is not surprising because
the simulations produce 100 possibilities, among which higher or lower extremes could have
been observed. Thus the model is not only able to reproduce extremes, but also to produce larger
extremes than observed. Figure 10 shows, as an example, the distributions for each parameter
(location µ , scale σ and shape ξ ) obtained from the 100 simulated trajectories for the highest
(warm) extremes (upper panels) and the lowest (cold) extremes (lower panel) together with the
same parameters obtained from the observed reduced series (red line) for TN in Berlin and TX in
Death Valley.

Remark 5.2. Sometimes, with some size of block, the shape parameter ξ estimated is very close
to zero, the direct consequence is that the estimated bounds are not realistic. In this case, it is
sufficient to change the size of blocks of maxima to obtain a reasonable value of ξ . One can also
have a more stable estimation of ξ using a non parametric Hill estimator.

Then the ability of the model to reproduce heat or cold waves has been investigated. Cold
waves are defined as periods of consecutive days with daily minimum temperature lower than the
2nd percentile and heat waves as periods of consecutive days with daily maximum temperature
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FIGURE 9. Observed quantiles (vertical lines) for whole year of Xt and their distributions built from the simulations of
different models: in black, model with constant a (dotted lines), models with a2 = f (t) (interrupted lines), model with
a(t,Zt−1) (continuous lines).
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FIGURE 10. Estimated extreme parameters (red vertical lines) from the observed reduced series and their distributions
built from the simulations. Upper panel. Tn of Berlin. Lower panel. Tx of Death Valley
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simulations (in black).
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above the 98th percentile. The number of consecutive days varies between 1 and 15 days, the last
class corresponding to the few episodes with more than 15 days, if any. Thus for each location the
2nd and 98th percentiles of the observed time series are computed and the distribution of episodes
in the observed time series is compared to the minimum, maximum and mean frequencies of
such a distribution in the 100 simulated trajectories. The results are in general good: even though
the stochastic model sometimes tends to overestimate the proportion of 1-day cold excursions
compared to the observations, it is still able to produce longer episodes in a reasonable proportion,
even the longest ones. Figure 11 shows the results for cold waves in Berlin and heat waves in
Death Valley.

Another criteria as the return level can be considered, but this point is not discussed here, for
more details, one can consult Parey et al. (2013).

With these results, we can conclude that the estimation of a combining the extreme theory in
diffusion process is an interesting approach for both the non extreme and extreme parts of the
maximum and minimum daily temperature, especially for the extremes.

6. Conclusion

The possible perspectives of our paper are some improvements of this model and its presentation
for other scale of time as hour measurement. For other climate variables, the situation may be
different. For wind, it should be interesting to develop similar ideas. Some similarities are found
between wind and temperature. In general, wind speed is measured in continuous records or
discrete records with very short time intervals. The inertia of the anemometers requires careful
analysis but a simulator for temperatures similar to ours can be applied to wind taking into
account the mentioned difficulty of measurement. However, this is quite different from the
developments devoted to precipitation generators (see Wilks and Wilby, 1999 for a review) where
both the occurrence and length of the precipitating events and the amount of precipitation must be
adequately simulated. Most generators contain separate treatments for the precipitation occurrence
and intensity processes. In fact, this kind of models of simulation can also be introduced as part
of more global simulators, based on “weather type” and hidden Markov chains. The amount of
statistical work should be more important.

7. Appendix

Proof of theorem 4.2

The proof is based on the proposition 0.7 in Resnick (2007). where RVϕ is the set of functions
with ϕ regular variation.

Theorem 7.1. (Resnick). Suppose U : R+→ R+ is absolutely continuous with density u so that

U(x) =
∫ x

0
u(t)du (34)
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If U ∈ RVϕ , that means U is regularly varying with index ϕ , ϕ ∈ R and u is monotone then

lim
x→∞

xu(x)
U(x)

= ϕ (35)

and if ϕ 6= 0 then (sgn ϕ)u(x) ∈ RVϕ−1

Following the proposition 1.13 in Resnick (1987), if F is in the domain of attraction of the
Weibull distribution with ξ < 0, then 1−F(r2− x−1) is regularly varying with index 1/ξ when
x→ ∞.

From the previous theorem of Davis, we have

1−F(r2− x−1) = 1− exp(−1/s(r2− x−1)) ∝ 1/s(r2− x−1) when x→ ∞

Then 1/s(r2− x−1) is regularly varying with index 1/ξ , so s(r2− x−1) is regularly varying
with index −1/ξ .

Note s∗(x) = s(r2−x−1), s∗(x) ∈ RV−1/ξ , the first and second derivative of s∗(x) are monotone.
Applying twice the previous proposition of Resnick, we have:

lim
n→∞

xs∗”(x)
s∗′(x)

=− 1
ξ
−1⇔ lim

n→∞

x
[
s”(r2− x−1 1

x2 − 2
x s′(r2− x−1))

]
s′(r2− x−1)

=− 1
ξ
−1

⇔ lim
n→∞

1
x

s”(r2− x−1

s(r2− x−1)
= 1− 1

ξ

We can then deduce the behavior of a near the upper bound with t = r2− x−1,x→ ∞ :

a2(t)≈ −2b(t)(r2− t)
1− 1

ξ

(36)

From this lemma, we can deduce the value of the first derivative of a2 at the upper bound r2 :

(a2)′(r2) =
2b(r2)

(1−1/ξ )
(37)

and the same for the lower bound. From the lemma and the formula of ν , the elementary
computations prove that the tail of ν(x) has the same behavior as the tail of F given by

F(x) = exp(−1/s(x))

In fact, from (36), we have when u→ r2, e
∫ u 2 b(v)

a2(v) is equivalent to (r2− t)1−1/ξ with t → 0,
then ν(v) is equivalent to C(r2− t)−1/ξ (C is an appropriate constant) which in turn proves that
the extremes computed on a sample of i.i.d random variables of distribution ν(x)dx have the same
shape coefficient as that of the diffusion.

So we have proven theorem 4.2.
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