L’objectif principal de l’épidémiologie animale est de faire progresser les connaissances à la fois sur i) la dynamique et l’impact des maladies sur les productions, la santé et le bien-être des animaux ii) les risques pour la santé humaine associés aux maladies animales transmissibles à l’homme (zoonoses) et aux toxi-infections alimentaires. Parce que les animaux et les produits animaux sont une source de revenus majeure pour une partie de la population, une place plus importante est accordée aux aspects économiques en épidémiologie animale qu’en épidémiologie humaine. Pour un trouble de santé, des questions de recherche classiques auront trait à l’identification de facteurs de risque de survenue du trouble, l’estimation de son impact sur la production, l’évaluation de l’efficacité d’un traitement ou encore la détection précoce de sa survenue. A ces fins, un large éventail de méthodes statistiques est utilisé et de nombreuses sources de données existent. Une particularité des productions animales consiste en la collecte de grands volumes de données en lien avec la production tels que des productions laitiè res quotidiennes par vache, des poids vifs ou des données de reproduction. Ces grands volumes de données disponibles représentent à la fois un avantage et une difficulté pour la modélisation statistique. Pour illustrer les sources de données et les méthodes utilisables en épidémiologie animale, nous présentons des travaux effectués suite à l’émergence de la fiè vre catarrhale ovine en 2006. Dans un premier temps, nous montrons comment les impacts de la maladie sur la production laitiè re et la reproduction ont été estimés. Puis, dans l’objectif d’améliorer la précocité de la détection de telles émergence, l’application des méthodes de surveillance syndromique est présentée. Enfin des besoins de connaissances et des perspectives pour de futures recherches sont présentés.
The main aim of veterinary epidemiology is to increase knowledge on both i) the dynamics and impact of diseases on animal production, health and welfare and on ii) the risk of animal-acquired (i.e. zoonoses) and food-borne diseases in humans. Because animals and animal products are the source of income for a large sector of society, the emphasis on economic aspects is much more important in veterinary epidemiology than in human epidemiology. Typical research questions deal with the identification of risk factors for a disease, the estimation of the impact of a disease on production, the evaluation of the efficacy of a treatment or the timely identification of disease occurrence. For these purposes, a wide range of statistical techniques are used and several types of data sources exist. One peculiarity in animal productions is the collection of large production related data such as daily milk productions, live weights or reproduction data for example. These extremely large databases are both an asset and a challenge for statistical modelling. To illustrate the data sources and statistical methods used in veterinary epidemiology, we present part of the work conducted following the emergence of the bluetongue virus in cattle in 2006. First, we show how the impacts of the disease on milk production and reproduction were estimated. Then, in order to improve the timeliness of detection of such emergences, the application of syndromic surveillance methods to the bluetongue emergence is presented. Finally, some knowledge gaps and directions for future work are presented.
Mot clés : animal, maladie, données, modèle
@article{JSFS_2016__157_1_153_0, author = {Madouasse, Aur\'elien and Nusinovici, Simon and Monestiez, Pascal and Ezanno, Pauline and Leh\'ebel, Anne}, title = {Statistical methods in veterinary epidemiology}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {153--181}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {157}, number = {1}, year = {2016}, zbl = {1355.92119}, language = {en}, url = {http://archive.numdam.org/item/JSFS_2016__157_1_153_0/} }
TY - JOUR AU - Madouasse, Aurélien AU - Nusinovici, Simon AU - Monestiez, Pascal AU - Ezanno, Pauline AU - Lehébel, Anne TI - Statistical methods in veterinary epidemiology JO - Journal de la société française de statistique PY - 2016 SP - 153 EP - 181 VL - 157 IS - 1 PB - Société française de statistique UR - http://archive.numdam.org/item/JSFS_2016__157_1_153_0/ LA - en ID - JSFS_2016__157_1_153_0 ER -
%0 Journal Article %A Madouasse, Aurélien %A Nusinovici, Simon %A Monestiez, Pascal %A Ezanno, Pauline %A Lehébel, Anne %T Statistical methods in veterinary epidemiology %J Journal de la société française de statistique %D 2016 %P 153-181 %V 157 %N 1 %I Société française de statistique %U http://archive.numdam.org/item/JSFS_2016__157_1_153_0/ %G en %F JSFS_2016__157_1_153_0
Madouasse, Aurélien; Nusinovici, Simon; Monestiez, Pascal; Ezanno, Pauline; Lehébel, Anne. Statistical methods in veterinary epidemiology. Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 153-181. http://archive.numdam.org/item/JSFS_2016__157_1_153_0/
[1] Associations between sole ulcer, white line disease and digital dermatitis and the milk yield of 1824 dairy cows on 30 dairy cow farms in England and Wales from February 2003–November 2004, Preventive veterinary medicine, Volume 83 (2008) no. 3, pp. 381-391
[2] The use of factor analysis in the statistical analysis of multiple time series, Psychometrika, Volume 28 (1963) no. 1, pp. 1-25 | Zbl
[3] Effects of health disorders on feed intake and milk production in dairy cows, Livestock production science, Volume 83 (2003) no. 1, pp. 53-62
[4] Reduction in milk yield associated with Mycobacterium avium subspecies paratuberculosis (Map) infection in dairy cows, Veterinary research, Volume 38 (2007) no. 4, pp. 625-634
[5] Estimating relative risk of disease from outputs of logistic regression when the disease is not rare, Preventive veterinary medicine, Volume 36 (1998) no. 4, pp. 243-256
[6] Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling, Preventive veterinary medicine, Volume 68 (2005) no. 2, pp. 145-163
[7] Devising an indicator to detect mid-term abortions in dairy cattle: a first step towards syndromic surveillance of abortive diseases., PLoS One, Volume 10 (2015) no. 3 | DOI
[8] Latent variables in psychology and the social sciences, Annual review of psychology, Volume 53 (2002) no. 1, pp. 605-634
[9] The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe, Preventive veterinary medicine, Volume 116 (2014) no. 4, pp. 360-369
[10] A dynamic model of bovine tuberculosis spread and control in Great Britain, Nature, Volume 511 (2014) no. 7508, pp. 228-231
[11] Geostatistics. Modeling spatial uncertainty, Wiley Series in Probability and Mathematical Statistics, New-York, 2012 | Zbl
[12] Using latent class analysis to estimate the test characteristics of the -interferon test, the single intradermal comparative tuberculin test and a multiplex immunoassay under Irish conditions, Veterinary microbiology, Volume 151 (2011) no. 1, pp. 68-76
[13] Seasonal and spatial heterogeneities in host and vector abundances impact the spatiotemporal spread of bluetongue., Vet Res, Volume 44 (2013) | DOI
[14] Seasonal spread and control of Bluetongue in cattle, Journal of theoretical biology, Volume 291 (2011), pp. 1-9 | Zbl
[15] Inventory of veterinary syndromic surveillance initiatives in Europe (Triple-S project): Current situation and perspectives, Preventive veterinary medicine, Volume 111 (2013) no. 3, pp. 220-229
[16] Characteristics of the spatio-temporal network of cattle movements in France over a 5-year period, Preventive veterinary medicine, Volume 117 (2014) no. 1, pp. 79-94
[17] A structural equation model to evaluate direct and indirect factors associated with a latent measure of mastitis in Belgian dairy herds, Preventive veterinary medicine, Volume 107 (2012) no. 3, pp. 170-179
[18] Economic value of timely determination of unexpected decreases in detection of estrus using control charts, Journal of dairy science, Volume 86 (2003) no. 11, pp. 3516-3526
[19] Application of statistical process control charts to monitor changes in animal production systems, Journal of Animal Science, Volume 88 (2010) no. 13, p. E11-E24
[20] Anatomy of bluetongue virus serotype 8 epizootic wave, France, 2007–2008, Emerging infectious diseases, Volume 16 (2010) no. 12
[21] A statistical algorithm for the early detection of outbreaks of infectious disease, Journal of the Royal Statistical Society. Series A (Statistics in Society), Volume 159 (1996) no. 3, pp. 547-563 | Zbl
[22] Effects of disease on milk production in the dairy cow: a review, Preventive veterinary medicine, Volume 41 (1999) no. 1, pp. 1-35
[23] An experimental infection model to induce digital dermatitis infection in cattle, Journal of dairy science, Volume 95 (2012) no. 4, pp. 1821-1830
[24] Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe., J R Soc Interface, Volume 9 (2012) no. 67, pp. 339-350 | DOI
[25] Modélisation et statistique spatiales, Springer, 2008 | Zbl
[26] Lameness detection challenges in automated milking systems addressed with partial least squares discriminant analysis, Journal of dairy science, Volume 97 (2014) no. 12, pp. 7476-7486
[27] Use of posterior predictive assessments to evaluate model fit in multilevel logistic regression, Veterinary research, Volume 40 (2009) no. 4, pp. 1-10
[28] Analysis of correlated continuous repeated observations: modelling the effect of ketosis on milk yield in dairy cows, Preventive veterinary medicine, Volume 39 (1999) no. 2, pp. 137-153
[29] Causal diagrams for epidemiologic research, Epidemiology, Volume 10 (1999) no. 1, pp. 37-48
[30] Proposed terms and concepts for describing and evaluating animal-health surveillance systems, Preventive veterinary medicine, Volume 112 (2013) no. 1, pp. 1-12
[31] The comparative epidemiology of selected neoplasms between dogs, cats and humans. A review, European Journal of Cancer (1965), Volume 14 (1978) no. 12, pp. 1299-1308 | DOI
[32] What is syndromic surveillance?, Morbidity and Mortality Weekly Report, Volume 53 (2004), pp. 7-11
[33] Dynamic factor analysis and the exercise sciences, Pediatric exercise science, Volume 23 (2011), pp. 17-22
[34] Depression of productivity in sheep infected with Fasciola hepatica, Veterinary Parasitology, Volume 4 (1978) no. 4, pp. 341-351 | DOI
[35] Effects of Production, Season, Age of Cow, Days Dry, and Days in Milk on Conception to First Service in Large Commercial Dairy Herds 1, 2, Journal of dairy science, Volume 67 (1984) no. 4, pp. 861-867
[36] Why most published research findings are false, PLoS medicine, Volume 2 (2005) no. 8
[37] An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds, Preventive veterinary medicine, Volume 89 (2009) no. 3, pp. 237-248
[38] Global trends in emerging infectious diseases, Nature, Volume 451 (2008) no. 7181, pp. 990-993
[39] Multivariate scan statistics for disease surveillance, Statistics in Medicine, Volume 26 (2007) no. 8, pp. 1824-1833
[40] SaTScan user guide for version 9.0, 2011
[41] Spatial scan statistics: models, calculations, and applications, Scan statistics and applications, Springer, 1999, pp. 303-322 | Zbl
[42] A multivariate exponentially weighted moving average control chart, Technometrics, Volume 34 (1992) no. 1, pp. 46-53 | Zbl
[43] Higher non-return rate associated with Mycobacterium avium subspecies paratuberculosis infection at early stage in Holstein dairy cows, Theriogenology, Volume 71 (2009) no. 5, pp. 807-816
[44] A semi-parametric model for lactation curves: Development and application, Preventive veterinary medicine, Volume 105 (2012) no. 1, pp. 38-48
[45] Effects of sire and dam genotype for complex vertebral malformation (CVM) on risk of return-to-service in Holstein dairy cows and heifers, Theriogenology, Volume 65 (2006) no. 6, pp. 1215-1225
[46] Bluetongue in Europe and the Mediterranean Basin: history of occurrence prior to 2006, Preventive veterinary medicine, Volume 87 (2008) no. 1, pp. 4-20
[47] Evaluation of a continuous indicator for syndromic surveillance through simulation. Application to vector borne disease emergence detection in cattle using milk yield, PloS one, Volume 8 (2013) no. 9
[48] Use of monthly collected milk yields for the detection of the emergence of the 2007 French BTV epizootic, Preventive veterinary medicine, Volume 113 (2014) no. 4, pp. 484-491
[49] Can routinely recorded reproductive events be used as indicators of disease emergence in dairy cattle? An evaluation of 5 indicators during the emergence of bluetongue virus in France in 2007 and 2008, Journal of dairy science, Volume 97 (2014) no. 10, pp. 6135-6150
[50] Bluetongue virus in the Mediterranean Basin 1998–2001, The Veterinary Journal, Volume 164 (2002) no. 1, pp. 20-37
[51] Using Animal Performance Data to Evidence the Under-Reporting of Case Herds during an Epizootic: Application to an Outbreak of Bluetongue in Cattle, PloS one, Volume 9 (2014) no. 6
[52] A side effect of decreased fertility associated with vaccination against bluetongue virus serotype 8 in Holstein dairy cows, Preventive veterinary medicine, Volume 101 (2011) no. 1, pp. 42-50
[53] Decrease in milk yield associated with exposure to bluetongue virus serotype 8 in cattle herds, Journal of dairy science, Volume 96 (2013) no. 2, pp. 877-888
[54] Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes., Revue scientifique et technique (International Office of Epizootics), Volume 27 (2008) no. 2, pp. 427-442
[55] Using the National Cattle Register to estimate the excess mortality during an epidemic: Application to an outbreak of Bluetongue serotype 8, Epidemics, Volume 2 (2010) no. 4, pp. 207-214
[56] Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue, Veterinary research, Volume 42 (2011) | DOI
[57] Large scale assessment of the effect associated with bovine viral diarrhoea virus infection on fertility of dairy cows in 6149 dairy herds in Brittany (Western France), Theriogenology, Volume 61 (2004) no. 1, pp. 117-127
[58] Launching the new international journal “Preventive Veterinary Medicine”, Preventive Veterinary Medicine, Volume 1 (1982) no. 1, pp. 1-4
[59] Estimation of the relative impact of treatment and herd management practices on prevention of digital dermatitis in French dairy herds, Preventive veterinary medicine, Volume 110 (2013) no. 3, pp. 558-562
[60] Detecting novel associations in large data sets, science, Volume 334 (2011) no. 6062, pp. 1518-1524 | Zbl
[61] [Research methods in veterinary epidemiology and their use by government services]., Rev Sanid Hig Publica (Madr), Volume 53 (1979) no. 9-10, pp. 1381-1393
[62] Bluetongue epidemiology in the European Union, Emerging infectious diseases, Volume 14 (2008) no. 4, pp. 539-544 | DOI
[63] Latent variable modelling: A survey*, Scandinavian Journal of Statistics, Volume 34 (2007) no. 4, pp. 712-745 | Zbl
[64] A modeling framework to describe the transmission of bluetongue virus within and between farms in Great Britain, PLoS One, Volume 4 (2009) no. 11
[65] Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses., Vet J, Volume 190 (2011) no. 1, pp. 136-142 | DOI
[66] Statistical methods for the prospective detection of infectious disease outbreaks: a review, Journal of the Royal Statistical Society: Series A (Statistics in Society), Volume 175 (2012) no. 1, pp. 49-82
[67] Financial consequences of the Dutch bluetongue serotype 8 epidemics of 2006 and 2007, Preventive veterinary medicine, Volume 93 (2010) no. 4, pp. 294-304