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the enrichment of optimized space filling designs

in constrained input spaces
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d’une méthode de répulsion
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Abstract:

Due to increasing available computational resources and to a series of breakthroughs in the solving of nonlinear
equations and in the modeling of complex mechanical systems, simulation nowadays becomes more and more predictive.
Methods that could quantify the uncertainties associated with the results of the simulation are therefore needed to
complete these predictions and widen the possibilities of simulation. One key step of these methods is the exploration
of the whole space of the input variables, especially when the computational cost associated with one run of the
simulation is high, and when there exists constraints on the inputs, such that the input space cannot be transformed
into a hypercube through a bijection. In this context, the present work proposes an adaptive method to generate initial
designs of experiments in any bounded convex input space, which are distributed as uniformly as possible on their
definition space, while preserving good projection properties for each scalar input. Finally, it will be shown how this
method can be used to add new elements to an initial design of experiments while preserving very interesting space
filling properties.

Résumé :

Profitant de l’essor considérable des puissances de calcul disponibles et de progrès importants en modélisation
des phénomènes physiques, le rôle de la simulation n’est plus seulement descriptif, mais prédictif. Pour garantir cette
capacité prédictive, il est alors nécessaire de développer des méthodes permettant d’associer à tout résultat numérique
une précision, qui intègre les différentes sources d’incertitudes. Un des enjeux de ces méthodes de quantification
des incertitudes concerne l’optimisation de l’exploration du domaine de variation des entrées de modélisation. Cette
tâche peut s’avèrer difficile, en particulier lorsque le coût numérique associé à une simulation est élevé, ou lorsque le
domaine d’entrée présente un certain nombre de contraintes, si bien qu’il ne peut plus être transformé en un hypercube
via une bijection. Dans ce contexte, ce travail présente une méthode basée sur des répulsions permettant la définition
de plans d’expériences optimisés dans des domaines contraints, dont les projections sur chaque paramètre d’entrée
présentent de bonnes propriétés statistiques. Enfin, on montre que cette méthode permet également l’enrichissement de
plans d’expériences déjà définis, tout en préservant un bon remplissage global du domaine de définition des entrées.
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1. Introduction

For the last decades, the use of simulation has kept increasing for the analysis of always more
complex physical phenomena. As these simulations can be very expensive to run, surrogate models,
such as polynomials, neural networks (Bishop, 1995; Bhadeshia, 1999), support vector machines
(Vapnik, 1998; Scholkopf and Smola, 2002; Hortado, 2002), kernel interpolation methods (Sacks
et al., 1989; Santner et al., 2003), can be associated with these computer codes to maximize the
knowledge about these physical phenomena. Indeed, built from a limited number of calls to the
expensive computer code, which are generally referred as the initial design of experiments (DoE),
surrogate models are a very interesting tool to perform uncertainty or sensitivity analyses.

To be more precise, for d > 0, let f : E 7→ R be a computer code function, which inputs have
been normalized, such that E is a compact subset of [0,1]d . In addition, for N ≥ 2, 1≤ n≤ N, and
x(n) ∈ E, let [x] = [x(1) · · · x(N)] be an initial DoE where function f is to be evaluated. The set of
code evaluations,

{
f (x(n)), 1≤ n≤ N

}
defines therefore the maximal available information for

the construction of a surrogate model, and it is well known that the relevance of such a surrogate
models is strongly dependent on the capability of [x] to explore space E.

In that prospect, the elements of the initial DoE have to be distributed as uniformly as possible
on their definition space, in order to capture the potential non-linearity of the computer code.
Two kinds of quantities are generally introduced to quantify the good coverage of the input space
by the initial DoE: statistical criteria based on some measurements of uniformity (also called
discrepancies, see Fang and Lin, 2003; Fang et al., 2006) and geometrical criteria based on the
classical Euclidian norm. Whereas the statistical criteria are generally associated with the case
when the inputs are independent, such that E is the d-dimensional hypercube, the geometrical
criteria can be used in constrained input spaces. In particular, the minimax criterion (Johnson
et al., 1990), CmM([x]), such that:

CmM([x]) = max
x∈E

{
min

1≤n≤N

∥∥∥x(n)−x
∥∥∥

d

}
, (1)

where ‖·‖d is the Euclidian norm in Rd , is widely used as a robust evaluation of the exploratory
properties of [x]. The smaller is this criterion, and the more relevant [x] is likely to be. If kernel
interpolation methods (such as the Gaussian Process Regression of Kriging) are considered, the
use of this criterion is also justified by the fact that this minimax criterion appears explicitly
in an upper bound (that increases with respect to CmM([x])) on the pointwise error between f
and its kernel approximation given [x] (Schaback, 1995). In the same manner, minimax designs
have general asymptotic optimality properties for the D- and G-optimality criteria (Johnson et al.,
1990).

Nevertheless, despite its wide use, very little algorithmic developments have been carried out
to directly compute minimax designs. This can be explained by the fact that its evaluation requires
the identification of the supremum of a non-convex expression over an infinite set, which becomes
too costly when d increases. In that context, the mindist criterion,

Cmindist([x]) = min
1≤m6=n≤N

∥∥∥x(n)−x(m)
∥∥∥

d
, (2)

proposes an interesting alternative to CmM([x]). Indeed, it is also an indicator of the good coverage
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A repulsion-based method for the optimization of SFD in constrained spaces 39

of E: given two DoE [x(1)] and [x(2)], if Cmindist([x(1)])≥Cmindist([x(2)]), [x(1)] is likely to better
explore E than [x(2)], as the distance between at least two elements of [x(2)] is smaller than the
distances between each pair of elements of [x(1)]. Moreover, its computation is much faster than
the one of CmM([x]) and it can be shown (Auffray et al., 2012) that if [x∗] maximizes Cmindist, then
CmM([x∗])≤Cmindist([x∗]). Hence, the maximization of the mindist criterion can also be used to
upper bound the pointwise distance between f and its kernel-based interpolation.

Considering that, in many applications, only a small number of inputs have a real influence on
the studied quantities of interest, proposing initial DoE that present good projection properties in
low-dimensional spaces (sparsity principle) is also of great interest. Focusing on the formerly intro-
duced mindist criterion, this means that not only Cmindist([x]) has to be high, but Cmindist([xsub,p])
has also to be high for each matrix [xsub,p] that gathers p lines of [x], with 1 ≤ p ≤ d. When
only the one-dimensional projection properties are considered (p = 1), a relevant way to build
space-filling designs is to optimize a statistical or geometrical criterion within the well known
class of Latin Hypercube Samples noted LHS (McKay et al., 1979). Very interesting develope-
ments can be found in Morris and Mitchell (1995) and Jin et al. (2005) for this purpose. Some
authors have generalized these works to improve the space-filling properties of projections in
higher dimensions than one (see Tang, 1993, Park, 1994,Osuolale et al., 2003, Moon et al., 2011).
Recently, Joseph et al. (2015) have proposed a method to optimize the space-filling properties
on all sub-projections spaces. Such designs are called maximum projection designs and will be
referred as MaxPro designs in the following. In the same manner, a greedy approach has been
proposed in Draguljić et al. (2012) to iteratively compute designs that have good space filling
properties in lower dimensional projections (named non-collapsing designs).

The majority of the literature on the construction of space-filling designs considers input spaces
that are hyperrectangles. However, we can find some contributions to the construction of designs
for a bounded convex domain. Stinstra et al. (2003) have used non-linear programming solvers to
construct maximin designs in explicit constrained regions. Auffray et al. (2012) have proposed
maximin designs in any bounded connected domain based on simulated annealing scheme with
a particular Metropolis-within-Gibbs algorithm. Stinstra et al. (2010) have developed a nearly
uniform design in any convex space. The approach of Draguljić et al. (2012) can also be applied
in this input space type. Interesting results for bounded convex input regions can also be obtained
using iterative clustering-based approaches. To this end, Flury (1990) has used the k-means
clustering whereas Lekivetz and Jones (2015) have proposed a hierarchical clustering. Recently,
these methods have been improved to better focus on the minimax minimization (Mak and Joseph,
2016).

However, in most of these methods adapted to non-hyperrectangle input spaces, there is no
guarantee to get good space filling properties in lower dimensional projections. Hence, this work
aims at generalizing the notion of optimized LHS to the case when there exists constraints on
the inputs such that the input space is a bounded convex domain (the simplex or the hypersphere
are two examples of such constrained input spaces). Following on the works of Dupuy et al.
(2015) and Franco et al. (2008), the proposed method is based on an adaptive procedure that
combines several kinds of repulsion between each elements of the DoE. The main interest of our
repulsion-based procedure is to produce DoE that allow the exploration of the whole input space,
which can be constrained, without accumulating points at the boundaries, with a relatively low
complexity.
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Section 2 presents the main theoretical and numerical arguments on which the repulsions are
based, and compares the efficiency of the method to already existing DoE generators when the
input space is a hypercube. Section 3 generalizes these concepts to the case when the input space
is any bounded convex domain. In particular, the generation of DoE in the multidimensional
simplex and hypersphere is analyzed in details. At last, Section 4 shows to what extent such a
repulsion-based approach allows the addition of new elements to already existing DoE while
preserving global good space filling properties.

2. A repulsion-based method to construct optimized LHS

Let d be the number of scalar inputs involved in the considered computer code, and N be
the number of experiments that we want to generate to build an initial DoE. We then denote by
Md,N([0,1]) the set of all the (d×N)-dimensional matrices with values in [0,1]. Hence, we denote
by H LHS

d,N ⊂Md,N([0,1]) the set of all the (d×N)-dimensional Latin Hypercube Samples (LHS)
[x], such that each row of [x] has one component in each interval [(n−1)/N,n/N], 1≤ n≤ N. It
is assumed that the good coverage of [0,1]d by any element [x] in H LHS

d,N can be assessed through
an easy-to-compute (geometrical or statistical) space filling criterion, C , to be minimized. Hence,
if [x(1)] and [x(2)] are two elements of H LHS

d,N , [x(1)] will be said to be better that [x(2)] to cover
[0,1]d if C ([x(1)])≤ C ([x(2)]).

Therefore, the idea of this section is to propose an adaptive method to search [x?] as one
solution of the following optimization problem:

[x?] = arg min
[x]∈H LHS

d,N

C ([x]). (3)

Notations

We denote by 〈·, ·〉N and ‖·‖N the classical Euclidean inner product and norm respectively, such
that for all x and y in [0,1]N ,

〈x,y〉N =
N

∑
n=1

xnyn, ‖x‖N =
√
〈x,x〉N . (4)

For all x in [0,1]N , we then define s(x) the vector gathering the elements of x, which have been
sorted in an ascending order, and { j1(x), . . . , jN(x)} the corresponding indices, such that:

s1(x) = x j1(x) < .. . < sN(x) = x jN(x). (5)

In addition, the N columns of any element [x] in Md,N([0,1]) will be written
{

x(n), 1≤ n≤ N
}

,
whereas its d rows will be written

{
x(i), 1≤ i≤ d

}
, such that:

[x] = [x(1) ; . . . ; x(d)] = [x(1) · · · x(N)]. (6)

Therefore, for all 1≤ i≤ d and all 1≤ n≤ N, the element that corresponds to the ith row and
the nth column can be written:
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[x]i,n = x(i),n = x(n)i . (7)

2.1. Optimization of the space filling properties of LHS in the hypercube

By construction, if [x] = [x̂]+[δx], where, for all 1≤ i≤ d and 1≤ n≤N, [x̂]i,n = (n−0.5)/N and
[δx]i,n is uniformly chosen in [−0.5/N,0.5/N], then [x] is in H LHS

d,N . Moreover, it can be noticed
that permuting several elements in each row of [x] leads to another element of H LHS

d,N . Hence, as
generating LHS is relatively easy, searching a "good" (with respect to criterion C ) LHS can be
done by searching the best LHS among a large number of DoE that have been drawn at random
within the class of Latin Hypercube arrangements. However, noticing that N! elements of H LHS

d,N
can be computed for each draft of [δx], it appears that such a procedure is rather inefficient, which
has encouraged the development of adaptive methods to optimize the space filling properties of
an initial element of H LHS

d,N from a series of well-chosen permutations (see Damblin et al., 2013
for more details about these methods).

The problem with such methods based on permutations is that they are limited to the hypercube
case. Hence, another approach is presented in this section, which is based on the introduction of
two repulsions: first, a component by component repulsion to project any (d×N)-dimensional
matrices with values in [0,1] in H LHS

d,N , and second, a repulsion based on the Euclidian distance
between points to optimize the space filling properties of the DoE.

Although such an approach gives very interesting results in the case of the hypercube, it is
recalled that the motivation for the following developments is their generalization to any bounded
convex domains.

2.1.1. Projection in H LHS
d,N

This section aims at presenting two pseudo-projections: the first one is only based on the sorting
of the rows of the elements of Md,N([0,1]); the second one introduces an iterative procedure,
which will be very useful in the context of constrained input spaces.

Rank-based projection
If [x] =

[
x(1) ; . . . ; x(d)

]
is an element of Md,N([0,1]), the matrix [Πx], where for all 1≤ i≤ d

and for all 1≤ n≤ N,

[Πx]i,n = ( jn(x(i))−0.5)/N, (8)

is in H LHS
d,N and can be seen as a pseudo-projection of [x] on H LHS

d,N .

Repulsion-based projection
For all x in [0,1]N , let C LHS and BLHS be the two following criteria:

C LHS(x) = max{s2(x)− s1(x), . . . ,sN(x)− sN−1(x),1− sN(x)+ s1(x)} , (9)
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BLHS(x) =

{
1 if for all 1≤ n≤ N, (n−1)/N ≤ sn(x)≤ n/N,

0 otherwise.
(10)

By construction, the minimal value of C LHS is 1/N, which corresponds to a configuration
when all the components of x are separated by the same distance 1/N. Such a configuration is not
unique. For all x in [0,1]N , let us now consider the repulsion vector R(x) = (R1(x), . . . ,RN(x)),
such that for all 1≤ n≤ N:

Rn(x) = ∑
1≤m 6=n≤N

R̃(xn,xm)+ R̂(xn,xm), (11)

R̃(xn,xm) =
xn− xm

|xn− xm|3
, R̂(xn,xm) =

xm− xn

|xn− xm|(1−|xn− xm|)2 . (12)

Whereas R̃(xn,xm) is the classical 1/r2 repulsion, R̂nm(xn,xm) is a symmetry-based regular-
ization term, to take into account the fact that the components of x have to stay in the bounded
interval [0,1]. In addition, let

{
x(k)
}

k≥1 be the sequence defined by the algorithm 1, where, for all
x in [0,1]N :

δ (x) =

{
0 if R1(x) = . . .= RN(x),

−〈∆x,∆R(x)〉N /‖∆R(x)‖2
N otherwise, with :

(13)

{
∆x = (s2(x)− s1(x), . . . ,sN(x)− sN−1(x),1− (sN(x)− s1(x))) ,
∆R(x) = (R2(s(x))−R1(s(x)), . . . ,RN(s(x))−RN−1(s(x)),R1(s(x))−RN(s(x))) .

(14)

1 Initialization: x(1) = x ∈ [0,1]N ;
2 for k ≥ 1 do
3 x(k+1) = x(k)+δ (x(k))×R(x(k)) ;
4 x(k+1) = x(k+1) mod(1).
5 end

Algorithm 1: Repulsion-based projection

The introduction of algorithm 1, which depends on the particular function x 7→ δ (x), is justified
by the following proposition.

Proposition 1. The sequence
{
C LHS(x(k))

}
k≥1 converges to its minimal value 1/N when k tends

to infinity.

� Proof:

1. We define:

C ?(x) =
N

∑
n=1

(
∆xn−

1
N

)2

=
N

∑
n=1

∆x2
n−

1
N
, x ∈ [0,1]N . (15)
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FIGURE 1. Illustration of the efficiency of the proposed iterative algorithm to generate designs in [0,1], which elements
are separated by a distance that is as close as wanted to 1/N. Left: evolution with respect to the number of iterations k
of the positions of the elements x(k),n, starting from a given design x(1) which elements have been chosen randomly
and independently in [0,1]. Right: evolution of the associated distance between criterion C LHS and 1/N.

2. For all x in [0,1]N , C ?(x)≥
(
C LHS(x)− 1

N

)2 ≥ 0.

3. For all k ≥ 1, C ?(x(k+1))≤ C ?(x(k)). Indeed:
– By construction of parameter δ (x(k)),

C ?(x(k)+δ (x(k))×R(x(k)))−C ?(x(k))

= δ (x(k))×
(

2〈∆x,∆R(x)〉N +δ (x(k))×‖∆R(x)‖2
N

)
≤ 0.

(16)

– For all x in RN , C ?(x)≥ C ?(x mod(1)).

4. Sequence
{
C ∗(x(k))

}
k≥1 is decreasing and is greater than 0, it converges. By construction,

its limit is characterized by

R1(x) = . . .= RN(x), (17)

such that
{
C ?(x(k))

}
k≥1 converges to zero.

5. It comes that
{
C LHS(x(k))

}
k≥1 converges to its minimal value 1/N.

�
Hence, the sequence defined by Algorithm 1 allows us to generate designs in [0,1], which

elements are separated by a distance that is as close to 1/N as wanted. As an illustration, for
N = 10, Figure 1 compares the positions of the elements of x(k) with respect to k after 15 iterations,
and shows the associated values of criterion C LHS. Noticing that the LHS property considers each
row of [x] in Md,N([0,1]) independently, we now can introduce the algorithm 2 to define [Πiterx],
another pseudo-projection of [x] on H LHS

d,N . Two examples of such projected designs, [Πx] and
[Πiterx], are shown in Figure 2, for d = 2 and N = 10.
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1 Initialization: [x] =
[
x(1) ; . . . ; x(d)

]
∈ Md,N([0,1]) ;

2 for i = 1, . . . ,d do
3 while BLHS(x(i)) = 0 do
4 x(i) = x(i)+δ (x(i))×R(x(i)) ;
5 x(i) = x(i) mod(1) ;
6 end
7 end
8 [Πiterx] = [x].

Algorithm 2: Multidimensional repulsion-based projection
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FIGURE 2. Comparison between two random designs [x] in Md,N([0,1]) and their projections in the class of LHS by
the rank-based, [Πx], and the repulsion-based, [Πiterx], algorithms defined in Section 2.1.1.
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2.1.2. Optimizing the space filling properties of LHS

The idea of this part is to show how the two LHS projectors of Section 2.1.1 can be coupled to an
Euclidian distance-based repulsion between each element of the DoE to create very interesting
space filling designs (SFD). Such SFD indeed allow a good global coverage rate of [0,1]d with
respect to a given criterion C , while properly covering the variation domain of each scalar product.
To this end, for all [x] = [x(1) · · · x(N)] in Md,N([0,1]), we define R(n)([x]) the distance-based
repulsion vector that is seen by element x(n), 1≤ n≤ N, such that:

R(n)([x]) = R̃(n)([x])+ R̂(n)([x]), (18)

R̃(n)([x]) = ∑
m 6=n

x(n)−x(m)∥∥x(n)−x(m)
∥∥3

d

, R̂(n)([x]) = ∑
m6=n

x(n)− x̂(n,m)∥∥x(n)− x̂(n,m)
∥∥3

d

, (19)

x̂(n,m) = x(n)+
(x(n)−x(m))(

∥∥e(n,m),1− e(n,m),2
∥∥

d−
∥∥x(n)−x(m)

∥∥
d)∥∥x(n)−x(m)

∥∥
d

, 1≤ m≤ N, (20)

where e(n,m),1 and e(n,m),2 are the two intersection points between the boundary of the d-dimensional
hypercube [0,1]d and the line passing by x(n) and x(m). In the same manner than in Eq. (12), the
term R̂(n)([x]) is a regularization term to make the elements of Md,N([0,1]) stay in Md,N([0,1]).
Contrary to many classical regularizations for the hypercube, which are based on periodicity
concepts (see Bornert et al., 2008 for further details), such a regularization can easily be computed
for any bounded convex domain Bd , at a controlled numerical cost. Indeed, Algorithm 3 allows
a quick identification of points e(n,m),1 and e(n,m),2, with L = maxx,y∈Bd ‖x−y‖ and ε a required
precision.

1 for 1≤ n 6= m≤ N do
2 xIN,1 = x(n), xOUT,1 = x(m)+L×

(
x(n)−x(m)

)
/
∥∥x(n)−x(m)

∥∥
d ;

3 xIN,2 = x(m), xOUT,2 = x(n)+L×
(
x(m)−x(n)

)
/
∥∥x(n)−x(m)

∥∥
d ;

4 for i = 1,2 do
5 while

∥∥xIN,i−xOUT,i
∥∥

d ≥ ε do
6 x̂ = (xIN,i +xOUT,i)/2 ;
7 if x̂ ∈Bd then xIN,i = x̂ ;
8 ;
9 else xOUT,i = x̂ ;

10 ;
11 end
12 e(n,m),i = x̂ ;
13 end
14 end

Algorithm 3: Dichotomy-based identification of points e(n,m),1 and e(n,m),2
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FIGURE 3. Illustration of the proposed regularization for the distance-based repulsion, to make the elements of
a bounded convex domain Bd stay inside it, in the cases of the hypercube (Bd = [0,1]2), the simplex (Bd ={

x ∈ [0,1]2, x1 + x2 ≤ 1
}

) and the hypersphere (Bd =
{

x ∈ [−1,1]2, x2
1 + x2

2 ≤ 1
}

).

As an illustration, Figure 3 shows an example of such a regularization in the case of the
hypercube, the simplex and the hypersphere, for d = 2 and N = 3.

In order to optimize LHS with respect to criterion C , we propose in this work to combine
the former distance-based repulsion and one of the two LHS projectors introduced in Section
2.1.1, which is now denoted by ΠLHS for the sake of clarity. Given a particular design [x], we
then introduce the algorithm 4 to construct [xopt], where δ (q) and Q are numerical parameters
to be optimized. Whereas Q has to be adapted to the affordable computational resources, the
choice for parameter δ (q) is not trivial, as there is no reason for criterion C to be continuous
with respect to δ (q). Moreover, if δ (q) is too small, then there is almost no difference between
[x(q)] and [x(q−1)], such that [y(q)] = [y(q−1)], whereas a too big value for δ (q) makes difficult the
convergence of Algorithm 4 to a relevant design. From the analysis of a series of numerical
examples with different values of d and N, it is clear that the value of parameter δ (q) has to be
adapted to the form of the domain and to the values of d and N. However, it is hard to infer the
relation between the optimal value of δ (q) (which can change from one iteration of the algorithm
to another one) and these parameters. Nevertheless, it appears that values of δ (q) such that:

δ
(q)× max

1≤n≤N, 1≤i≤d
|R(n)

i ([x(q−1)])| = 10−2, 2≤ q≤ Q, (21)

lead to relatively good results for values of Q between 102 and 103. Indeed, linking the value of
δ (q) to the maximal value of R(n)

i ([x(q−1)]) decreases the risk of divergence of the algorithm when
two points are getting too close.

The interest of such a combination between the proposed distance-based repulsion and the
LHS projection is illustrated in Figure 4 for the hypercube, with [ΠLHSx] = [Πx] and the following
criterion C :

C ([x]) =
N

∑
n=1

∥∥∥R̃(n)([x])
∥∥∥2

d
. (22)

2.2. Performance of the proposed method

Space filling criteria
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1 Initialization: [x(1)] = [x], [y(1)] = [ΠLHSx(1)] ;
2 for 2≤ q≤ Q do
3 [x(q)] = [x(q−1)]+δ (q)× [R(1)([x(q−1)]) · · · R(N)([x(q−1)])] ;
4 [x(q)] = [x(q)] mod(1) ;
5 [y(q)] = [ΠLHSx(q)] ;
6 end
7 [xopt] = argmin1≤q≤Q C

(
[y(q)]

)
.

Algorithm 4: Repulsion-based optimization of LHS
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[ΠLHS x]
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FIGURE 4. Illustration of the interest of the combination between a LHS projection, ΠLHS, and a distance-based
repulsion to define optimized LHS from any element [x] in the hypercube M2,10([0,1]). Even if the points of [xopt] are
almost in the centers of the boxes, projection ΠLHS corresponds here to the repulsion-based projection.
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To assess the quality of a given (d×N)-dimensional DoE [x] = [x(1) · · · x(N)] to cover [0,1]d , we
consider in this paper three well-known quantitative indicators. First, the centered L2-discrepancy,
D([x]), is used to evaluate the uniformity quality of [x] (see Fang et al., 2006 for further details
about the discrepancy measures). Then, two geometrical criteria are introduced: the mindist
criterion, Cmindist([x]), which is defined by Eq. (2), and an approximation of the minimax criterion,

CmM([x],P) = max
1≤p≤P

{
min

1≤n≤N

∥∥∥x(n)−y(p)
∥∥∥

d

}
, lim

P→+∞
CmM([x],P) =CmM([x]), (23)

where minimax criterion CmM([x]) is defined by Eq. (1), and for P > 1,
{

y(p), 1≤ p≤ P
}

is a set
of P vectors that have been randomly and uniformly chosen in Md,N([0,1]). In addition, for each
DoE [x] = [x(1) ; . . . ; x(d)], we denote by D2D([x]), Cmindist

2D ([x]) and CmM
2D ([x],P) the mean values

of the discrepancy, the mindist and the minimax criteria associated with each 2D-subprojection
[x(i) ; x( j)], 1≤ i < j ≤ d. These criteria are introduced in order to characterize the space filling
quality of [x] in terms of 2D-subprojections:

D2D([x]) =
2

d(d−1) ∑
1≤i< j≤d

D([x(i) ; x( j)]), (24)

Cmindist
2D ([x]) =

2
d(d−1) ∑

1≤i< j≤d
Cmindist([x(i) ; x( j)]), (25)

CmM
2D ([x],P) =

2
d(d−1) ∑

1≤i< j≤d
CmM([x(i) ; x( j)],P). (26)

Among these six criteria, criteria D([x]) and CmM([x],P) and their 2D projections have to be
minimized, whereas criterion Cmindist([x]) and its 2D projection have to be maximized. Therefore,
to make the comparison between several SFD generators easier, all the following numerical
results will focus on the six criteria D([x]), CmM([x],P), 1/Cmindist([x]), D2D([x]), CmM

2D ([x],P)
1/Cmindist

2D ([x]), such that if [x1] and [x2] are two elements of Md,N([0,1]), [x1] will be said to be
better than [x2] to cover the d−dimensional hypercube if the six criteria associated with [x(1)] are
lower than the ones associated with [x(2)]:

D([x1])≤ D([x2]),

CmM([x1],P)≤CmM([x2],P),

1/Cmindist([x1])≤ 1/Cmindist([x2]),

D2D([x1])≤ D2D([x2]),

CmM
2D ([x1],P)≤CmM

2D ([x2],P),

1/Cmindist
2D ([x1])≤ 1/Cmindist

2D ([x2]).

(27)

Parametric analyses
In this section, the nine following LHS generators are compared in terms of space filling

properties.
– Generator 1: the routine "randomLHS", which is given by the R-package lhs is used to

generate LHS in a random manner without regard to optimization.
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– Generator 2, 3, 4 and 5: the routines "maximinSA_LHS", "discrepSA_LHS", "maximinESE_LHS",
and "discrepESE_LHS", which are provided by the R-package DiceDesign, propose a Simu-
lated annealing (SA) and a Enhanced Stochastic Evolutionnary (ESE) algorithms for LHS
optimization according to the mindist criterion or the discrepancy respectively.

– Generators 6 and 7 correspond to Algorithm 4 associated with the criterion given by Eq.
(22), with Q = 500, and the LHS pseudo-projections Π and Πiter described in Section 2.1.1
respectively.

– Generators 8 is associated with the clustering-based approaches. The different strategies
presented in Likas et al. (2003), Lekivetz and Jones (2015), and Mak and Joseph (2016) have
been tested, and at each iteration, the results associated with the smallest minimax value are
kept. Contrary to the Generators 1 to 7, we lay stress on the fact that the clustering-based
approaches are not constrained to have good projection properties in low-dimensional spaces.

– Generators 9 corresponds finally to the MaxPro procedure, which has been presented
in Introduction, and which is supposed to maximize the space-filling properties on any
low-dimensional projections.

The parameters associated with all these generators have been optimized in order to get the best
results for a computational time that is globally constant for each method. Although the minimax
criterion is said to be the most representative criterion of the space filling properties of a design,
we remind that, in practice, its direct minimization is almost unfeasible for values of d higher than
five. This explains that most of the proposed generators are focusing on the mindist maximization,
which is a much easier problem to solve.

As the first motivation for this work is to define initial DoE to build a surrogate model, rather
small values of d (between 1 and 20) and N (between 5d and 30d) will be studied in this work.
First, for d ∈ {3,5,10}, and N = 10d, 50 different LHS are generated from the nine former
generators. For each generated LHS [x], we then compute the L2-discrepancy, D([x]), the pseudo-
minimax criterion with P = 105, CmM([x],P), the mindist criterion, Cmindist([x]), and their 2D
mean projections. The results are then compared in figures 5 and 6, where it can be seen that
the proposed method gives very interesting results in terms of space filling in the hypercube
with a reasonable complexity. Indeed, the results of the proposed approach can be seen as a
good compromise between the discrepancy minimization and the mindist maximization, while
it is almost always the best in terms of minimax minimization among the generators that are
constrained to have good space filling properties in low-dimensional spaces. Without surprise,
the clustering-based designs are the ones that minimize the minimax criterion, but as they are
not constrained in terms of space filling properties in low-dimensional spaces, their discrepancy
values are very high, and the 2D-mean projections of the considered criteria are not satisfying.
On the contrary, it can be seen that the results associated with the MaxPro procedure are very
interesting when looking at the 2D-mean projections of the considered criteria, while leading
to higher values for the geometrical criteria in the whole space. At last, it can be noticed that,
without surprise, the influence of the choice of the pseudo projection, Π and Πiter is low.

If we focus on the LHS generators 2, 3 and 6, we can verify in Figure 7 that the good space
filling properties of the proposed method are found again when the dimension of the input space,
d, increases, or when for a given value of d, the number of elements of the DoE, N, increases.
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FIGURE 5. Comparison in terms of space filling properties of nine LHS generators with respect to the L2-discrepancy
(first row), the minimax criterion (second row), and the mindist criterion (third row) for (d,N) equal to (3,30) (first col-
umn), (5,50) (second column) and (10,100) (third column). 1: randomLHS / 2: maximinSA_LHS / 3: discrepSA_LHS
/ 4: maximinESE_LHS / 5: discrepESE_LHS / 6: the proposed method associated with the pseudo-projection Π / 7: the
proposed method associated with the pseudo-projection Πiter / 8: clustering-based approach / 9: MaxPro. Boxplots are
produced from 50 runs with different initial DoE. When the values of a criterion are too high compared to the others,
the associated boxplot is replaced by an asterix, and the median of these values is indicated.
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FIGURE 6. Comparison in terms of space filling properties of seven LHS generators with respect to the 2D-L2-
discrepancy (first row), the 2D-minimax criterion (second row), and the 2D-mindist criterion (third row) for (d,N) equal
to (3,30) (first column), (5,50) (second column) and (10,100) (third column). 1: randomLHS / 2: maximinSA_LHS /
3: discrepSA_LHS / 4: maximinESE_LHS / 5: discrepESE_LHS / 6: the proposed method associated with the pseudo-
projection Π / 7: the proposed method associated with the pseudo-projection Πiter / 8: clustering-based approach / 9:
MaxPro. Boxplots are produced from 50 runs with different initial DoE. When the values of a criterion are too high
compared to the others, the associated boxplot is replaced by an asterix, and the median of these values is indicated.
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FIGURE 7. Quantification of the influence of an increase of the dimensions d and N of the input space on the space
filling properties for three particular LHS generators with respect to the L2-discrepancy (first row), the minimax
criterion (second row), the mindist criterion (third row), and the 2D-mindist criterion (fourth row). Black curves
with upper triangles: maximinSA_LHS. Blue curves with filled squares: discrepSA_LHS. Red curves with circles: the
proposed method associated with the pseudo-projection Π. Each curve corresponds to the mean value of a space filling
criterion, which has been computed from 50 independent generated LHS.
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3. Adaptation to the case of constrained input space

As presented in Introduction, this work aims at constructing optimized DoE in the cases when
there exists constraints on the input space. To this end, this section presents a generalization of the
repulsion-based method described in Section 2, which can be used to generate optimized initial
DoE when the input space is a bounded convex domain.

3.1. Generalizing the notion of LHS for bounded convex domain

Let Bd ⊂ Rd be a bounded convex domain, and X = (X1, . . . ,Xd) be a random vector that is
uniformly distributed on Bd . By construction, the probability density function (PDF), fX, of X, is
given by:

fX :
{

Rd

x
→
7→

R
IBd (x)/V (Bd)

, (28)

where V (Bd) is the volume of Bd , and IBd (x) is equal to 1 if x is in Bd and 0 otherwise. In
the same manner, for all 1≤ i≤ d, we denote by fXi and FXi the PDF and the cumulative density
function (CDF) of Xi, respectively:

fXi(x) =
∫
Rd−1

fX(x)dx(−i), FXi(x) =
∫ x

−∞

fXi(t)dt, x(−i) = (x1, . . . ,xi−1,xi+1, . . . ,xd) , (29)

such that FXi(Xi) is a random value that is uniformly distributed on [0,1].

Hence, to define a DoE [x] =
[
x(1); . . . ;x(d)

]
in
⊗N

n=1 Bd with good projection properties for
each scalar input, the idea is to apply Algorithm 2 on [F1(x(1)); . . . ;Fd(x(d))], where:

Fi(x(i)) = (FXi(x(i),1), . . . ,FXi(x(i),N)), 1≤ i≤ d. (30)

To this end, the algorithm 5 can be introduced as a generalization of Algorithm 2, for a given
precision ε and a maximum number of iterations J.

In Algorithm 5, vector-valued repulsion function R is defined by Eqs. (11) and (12), criterion
C LHS is introduced in Eq. (9), T (·) is a regularization function to make the vectors of Bd stay in
Bd , and δ ?(x(i)) is a constant that is chosen such that:

δ
?(x(i)) =

{
0 if R1(Fi(x(i))) = . . .= RN(Fi(x(i))),

−
〈
∆Fi,∆R?,i〉

N /
∥∥∆R?,i

∥∥2
N otherwise, with

(31)

∆Fi =
(
F i

2(x(i))−F i
1(x(i)), . . . ,1− (F i

N(x(i))−F i
1(x(i)))

)
, (32)

∆R?,i =( fXi(x(i),2)R2(Fi(x(i)))− fXi(x(i),1)R1(Fi(x(i))), . . . ,

fXi(x(i),1)R1(Fi(x(i)))− fXi(x(i),N)RN(Fi(x(i)))).
(33)
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1 Initialization: [x] =
[
x(1); . . . ;x(d)

]
∈
⊗N

n=1 Bd ;
2 for i = 1, . . . ,d do
3 j = 0 ;
4 while |C LHS(Fi(x(i)))−1/N| ≥ ε , j ≤ J do
5 j = j+1 ;
6 x̃(i) = x(i)+δ ?(x(i))×R(Fi(x(i))) ;
7 x(i) = T (x̃(i)),
8 end
9 end

10 [ΠBd x] =
[
x(1); . . . ;x(d)

]
.

Algorithm 5: Repulsion-based algorithm for the construction of DoE in Bd with good
projection properties for each scalar input.

Indeed, noticing that, for all 1≤ n≤ N, if δ ?(x(i))×Rn(Fi(x(i))) is small compared to x(i),n,
then:

F i
n(x(i)+δ

?(x(i))×R(Fi(x(i)))) = FXi(x(i),n +δ
?(x(i))×Rn(Fi(x(i))))

≈ FXi(x(i),n)+δ
?(x(i))×

dFXi

dxi
(x(i),n)Rn(Fi(x(i))),

≈ FXi(x(i),n)+δ
?(x(i))× fXi(x(i),n)Rn(Fi(x(i))),

(34)

it comes from Eq. (15) that:

C ?(Fi(x(i)+δ
?(x(i))×R(Fi(x(i)))))−C ?(Fi(x(i)))

≈ δ
?(x(i))

(
2
〈
∆R?,i,∆Fi〉

N +δ
?(x(i))×

∥∥∆R?,i
∥∥2

N

)
≤ 0.

(35)

There is, however, no reason for C ?(Fi(x(i))) to be lower than C ?(Fi(T (x̃(i)))) for any trans-
formation T (·), which can limit the convergence of the former algorithm, and explains the
presence of a limitation on the maximum number of iterations. For instance, a possibility for T (·)
is given by:

T (x̃(i)) =

{
x̃(i) if x̃(i) ∈Bd ,

x(i) otherwise,
(36)

but with respect to the properties of Bd , better choices, which can be based on permutations
between near elements of the same design, can be proposed to allow a better convergence of
C ? and C LHS. As an illustration of such an approach, Figures 8 and 9 compare two random
designs (which were generated according to the algorithms presented in Section 3.3) [x] in
the 2-dimensional simplex, {x = (x1,x2) ∈ [0,1]2 | 0 ≤ x1 + x2 ≤ 1}, and in the 2-dimensional
hypersphere, {x = (x1,x2) ∈ [0,1]2 | 0≤ x2

1 +x2
2 ≤ 1}, and their images, [ΠBd x], by the algorithm

defined by Eq. (5). For all 1≤ i≤ d, it is reminded that for the d-dimensional simplex:
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FIGURE 8. Application of the Algorithm 5 for the definition of generalized LHS in the 2-dimensional simplex, for
ε = 10−5. [x] is a DoE gathering 10 elements that are randomly chosen in the 2-dimensional simplex, and [ΠBd x] is
its image by Algorithm 5.
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FIGURE 9. Application of Algorithm 5 for the definition of generalized LHS in the 2-dimensional hypersphere, for
ε = 10−5. [x] is a DoE gathering 10 elements that are randomly chosen in the 2-dimensional hypersphere, and [ΠBd x]
is its image by Algorithm 5.

fXi(x) = d(1− x)d−1, x ∈ [0,1], (37)

whereas for the d-dimensional hypersphere, we have:

fXi(x) =
2Γ(N/2+1)

Γ(1/2)Γ(N +1)
(1− x2)(N−1)/2, x ∈ [−1,1], (38)

where Γ(·) is the Gamma function.

In figures 8, 9 and 10, the dotted lines correspond to the 1/N, . . .(N−1)/N quantiles associated
with FXi .
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FIGURE 10. Optimization of the space filling properties of an initial DoE in the simplex and the hypersphere for
d = 2 and N = 10: [x] is an initial DoE that is randomly chosen in Bd; [ΠBd x] is its projection in a subspace of Bd

that preserves good projection properties for each scalar input; [xopt] is the final DoE that is optimized according to
Algorithm 4.

3.2. Construction of space filling DoE in bounded convex domains

In the same manner than in Section 2, it is supposed that the good coverage of Bd can be assessed
from the evaluation of a criterion C to be minimized. Therefore, replacing ΠLHS by ΠBd in
Algorithm 4, it is possible to construct initial DoE that are optimized with respect to C , while
preserving good projection properties for each scalar input. Such a procedure is once again
illustrated in the case of the simplex and the hypersphere in Figure 10, when criterion C is defined
by Eq. (22).

3.3. Efficiency of the proposed method for the definition of space filling DoE in bounded
convex domains

The idea of this section is to illustrate, for several values of d and N, the interest of the former
algorithms on two examples of commonly used constrained input spaces: the simplex and the
hypersphere. The notion of discrepance being difficult to generalize for these constrained input
space, only the mindist and the minimax criteria will be computed to assess the space filling
properties of a given DoE. In addition, to evaluate the quality of the projection properties for each
scalar input of any (d×N)-dimensional DoE [x] = [x(1); . . . ;x(d)], the following criterion is also
computed:

distLHS([x]) = max
1≤i≤d

|C LHS (Fi(x(i))
)
−1/N|, (39)

where function C LHS and vector Fi(x(i)) are defined by Eqs. (9) and (30) respectively. Indeed, the
lower criterion distLHS is, the nearer from an uniform grid [F1(x(1)); . . . ;Fd(x(d))] is, and so the
better are the projection properties for each scalar input.
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Generation of DoE in the simplex
In this part, we are interested in the generation of N-dimensional DoE in the d-dimensional

simplex:

S d =

{
x ∈ [0,1]d |

d

∑
i=1

xi ≤ 1

}
. (40)

Three methods are commonly used to generate such DoE in S d (Devroye, 1986; Pillards and
Cools, 2003).

– The Dirichlet approach: if G1, . . . ,Gd+1 are d + 1 Gamma-distributed random variables
of parameters (1,1), then the random vector (x1, . . . ,xd), where, for all 1 ≤ i ≤ d, xi =
Gi/∑

d+1
j=1 G j, is uniformly distributed on S d .

– The sorting approach: if Y1, . . . ,Yd are d independent random variables that are uniformly
distributed on [0,1], and if Z1 = Ys(1) ≤ . . .≤ Zd = Ys(d), where s is a bijective application
from {1, . . . ,d} to {1, . . . ,d}, then it can be shown that the vector (x1 = Z2 − Z1,x2 =
Z3−Z2, . . . ,xd = 1−Zd) is uniformly distributed on S d .

– The square root approach: if Y1, . . . ,Yd are d independent random variables that are uniformly
distributed on [0,1], and if we define, for all 1 ≤ i ≤ d, Zi = ∏

d
j=iY

1/ j
j , then (x1 = Z2−

Z1,x2 = Z3−Z2, . . . ,xd = 1−Zd) is uniformly distributed on S d .
In the following, the Dirichlet approach will be considered as the non-optimized reference as

the Gamma realizations on which it is based will be drawn independently, whereas the sorting
and the square root approaches will be optimized in the sense that they will correspond to
two transformations of an optimized LHS (according to the maximinSA_LHS routine with the
same parameters than in Section 2) to the d-dimensional simplex. As for the hypercube case, a
clustering-based approach is also introduced. It is seen as a reference for the minimax and mindist
optimization without constraints on the space filling properties in the low-dimensional spaces.

As in Section 2, 50 different DoE are generated from each former generators and from the
proposed method for d = 3,5,10, and N = 10d. For each DoE, we then compute the mindist, the
pseudo minimax, the distLHS and their 2D-mean projections, and compare the results in Figures
11 and 12. In these figures, it can be seen that the methods based on the transformation of an
optimized LHS give better results than the non-optimized Dirichlet approach. However, as these
transformations are not linear, they do not preserve the projection properties for each scalar input,
such that the distLHS criterion is always relatively high. The same phenomenon is observed for
the clustering-based approaches, for which the distLHS criterion is always very high. On the
contrary, for all presented values of d and N, the proposed approach allows the generation of DoE
with very low values for distLHS, that is to say with very good projection properties for each
scalar input, while improving the mindist, the 2D-mindist and the minimax criteria. Although the
results are not shown in this paper for the sake of concision, the conclusions would have been
the same for other values of d and N. Therefore, the proposed approach appears to be a very
interesting tool to generate optimized DoE in the d-dimensional simplex.

Generation of DoE in the hypersphere

Journal de la Société Française de Statistique, Vol. 158 No. 1 37-67
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2017) ISSN: 2102-6238



58 G. Perrin and C. Cannamela

Indices of the generators

d
is

tL
H

S
([

x]
)

●
●

●

●

●●

●
●
●●

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

(d ,N ) = (3,30)

(a) distLHS
Indices of the generators

d
is

tL
H

S
([

x]
)

●

●

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

m
ed

ia
n 

=
  0

.2
23

(d ,N ) = (5,50)

(b) distLHS
Indices of the generators

d
is

tL
H

S
([

x]
)

●
●

●
●

●

●

●●

1 2 3 4 5

0.
00

0.
04

0.
08

m
ed

ia
n 

=
  0

.3
35

(d ,N ) = (10,100)

(c) distLHS

Indices of the generators

C
m

M
([

x]
, P

)

●

●

●

1 2 3 4 5

0.
3

0.
4

0.
5

0.
6

(d ,N ) = (3,30)

(d) Minimax
Indices of the generators

C
m

M
([

x]
, P

)

●

●

1 2 3 4 5

0.
30

0.
40

0.
50

(d ,N ) = (5,50)

(e) Minimax
Indices of the generators

C
m

M
([

x]
, P

)

●

●

●

●

●

1 2 3 4 5

0.
35

0.
40

0.
45

0.
50

0.
55

(d ,N ) = (10,100)

(f) Minimax

Indices of the generators

1
C

m
in

d
is

t ([
x]

)

●●

●

●
●

●●

1 2 3 4 5

10
20

30
40

50
60

70

(d ,N ) = (3,30)

(g) Inverse of the mindist
Indices of the generators

1
C

m
in

d
is

t ([
x]

)

●

●●

●

1 2 3 4 5

6
8

10
12

14
16

18

(d ,N ) = (5,50)

(h) Inverse of the mindist
Indices of the generators

1
C

m
in

d
is

t ([
x]

)

●

●

●

●

●

1 2 3 4 5

6
8

10
12

(d ,N ) = (10,100)

(i) Inverse of the mindist

FIGURE 11. Comparison in terms of space filling properties of five generators in the simplex with respect to the
distLHS criterion (first row), the minimax criterion (second row) and the mindist criterion (third row), for d = 3 (left
column), d = 5 (middle column) and d = 10 (right column), and N = 10d. 1: Dirichlet approach / 2: Sorting approach
/ 3: square root approach / 4: the proposed method / 5: clustering-based approach.
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FIGURE 12. Comparison in terms of space filling properties of five generators in the simplex with respect to the
2D-distLHS criterion (first row), the 2D-minimax criterion (second row) and the 2D-mindist criterion (third row),
for d = 3 (left column), d = 5 (middle column) and d = 10 (right column), and N = 10d. 1: Dirichlet approach / 2:
Sorting approach / 3: square root approach / 4: the proposed method / 5: clustering-based approach.
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As a second example, we are now interested in the generation of N-dimensional DoE in the
d-dimensional hypersphere:

Pd =

{
x ∈ [−1,1]d |

d

∑
i=1

x2
i ≤ 1

}
. (41)

Such a generation is generally based on the consideration that if Y is a random variable that
is uniformly distributed on [0,1], and if ξ is a d-dimensional random vector which components
are independent and normally distributed, then x = Y 1/d×ξ/‖ξ‖d is uniformly distributed on
Pd . This approach is called "normal approach" in the following, as it is based on the symmetry
properties of the multivariate normal distribution. The results associated with designs based on
the transformation of optimized LHS would give essentially the same results, but are not shown
in this paper. Clustering-based designs are also considered in the following comparisons, as these
approaches are supposed to work well in any input space from the minimax minimization point of
view.

As previously, 50 different DoE are generated from the proposed method, the normal ap-
proach, and the clustering-based approach, for different values of d and N. We then compare
the corresponding values of the mindist, the pseudo minimax, the distLHS and their 2D-mean
projections in Figures 13 and 14. As forecast, the clustering-based approaches lead to interesting
space filling properties when considering the whole input space, but are not good when focusing
on the distLHS criterion or the 2D-mean projections of the considered criteria. On the contrary,
these figures allow us to quantify the high interest of the proposed method to generate DoE in the
hypersphere, in terms of mindist maximization and minimax and distLHS minimization, while
preserving relatively good space filling properties in 2D subspaces.

4. Application to the enrichment of existing space filling designs

In many scientific applications, it can be useful to increase the dimensions N (and eventually d)
of the initial DoE (Draguljić et al., 2012; Muehlenstaedt et al., 2014). Given an already existing
(d1,N1)-dimensional DoE (which can be optimized or not), the question then arises of how
adding the new elements for the final DoE to present good space filling characteristics and good
projection properties for each scalar input. Based on the method introduced in Sections 2 and 3,
an answer can be given to this question by fixing all the components of the already existing DoE
but letting move the added new points in Algorithm 4. To improve the efficiency of the method,
for each iteration of the distance-based repulsion, it is advised to perform the LHS projection
twice: first, with the moving points alone, and second, with all the points (including the fixed
points). The interest of this approach is illustrated for the hypercube only, even if it can be used
for any bounded convex input space.

On the one hand, the value of d is fixed, and we want to increase the number of elements of
the DoE. Hence, we first generate a (d,N1)-dimensional DoE, and a (d,N2)-dimensional DoE,
[y], from the non-optimized "randomLHS" routine that was introduced in Section 2 (N2 can be
equal or not to N1). In addition, we denote by [x;y] the concatenation of [x] and [y] and by O the
proposed optimization procedure, such that [O([z1;z2] | z2)] corresponds to the result of Algorithm
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FIGURE 13. Comparison in terms of space filling properties of three generators in the hypersphere with respect to the
distLHS criterion (first row), the minimax criterion (second row) and the mindist criterion (third row), for d = 3 (left
column), d = 5 (middle column) and d = 10 (right column), and N = 10d. 1: "normal approach" / 2: the proposed
method / 3: clustering-based approach.
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FIGURE 14. Comparison in terms of space filling properties of three generators in the hypersphere with respect to the
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d = 3 (left column), d = 5 (middle column) and d = 10 (right column), and N = 10d. 1: "normal approach" / 2: the
proposed method / 3: clustering-based approach.
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4, which was initialized by the concatenation of [z1] and [z2], and in which the elements of [z2] are
fixed. In particular, [xopt] = [O([x] | /0)] is introduced as the unconstrained optimization of [x] by
Algorithm 4. We now compare the space filling properties of the five following designs:

– [x;y]: the final DoE is constituted of the concatenation of [x] and [y].
– [xopt;y] : the final DoE is constituted of the concatenation of [xopt] and [y].
– [O([x;y] | /0)]: the final DoE corresponds to the unconstrained optimization of [x;y] by

Algorithm 4.
– [O([x;y] | x)]: the final DoE corresponds to the optimization of [x;y] by Algorithm 4, in

which the elements of [x] are fixed.
– [O([xopt;y] | xopt)]: the final DoE corresponds to the optimization of [xopt;y] by Algorithm 4,

in which the elements of [xopt] are fixed.
The corresponding results, in terms of minimization of the minimax and of the discrepancy, and

maximization of the mindist and the 2D-mindist criteria are shown in Figure 15, for (d,N1,N2) in
{(2,10,10),(5,40,20),(7,50,100)}. In this figure, it can be seen that, for all considered values
of d,N1,N2, the results for [O([x;y] | x)] are much better than the ones for [x;y], and in the same
manner, the results for [O([xopt;y] | xopt)] are much better than the ones for [xopt;y]. This justifies
the interest of the proposed method for the addition of new elements to already existing DoE, for
a fixed value of d. Moreover, it can be noticed that the higher N2 is, compared to N1, the closer to
[O([x;y] | /0)] are the space filling properties of [O([x;y] | x)] and [O([xopt;y] | xopt)]. At last, we
verify in these figures that the better the already existing DoE is, the more chance there is for the
space filling properties of the final DoE to be good.

On the other hand, we now suppose that the value of N is fixed, and we are interested in
increasing the dimension of the input space. To this end, let [x] be a (d1,N)-dimensional DoE and
[y] be a (d2,N)-dimensional DoE, which have been generated by the "randomLHS" routine. Even
if increasing d or N lead to two different kinds of concatenation, the previous notations are used
again to simplify the reading. The three following configurations are now introduced:

– [xopt;yopt]: the final DoE is the concatenation of the unconstrained optimization of [x] and [y]
separately.

– [O([x;y] | /0)]: the final DoE corresponds to the unconstrained optimization of [x;y] by
Algorithm 4.

– [O([xopt;y] | xopt)]: the final DoE corresponds to the optimization of [xopt;y] by Algorithm 4,
in which the elements of [xopt] are fixed.

Finally, in figure 16, we compare the results associated with these three configurations, for
(d1,d2,N) ∈ {(2,1,30),(2,2,50),(4,3,100)}. In this figure, we notice that the results associated
with the proposed method, [O([xopt;y] | xopt)], are much better than the ones corresponding to
the concatenation of two DoE that have been optimized independently, [xopt;yopt], from the four
considered space filling criteria points of view. Moreover, it can once again be seen that the higher
d2 and N are, the more likely is the improvement of the space filling properties of the final DoE. In
particular, in the case (d1,d2,N) = (2,2,50), the results of the configuration [O([xopt;y] | xopt)] are
very close to the results of [O([x;y] | /0)], which corresponds to the limit case, as this configuration
allows the optimization of the position of all the elements of the final DoE. At last, it can be
noticed that the configuration [O([x;y] | /0)] is not optimal for the minimization of 1/Cmindist

2D when
d1 = 2. Indeed, for this particular value of d1, and for this particular criterion, starting from an
optimized 2D DoE can be better than a direct global optimization.
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FIGURE 15. Efficiency of the proposed method for the enrichment of already existing DoE with respect to the
L2-discrepancy (first row), the minimax criterion (second row), the mindist criterion (third row), and the 2D-
mindist criterion (fourth row) for (d,N1,N2) = (2,10,10) (left column), (d,N1,N2) = (5,40,20) (middle column) and
(d,N1,N2) = (7,50,100) (right column). 1: [x;y] / 2: [xopt;y] / 3: [O([x;y] | /0)] / 4: [O([x;y] | x)] / 5: [O([xopt;y] | xopt)].
Boxplots are produced from 50 runs with different initial DoE.
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FIGURE 16. Efficiency of the proposed method for the enrichment of already existing DoE with respect to the
L2-discrepancy (first row), the minimax criterion (second row), the mindist criterion (third row), and the 2D-
mindist criterion (fourth row), for (d1,d2,N) = (2,1,30) (left column), (d1,d2,N) = (2,2,50) (middle column) and
(d1,d2,N) = (4,3,100) (right column). Boxplots are produced from 50 runs with different initial DoE. 1: [xopt;yopt] /
2: [O([x;y] | /0)] / 3: [O([xopt;y] | xopt)].
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5. Conclusions and prospects

This work considers the challenging problem of defining initial designs of experiments (DoE)
that allow the exploration of the whole input space, while preserving good space filling properties
for each scalar input. To this end, an adaptive method based on two kinds of repulsion has been
proposed. This method, which gives very interesting results for the generation of DoE in the
hypercube, can be generalized for the generation of optimized space filling designs in any bounded
convex domain. To do so, we need, first, to be able to generate an initial DoE in the domain of
interest, second, to know if an element is in the domain of interest, and third, to compute (even
approximately) the PDF and the CDF of each scalar input. In particular, the relevance of the
method has been quantitatively assessed in the cases of the simplex and the hypersphere with
respect to several commonly used space filling measures. This method can also be used to add new
points to an already existing DoE, while preserving very interesting global space filling properties,
which can be very useful for the iterative improvement of surrogate models for instance.

From a numerical point of view, the algorithm being based on repulsion between each elements
of the DoE, we point out that the numerical complexity of the proposed algorithm increases almost
linearly with respect to the dimension d of the input space, but increases almost quadratically
with respect to the number N of elements of the DoE. However, the step by step improvement of
the DoE being global, the proposed algorithm appears to converge relatively quickly with respect
to the number of iterations Q, such that for values of d lower than 20 and values of N lower than
1000, relevant designs are attainable at a reasonable computational cost. In addition, the only
parameter that the user has to choose is Q (and eventually the proportionality factor in Eq. (21)),
which makes the proposed method easy to control in practice.

At last, this work is only focused on the LHS structure, which only considers the projection
properties of each scalar input. Taking into account higher subprojections properties stays an
interesting issue for future works. In the same manner, an important restriction for the method
is the assumption that the input space is convex. The adaptation of the proposed method for the
generation of DoE in non-convex input spaces, as it is done in Golchi and Loeppky (2015) and
Pratola et al. (2015), is also an open question.
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