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Abstract: The latent stochastic block model is a flexible and widely used statistical model for the analysis of network
data. Extensions of this model to a dynamic context often fail to capture the persistence of edges in contiguous network
snapshots. The recently introduced stochastic block transition model addresses precisely this issue, by modelling the
probabilities of creating a new edge and of maintaining an edge over time. Using a model-based clustering approach,
this paper illustrates a methodology to fit stochastic block transition models under a Bayesian framework. The method
relies on a greedy optimisation procedure to maximise the exact integrated completed likelihood. The computational
efficiency of the algorithm used makes the methodology scalable and appropriate for the analysis of large network
datasets. Crucially, the optimal number of latent groups is automatically selected at no additional computing cost. The
efficacy of the method is demonstrated through applications to both artificial and real datasets.

Résumé : Le modèle des blocs latents est un modèle statistique largement utilisé et très flexible. Les extensions de ce
modèle à l’analyse des réseaux dynamiques ne peut pas capturer la persistance des liens dans les temps contigus. Le
modèle des blocs latents avec des transitions aborde cette question et modélise la propension à créer et à maintenir les
liens dans les temps. On présente ici une extension bayésienne de ce modèle et une nouvelle méthodologie pour la
classification des nœuds. La méthode repose sur une procédure d’optimisation afin de maximiser un critère exact de
classification. L’algorithme est très efficace et rend la méthodologie appropriée pour l’analyse de grands ensembles
de données de réseaux. De plus, l’algorithme sélectionne le nombre optimal de groupes latents sans aucun coût
supplémentaire. L’efficacité de la méthode est démontrée par des applications à des ensembles de données artificielles
et réelles.
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1. Introduction

Research on networks has gained significant momentum in the last few decades. In fact, networks
can be used to represent observed phenomena in a variety of research areas, including the
social sciences, epidemiology, biology, technology and finance. Social networks, which include
collaboration networks or proximity networks, are largely available. The analyses of these datasets
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pose a number of research challenges, since they typically require scalable and well-thought
statistical methodologies.

Most frequently, network data is provided in the form of an adjacency matrix, where each
entry xi j characterises the interaction between the nodes i and j. The Stochastic Block Model
(SBM), as characterised by Wang and Wong (1987), is a flexible statistical model that can be
used to analyse large social networks. In the SBM, the nodes of the network are assigned to latent
groups based on their connection preferences: two nodes belonging to the same group are said
stochastically equivalent, meaning that they have the same probability of connecting to any other
node in the network. This concept generalises the idea of community structure (see Fortunato
2010 and references therein), since disassortative behaviours and other topological structures may
also be represented.

The SBM framework effectively defines a clustering problem, where one has to estimate
from the data both the nodes’ cluster membership variables (allocations) and the underlying
number of clusters. This may be tackled in a number of ways. One strand of research relies on
sampling: this includes the work of Nowicki and Snijders (2001), and the more recent allocation
sampler introduced by McDaid et al. (2013). Although the allocation sampler is able to efficiently
sample from the posterior distribution of a SBM, a research question that still remains open
is how one may summarise in a sensible way the collection of partitions obtained. A different
estimation approach for the SBM relies instead on adaptations of the Expectation-Maximisation
(EM) algorithm. Daudin et al. (2008) introduce a variational EM in a frequentist setting, and
they propose, as model-choice criterion, an adaptation of the Integrated Complete Likelihood
(ICL) of Biernacki et al. (2000) to the SBM context. A Bayesian version of the variational EM
has been introduced by Latouche et al. (2012), along with an alternative expression for the ICL
obtained through the variational approximation. A third approach to fit SBMs has been introduced
by Côme and Latouche (2015), and it relies on the optimisation of an exact version of the ICL by
means of greedy heuristics. An interesting aspect of this approach is that the clustering and the
selection of the number of groups are performed at the same time, hence making the procedure
very computationally efficient. A more detailed survey of the methodologies introduced for the
SBM can be found in Matias and Robin (2014).

In recent years, a number of works have extended the static SBM to the dynamic framework,
whereby the observed interactions are, in some way, dynamically evolving over time. One type of
extension considers the interactions as instantaneous events which may be observed in any given
instant. For example, Matias et al. (2018) and Corneli et al. (2018) model these interactions as
realised events of non-homogeneous Poisson point processes, where the intensity parameters are
determined by the cluster memberships of the corresponding nodes.

This paper belongs to a different strand of literature, where the time dimension is discretised
and the observed data can be represented as a collection of adjacency matrices indexed according
to their ordering in time. Most of the works following this approach typically introduce a Markov
property that creates a temporal dependency between any two contiguous network snapshots. For
example, Yang et al. (2011) assume a hidden Markov model where the hidden states are the cluster
membership variables of the nodes. In their model, the temporal dependency is captured only
through the evolution of the latent allocation variables over time. By contrast, Xu and Hero (2014)
characterise the time dependency through a state-space model on the connection probabilities
between the SBM blocks. Matias and Miele (2017) consider a more general framework that
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includes the previous two as special cases, proving that the identifiability of these Markovian
models may be lost if both cluster membership variables and connectivity parameters are allowed
to change over time. They also propose an estimation method that can handle networks with
non-binary interactions. Rastelli et al. (2018) also focus on the same type of model, studying
the computational efficiency and scalability of the inferential process. Other relevant dynamic
extensions of the SBM are introduced in Ishiguro et al. (2010) and Bartolucci et al. (2018).

In many cases, however, the observed dynamic networks tend to be particularly stable over
time, or, equivalently, they exhibit a strong temporal dependency. This may have important
repercussions, since it ultimately questions whether the temporal dynamics of the models are
necessary, or if the static frameworks may be just as effective. The dynamic SBM models
mentioned so far are not able to capture these additional temporal dependencies. Xu (2015)
addresses exactly this issue, proposing an original model that builds upon a dynamic SBM to
include a Markov property on the observed edge values. Differently from the SBM structure, this
model clusters the nodes in each time frame according to their propensity to create new edges and
maintaining existing ones. Since it directly models the transitions of the edge values, it is called
the Stochastic Block Transition Model (SBTM). In the SBTM, the probability of observing an
edge depends on whether the same edge was present or absent in the previous time frame, creating
a direct dependency between any two contiguous network snapshots. Xu (2015) gives evidence
that the SBTM can successfully model the creation and the duration of the interactions, hence
being much more flexible than the dynamic SBM of Xu and Hero (2014).

The idea of modelling the persistence of the edges over time has been also proposed in
other frameworks: building upon the Latent Position Model of Hoff et al. (2002), Friel et al.
(2016) consider a new bipartite dynamic structure that explicitly captures the time persistence
using a two-regimes representation. Zhang et al. (2017), instead, study a model similar to
the SBTM, obtained through a discretisation of an underlying continuous-time process. They
consider a framework that facilitates both the theoretical characterisation of such model and a
likelihood-based inferential procedure. Finally, Heaukulani and Ghahramani (2013) propose a
type of block model where the evolution over time of the latent allocation of each node is affected
by the cluster memberships of its neighbours.

This paper focuses on the SBTM, and it extends the work of Xu (2015) in a number of ways.
First, a new Bayesian hierarchical structure for this model is introduced, following ideas similar to
those in Rastelli et al. (2018). The generative process proposed allows for non-informative priors
and, crucially, it directly captures the fact that nodes may become inactive in certain time intervals.
This feature makes the model proposed particularly suitable for the analysis of longitudinal
network data, whereby some nodes are added or removed at any time frame. Then, the modelling
assumptions are exploited to analytically integrate out (collapse) most of the model parameters,
as also advocated by Nobile and Fearnside (2007), McDaid et al. (2013) and Côme and Latouche
(2015). This collapsing leads to an exact formula for the well known Integrated Completed
Likelihood (ICL), which is widely used as an optimality criterion in the statistical analysis of finite
mixtures (Biernacki et al., 2000). The exact ICL value obtained is maximised with respect to the
allocation variables using a scalable heuristic greedy procedure, which resembles the algorithms
described by Côme and Latouche (2015), Wyse et al. (2017), and Rastelli et al. (2018).

An important advantage of the methodology proposed is that the number of latent groups can
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be automatically deduced from the allocation variables at any stage of the optimisation. In fact,
to the best of my knowledge, this is currently the only paper addressing the problem of model
choice for the SBTM. Another facet of this method is that, due to the optimisation context, it
is unaffected by label-switching issues. In addition, the algorithm can exploit the presence of
inactive nodes, which further reduces the computational burden.

Taking advantage of the non-informative setting, the methodology is tested as a black-box tool
on artificially generated networks, showing that it generally converges to good clustering solutions.
The procedure is also compared with other available methods, showing that the introduction of the
edge-persistence feature is essential to recover the true partitioning of the nodes and the correct
generative mechanism. In addition, a large longitudinal human contact dataset is used to give a
demonstration of the procedure, showing that the results obtained are easy to interpret, and that
the behaviours of the nodes can be analysed in detail.

Finally, the R package GreedySBTM accompanies this paper and it provides an implementation
of the algorithm described. The package is publicly available on CRAN (R Core Team, 2017).

The paper is organised as follows: Sections 2 and 3 illustrate the Bayesian SBTM, Sections 5
and 6 describe the exact ICL approach and the optimisation algorithm, and finally the methodology
is applied to simulated and a real dataset in Sections 7 and 8, respectively.

2. The Stochastic Block Transition Model

The statistical model used in this paper is a variation of that introduced by Xu (2015). The
differences between the two models are minor and do not affect the principle ideas that motivate
the use of the SBTM; nonetheless they are necessary to give integrity to the inferential procedure
used in this paper. A more detailed account of the modifications and a comparison with other
statistical models for dynamic network data is provided in Section 4.

The observed data consist of a collection of T graphs, where the edges of each of these represent
interactions between the corresponding nodes at different times. In each time frame t = {1, . . . ,T},
some of the nodes may be inactive, in which case none of their edge values are observed, or they
simply do not have any interaction. Since this information may be derived from the collected data,
the activity status of the nodes is assumed to be known and observed. Hence, the observed data
may be described through two binary cubes X and Y of size N×N×T , which are characterised
by:

y(t)i j =

{
1 if both nodes i and j are active at time frame t,
0 otherwise;

(1)

x(t)i j =

{
1 if y(t)i j = 1 and an edge between i and j exists at time t,

0 if y(t)i j = 0 or no edge exists between i and j at time t,
(2)

for all i and j in {1, . . . ,N} and t in {1, . . . ,T}. Evidently, Y simply serves as an activity indicator,
whereas X =

{
X(1), . . . ,X(T )

}
corresponds to a collection of canonical adjacency matrices for

the observed edge values. These T graphs are assumed to be undirected and without self-edges,
hence each of the adjacency matrices is symmetric and has zeros on the diagonal.

In the SBTM, a clustering structure is hypothesised on the nodes of the T observed graphs.
Each of the nodes, at each time frame, is characterised by a cluster membership variable taking
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values in the discrete set {0,1, . . . ,K}. The notation Z =
{

z(t)i : i = 1, . . . ,N, t = 1, . . . ,T
}

is

used to denote all such allocations. Also, the equivalent notation z(t)ig = 1({z(t)i = g}) may be used

in some equations (1 denotes the indicator function). Note that the vector z(t) =
{

z(t)1 , . . . ,z(t)N

}
denotes a partition of {1, . . . ,N}, for every t. Finally, the label zero is reserved for inactive nodes,
i.e. z(t)i = 0 iff i is inactive at time t: since the inactive nodes are known, there is no interest in
inferring these allocations and hence they are kept fixed throughout. The activity information is
encoded in both the allocation variables and in the matrix Y , so that it can be easily denoted at the
nodes level and at the edge level, respectively. The relation between the two representations is
given by y(t)i j = z(t)i0 z(t)j0 .

The probability that the observed edge indexed by (i, j, t) takes value 1 is defined as:

ρ
(t)
i j = P

(
x(t)i j = 1

∣∣∣y(t)i j = 1,y(t−1)
i j ,x(t−1)

i j ,z(t)i = g,z(t)j = h,θgh,Pgh,Qgh

)
=


θgh if y(t−1)

i j = 0

Pgh if y(t−1)
i j = 1 and x(t−1)

i j = 0

1−Qgh if y(t−1)
i j = 1 and x(t−1)

i j = 1.

(3)

Note that if t = 1 then y(t−1)
i j = 0 for all i and j. The probability of an edge ρ

(t)
i j is defined by

(3) only if y(t)i j = 1. In fact, only active nodes may contribute to the likelihood value, and the
probability of an edge is simply not defined if at least one of the nodes at its extremities is inactive.
Equation (3) essentially characterises the alternation of three regimes:

— A SBM-type of connection probability θgh is selected whenever there is no information
regarding the previous value of the edge considered.

— A SBTM probability Pgh is used when it is known that the edge considered had value zero
in the previous time frame. The value Pgh corresponds to the probability of creating a new
edge.

— A SBTM probability Qgh is used when it is known that the edge considered had value one
in the previous time frame. The probability of confirming the edge is 1−Qgh, hence Qgh
may be interpreted as the probability of deleting an existing edge.

These parameters
{

θgh
}

g,h,
{

Pgh
}

g,h and
{

Qgh
}

g,h form the matrices Θ, P and Q respectively,
which contain the edge probabilities between nodes belonging to any two given groups.

The conditional likelihood of the model reads as follows:

LX ,Y (Z,Θ,P,Q) = p(X ,Y|Z,Θ,P,Q) =
T

∏
t=1

∏
i< j

{[
ρ
(t)
i j

]x(t)i j
[
1−ρ

(t)
i j

]1−x(t)i j

}y(t)i j

(4)

which is simply a product of contributions given by Bernoulli variables. Hereafter, the product
∏i< j stands for ∏

N−1
i=1 ∏

N
j=i+1, for brevity. The likelihood function may be reformulated in a more

convenient way, taking advantage of the block structure and hence grouping up the terms in (4).
In order to do this, the following quantities are needed, for all g and h in {1, . . . ,K}:

ηgh = ∑
i< j

y(1)i j x(1)i j λi j1gh +∑
t>1

∑
i< j

y(t)i j

(
1− y(t−1)

i j

)
x(t)i j λi jtgh; (5)
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ζgh = ∑
i< j

y(1)i j

(
1− x(1)i j

)
λi jtgh +∑

t>1
∑
i< j

y(t)i j

(
1− y(t−1)

i j

)(
1− x(1)i j

)
λi jtgh; (6)

Uuv
gh = ∑

t>1
∑
i< j

y(t)i j y(t−1)
i j

[
1−
(

u− x(t−1)
i j

)2
][

1−
(

v− x(t)i j

)2
]

λi jtgh; (7)

λi jtgh = z(t)ig z(t)jh + z(t)ih z(t)jg − z(t)ig z(t)jg z(t)ih z(t)jh

=

{
1 if (i, j, t) refers to an edge between groups g and h;
0 otherwise.

(8)

The values u and v are in {0, 1}. Also note that for binary values c1 and c2:

1− (c1− c2)
2 =

{
1 if c1 = c2;
0 otherwise.

(9)

The quantities introduced in (5), (6) and (7) are crucial summaries of the data. They can be
interpreted as the number of successes in creating a SBM-edge (ηgh), in creating a new edge (U01

gh ),
and deleting an existing edge (U10

gh ), between a node in group g and one in group h. Similarly, ζgh,
U00

gh and U11
gh correspond to the number of failures for the same events, respectively. Using these

new quantities, the likelihood function factorises as follows:

LX ,Y (Z,Θ,P,Q) =
K

∏
g=1

K

∏
h=g

θ
ηgh
gh

(
1−θgh

)ζgh P
U01

gh
gh

(
1−Pgh

)U00
gh Q

U11
gh

gh

(
1−Qgh

)U10
gh . (10)

This likelihood formulation mirrors the one proposed by Zhang et al. (2017): exactly as in SBMs,
the presence of blocks simplifies the model structure, and can be exploited to design efficient
inferential procedures.

3. Bayesian hierarchical structure

This section introduces a Bayesian hierarchical structure for the SBTM, hence proposing a gener-
ative mechanism for the observed data. The prior distributions described here are all conjugate,
and, as a special case, they permit a non-informative framework which may be used to nullify the
subjective contribution induced by the user.

As concerns the allocations, these are assumed to evolve according to N independent Markov
chains on the states {0, . . . ,K}. The processes share the same transition probability matrix Π,
which is hence characterised by:

πgh = P
(

z(t)i = h
∣∣∣z(t−1)

i = g
)
, (11)

for all i = 1, . . . ,N and t = 2, . . . ,T . The initial states are assumed to be drawn from a categorical
distribution with probabilities α0, . . . ,αK proportional to the aggregated group sizes:

αg ∝

T

∑
t=2

N

∑
i=1

z(t)ig . (12)
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These group proportions approximate the probabilities of the stationary distribution of the Markov
chain. Note that the initial allocations are not considered for the calculation of the αs.

The prior probability of a set of allocations Z may be written as follows:

P(Z|Π) = P
(

z(1)
∣∣∣α) T

∏
t=2

P
(

z(t)
∣∣∣z(t−1),Π

)
=

K

∏
g=0

[αg]
N(1)

g
K

∏
g=0

K

∏
h=0

[
πgh
]Rgh ,

(13)

where N(t)
g = ∑

N
i=1 z(t)ig and Rgh = ∑

T
t=2 ∑

N
i=1 z(t−1)

ig z(t)ih , for all t, i and g. Note that, while inactive
nodes do not give any contribution to the likelihood in (4), their group membership affects the
prior distribution at all times. In fact, the transition probability matrix Π has size (K+1)×(K+1),
and it includes the probabilities for a node to be activated or inactivated. In other words, the nodes
are allowed to migrate among K +1 groups, however, the first of these groups (labelled by 0) is
characterised by fixed connection probabilities which ensure that no edges are created for the
nodes inside this group.

The rows of the transition probability matrix Π are assumed to be independent realisations of
Dirichlet random vectors:

(πg0, . . . ,πgK)∼ Dir (δg0, . . . ,δgK) , (14)

with δgh being a user-defined hyperparameter, for all gs and hs.
As concerns the likelihood parameters, the entries of the matrices Θ, P and Q all correspond to

the success probabilities of Bernoulli random variables: for this reason, independent Beta priors
are adopted:

θgh ∼ Beta(η0
gh,ζ

0
gh);

Pgh ∼ Beta(aP
gh,b

P
gh);

Qgh ∼ Beta(aQ
gh,b

Q
gh).

(15)

The complete set of hyperparameters is φ =
{

δgh,η
0
gh,ζ

0
gh,a

P
gh,b

P
gh,a

Q
gh,b

Q
gh

}
g,h

. These values

should be set so that the corresponding prior distributions describe the prior knowledge available
on the model parameters. In this paper, non-informative Jeffreys’ priors are assumed throughout
on all model parameters: this is achieved by setting all the components of φ to 0.5.

A graphical representation of the dependencies in the model is shown in Figure 1.

4. Comparisons with other approaches

The dynamic network data analysed in this paper may also be studied using the SBM-based
methods introduced by Matias and Miele (2017) and Rastelli et al. (2018). However, the modelling
approaches in their works are fundamentally different from the one introduced in this paper. While
Matias and Miele (2017) and Rastelli et al. (2018) study an extension of the canonical SBM to a
dynamic setting, the SBTM considered here is conceived directly as a framework for networks
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δ

η0, ζ 0

aP, bP

aQ, bQ

Π

Θ

P
Q

Z(t−1)

Z(t)

X(t−1)

X(t)

FIGURE 1. Graphical model for the SBTM described.

evolving over time, as it models the transitions of the edge values. Relating the SBTM mechanism
to the original definition of SBM from Holland et al. (1983): at any given time, two nodes
allocated to the same group are said stochastically equivalent, in the sense that they have the
same probabilities of creating (or deleting) edges towards any other given node. Furthermore,
the method introduced in this paper can also deal with inactive nodes: as it will be shown in the
applications, this feature becomes crucial as a means to save computing time, but also to obtain a
more reasonable generative process for longitudinal data.

The Bayesian hierarchical structure introduced in the previous section modifies and extends
the SBTM model proposed by Xu (2015). In the Bayesian SBTM, the evolution of the allocation
variables over time is modelled with a Markov process, imitating the approaches of Yang et al.
(2011), Matias and Miele (2017) and Rastelli et al. (2018). This type of specification creates an
additional temporal dependency, and it ultimately permits an assessment of the stability of the
network. The same feature also distinguishes the Bayesian SBTM from the model analysed by
Zhang et al. (2017), where, by contrast, the authors do not let the allocations change over time.

In Xu (2015), the author introduces the scaling factors: these are extra model parameters that
can be used to tune the transition probabilities P and Q. The author imposes constraints on these
scaling factors to guarantee that each network snapshot marginally follows a canonical SBM
structure with connection probabilities Θ. This is an interesting property for the SBTM to satisfy,
since it forces the transition probabilities P and Q to yield a SBM structure coinciding with Θ. In
other words, the SBM characterised by Θ may be seen as the asymptotic structure the generative
model of the SBTM converges to.

On the other hand, it should be noted that the scaling factors must be estimated from the data,
hence they make the inferential task more problematic and less tractable. The present paper does
not take advantage of the scaled representation: this leads to a simpler structure which allows the
proposed estimation method to be efficient and properly defined. In fact, it may not be possible to
define the same methodology using the scaling factors introduced by Xu (2015). Therefore, in the
Bayesian SBTM, the marginal SBM structure on the network snapshots is inevitably lost.
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5. Exact Integrated Completed Likelihood

The Integrated Completed Likelihood (ICL), first introduced in Biernacki et al. (2000), is a
model-based clustering criterion usually used to estimate the number of clusters in finite mixture
models. In the dynamic network context addressed in this paper, the exact ICL corresponds to the
following value:

ICLex = P(X ,Y,Z|φ ,K) . (16)

Since the data (X ,Y) is fixed, the ICLex index is also equivalent to the marginal posterior for the
allocations:

ICLex ∝ P(Z|X ,Y,φ ,K) . (17)

In other words, the ICLex value can be obtained by analytically integrating out all of the model
parameters from the full posterior distribution π (Z,Θ,P,Q,Π|X ,Y,φ ,K). In fact, thanks to the
conjugacy of the prior distributions, such integration is analytically possible, and the exact ICL
results as follows:

ICLex ∝

K

∏
g=0

{
[αg]

N1
g ·

Γ
(
∑

K
h=0 δgh

)
Γ
(
∑

K
h=0 δgh +∑

K
h=0 Rgh

) K

∏
h=0

Γ
(
δgh +Rgh

)
Γ
(
δgh
) }

·
K

∏
g=1

K

∏
h=g

 Γ

(
η0

gh +ζ 0
gh

)
Γ

(
η0

gh

)
Γ

(
ζ 0

gh

) · Γ
(

η0
gh +ηgh

)
Γ

(
ζ 0

gh +ζgh

)
Γ

(
η0

gh +ηgh +ζ 0
gh +ζgh

)


·
K

∏
g=1

K

∏
h=g

 Γ

(
aP

gh +bP
gh

)
Γ

(
aP

gh

)
Γ

(
bP

gh

) · Γ
(

aP
gh +U01

gh

)
Γ

(
bP

gh +U00
gh

)
Γ

(
aP

gh +U01
gh +bP

gh +U00
gh

)


·
K

∏
g=1

K

∏
h=g

 Γ

(
aQ

gh +bQ
gh

)
Γ

(
aQ

gh

)
Γ

(
bQ
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(18)

6. Greedy optimisation

The only unknown quantities in (17) and (18) are the allocations Z . In fact, for a given clustering
configuration Z , the corresponding value of K may be automatically deduced by counting the
number of non empty groups. Hence, an optimisation problem can be set up to find the allocations
Ẑ maximising log(ICLex), by searching in the space of all possible clustering configurations.

This discrete optimisation problem is known to be NP-hard, and it can be solved exactly only
through enumeration, which is impractical even for very small datasets. However, heuristic greedy
algorithms have been shown to perform well in similar types of clustering problems: the procedure
proposed here follows ideas similar to those of Karrer and Newman (2011), Côme and Latouche
(2015), Bertoletti et al. (2015), and Rastelli et al. (2018).

First, a maximum number of groups allowed, denoted Kup, is fixed. For small datasets this
may be set to NT , however, for larger networks, a smaller value may be chosen to reduce the
computing time. Then, an initial clustering configuration with Kup groups is generated. This may
be created at random, or following initialisation methods based on the k-means algorithm, such as
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those described in Matias and Miele (2017) or Rastelli et al. (2018). At this point the main routine
of the algorithm starts, where an active node (t, i) is selected, and its allocation is updated. For the
update, all possible moves to groups 1, . . . ,Kup are tested, and, finally, the change yielding the
best increase in the objective function is performed. Note that the label zero remains exclusive
of inactive nodes, therefore, since activity information is observed, the set of nodes allocated to
group 0 remains the same throughout. This process continues in a loop until no further increase is
possible. After convergence, hierarchical clustering updates are attempted on the final solution
obtained, following exactly the same procedure described in Côme and Latouche (2015) and
Rastelli et al. (2018). The computing time demanded by this last step is usually negligible, yet it
may improve the final solution by merging together some of the groups. The pseudocode for the
algorithm (called GreedyICL) is provided in Algorithm 1. Note that, in the pseudocode, `(t,i)→ĝ
denotes the value corresponding to the current allocations with node (t, i) moved to group g.

Algorithm 1 GreedyICL
Set Kup and initialise the allocations Z .
Evaluate the objective function and set `= `stop = log(ICLex).
Set stop = f alse.
while !stop do

Set U =
{
(t, i) : z(t)i 6= 0, t = 1, . . . ,T, i = 1, . . . ,N

}
.

Shuffle the elements of U .
while U is not empty do

(t, i) = pop(U).
ĝ = argmaxg=1,2,...,Kup `(t,i)→g.
`= `(t,i)→ĝ.

z(t)i = ĝ.
end while
if `≤ `stop then stop = true else `stop = `.
end if

end while
Return Z and `.

Both GreedyICL and the final merge procedure only involve greedy updates, so they can only
increase the objective function value. However, there is no guarantee that the final solution will
correspond to a global optimum of log(ICLex): for this reason, several restarts of the whole
procedure may be beneficial to avoid local optima.

From the algorithmic point of view, one main advantage of these greedy updates is their
scalability: the increase in the objective function for each move can be evaluated very efficiently.
Furthermore, convergence is usually reached after very few updates of each of the allocations.
More detailed explanations regarding the computational savings are provided for example in
Côme and Latouche (2015) and Rastelli et al. (2018) and references therein.

As already pointed out, the number of groups can be deduced from the allocation variables
at any stage. This makes GreedyICL particularly appealing, because, in one single algorithmic
framework, one can obtain an estimate of the best K, according to the exact ICL criterion. In
fact, an advantage of the exact ICL approaches of Bertoletti et al. (2015), Côme and Latouche
(2015), Wyse et al. (2017), and Rastelli et al. (2018) is that they do not rely on a grid search over
all possible K values, which becomes impractical if the number of groups is large.
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7. Simulations

In this section, artificial data is used to validate the methodology described in this paper. All the
experiments have been run on a Debian machine with 8 cores at 2.2 GHz.

7.1. Simulation study 1

In the first simulated setting considered, the number of time frames is T = 20, whereas two
scenarios are possible for the number of nodes: N = 50 or N = 250. The artificial networks
are generated using the hierarchical structure described in Section 3, with K = 3 and the hy-
perparameters all set to 0.5. 100 networks are independently generated, and the methodology
described in Section 6 is run on each of them, once for each Kup in {10,20,30}. Figure 2 shows
the objective function values for the true allocations and for the estimated clustering after each of
the steps of the optimisation. For most datasets, and for both small and large networks, the final
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FIGURE 2. Simulation study 1. log(ICLex) values for the true allocations (on the horizontal axes) and for the best
estimated clustering across all Kup values (on the vertical axes). The blue circles correspond to the values obtained
after the initialisation using k-means, the red x-marks to those obtained after the GreedyICL described in 1 and the
black triangles correspond to the values obtained at the end of the merging procedure.

solution achieves better log(ICLex) values than the true clustering, suggesting that the method
converges to excellent clustering solutions, in the exact ICL sense. Also, the increase granted by
the GreedyICL step is generally much larger than that given by the final merge step.

Figure 3 focuses on the assessment of the clustering solutions obtained. The Normalised Mutual
Information (NMI) criterion (Strehl and Ghosh, 2002) is used to compare each estimated partition
to its corresponding true counterpart. The plot on the left panel of Figure 3 shows a very high
level of agreement, particularly for the larger datasets. Note that this criterion is normalised, hence
it should not be affected by the value of N.
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FIGURE 3. Simulation study 1. The left panel shows the Normalised Mutual Information (NMI) index between the
true clustering and the estimated clustering, for all combinations of Kup and N. The right panel shows the difference
between the estimated and the true number of groups. In both panels, the boxplots are created using the values obtained
across all generated datasets and time frames (the index is in fact evaluated for each t = {1, . . . ,T} independently).

The right panel of Figure 3 focuses instead on the estimation of the number of groups. Since
the transition probabilities Π and the allocations are both randomly generated for each dataset, it
may be possible that the true number of groups becomes smaller than 3. Hence, the plot shows
the difference between the estimated and the true K for each dataset and each of the time frames.
It seems that the methodology tends towards an overestimation, at least in the larger datasets. This
may be due to overfitting, in that the exact ICL criterion does not impose a sufficiently strong
penalisation on the number of groups. Otherwise, it may be due to the greedy algorithm failing
to converge to a better solution with fewer groups: this issue may potentially be overcome by
restarting the algorithm a number of times with different initial configurations.

Finally, both plots highlight that the choice of Kup does not affect the performance by much.
Note that a smaller Kup reduces the computing time, yet the optimal partition can only be found if
Kup is greater than the optimal number of groups. Hence, in general, the higher Kup the better;
nevertheless, smaller Kup values may be used to speed up the algorithm or to force it to return a
solution with fewer groups.

7.2. Simulation study 2

The second simulated setting aims at highlighting that the model proposed is fundamentally
different from other available methods, such as that of Matias and Miele (2017). In fact, this
section shows that the method proposed in this paper can achieve better performances in datasets
that exhibit strong time dependencies and persistence of edges or non-edges.

In this simulated setting, the number of time frames is again set to T = 20, whereas the number
of nodes is set to 50. The three latent groups considered are characterised by the following edge
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probabilities:

Θ =

0.9 0.1 0.1
0.1 0.9 0.1
0.1 0.1 0.9

 , P =

0.9 0.1 0.1
0.1 0.9 0.1
0.1 0.1 0.1

 , Q =

0.1 0.1 0.1
0.1 0.9 0.1
0.1 0.1 0.9

 . (19)

The SBM-type probabilities simply follow a community structure with high within-groups prob-
abilities. As concerns P and Q, if two nodes belong to the same group, the situation can be
summarised as follows: in group 1 they tend to create edges frequently, but they seldom delete
them; in group 2 they tend to create and delete edges very frequently; whereas in group 3 they
delete edges frequently but create them seldom. Whenever the two nodes are in two different
groups, they tend not to change the current state of their interaction. Regarding the transition
probabilities, the nodes remain in the same group with probability 0.8 or can move to another
group completely at random. However, the group of inactive nodes is non existent in this case, in
that nodes cannot ever become inactive.

Using this parameter configuration, 500 networks are generated at random. On each of these,
the GreedyICL procedure is run once with Kup = 10, and the dynsbm procedure of Matias and
Miele (2017) is run once for every choice of K = 1, . . . ,6. While the GreedyICL method chooses
the number of groups in one run, in dynsbm only the run corresponding to the highest approximate
ICL is retained as optimal, as advised in the related paper.

Figure 4 illustrates the results obtained in this experiment. Similarly to the previous simulation
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FIGURE 4. Simulation study 2. The left panel shows the aggregated number of time frames and datasets corresponding
to the value of the difference between the estimated and true K, for the proposed greedy approach (in red) and for the
algorithm dynsbm of Matias and Miele (2017) (in blue). The right panel shows the NMI indexes between the true and
the estimated clusterings. The NMI values are evaluated for each time frame and each of the datasets independently.

study, the GreedyICL tends towards an overestimation of the number of groups (see left panel of
the figure), in that the correct value K = 3 is properly estimated in about 15% of the cases. The
dynsbm seems to achieve better performance in this task. However, as documented in the plot
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on the right panel, this event is rather fortuitous, since the vast majority of the optimal solutions
of dynsbm are fundamentally wrong, and they do not capture the essence of the generative
mechanism of the data. In other words, the dynsbm method provides a different view on the data,
which is not necessarily appropriate when high persistence of the edges is present.

The average computing times across all datasets for the two algorithms were 0.083 and 14.959
seconds, for GreedySBTM and dynsbm respectively.

7.3. Simulation study 3

The purpose of this study is to assess whether the hyperparameters of the model can have an
effect on the final results. The collection of hyperparameters φ is separated in the sets

{
δgh
}

g,h,

where δ = δgh for all g and h, and
{

η0
gh,ζ

0
gh,a

P
gh,b

P
gh,a

Q
gh,b

Q
gh

}
g,h

, characterising the priors on

the connection probabilities. If prior information on the parameters is available, it should be
encoded in the model through the hyperparameters. However, as pointed out in a previous section,
a non-informative setting is available, as fixing all of the hyperparameters to 0.5 corresponds
to Jeffrey’s priors. This setting is used throughout this paper with the exception of this section.
More in general, the non-informative setting should be used whenever prior information on the
parameters is not available.

Here, four different scenarios are considered, each corresponding to a type of informative prior
distributions.

— Scenario 1: the hyperparameters are all set to 0.05. For the Beta-distributed connection
probabilities, this implies a larger variance and thus more well-separated blocks. As con-
cerns the Dirichlet-distributed transition probabilities, values closer to 0 and 1 are favoured
more, hence leading to a more deterministic framework where migrations between groups
follow similar patterns.

— Scenario 2:
{

η0
gh,ζ

0
gh,a

P
gh,b

P
gh,a

Q
gh,b

Q
gh

}
g,h

are all set to 0.05, whereas δ = 5. Differently

from the previous scenario, this prior on the transition probabilities favours a more entropic
structure, where migrations do not follow specific patterns.

— Scenario 3: δ = 0.05 and the hyperparameters for the connection probabilities are all set
to 5. In this case, migrations are expected to be rather deterministic, and groups not well
separated.

— Scenario 4: all hyperparameters are fixed to 5, supporting a high-entropy structure for the
transitions, and similar connection probabilities between blocks.

The data observations are generated following the same setup as in the first large simulation
study. Hence: T = 20, N = 250, K = 3, all the hyperparameters are fixed to 0.5, and the number
of generated datasets is 100. The true connection probabilities and transition probabilities are
randomly generated for each dataset using the hierarchical structure described in Section 3. On
each of these 100 datasets, the GreedyICL procedure is run once with Kup = 20. Table 1 shows
the proportion of datasets for each value of the difference between the estimated number of groups
and the true underlying K. The main finding, here, is that the estimated number of groups does
not seem to be particularly sensitive to the choice of hyperparameters, since the results obtained
are rather similar for all the scenarios considered. As in the first simulation study, the number of
groups is most often overestimated by 1.
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Difference between estimated K and true K

Scenario -2 -1 0 1 2 3 4 5 6 7 8

1 0 0.01 0.21 0.31 0.19 0.10 0.07 0.04 0.04 0.02 0
2 0 0.00 0.17 0.31 0.19 0.11 0.07 0.07 0.04 0.02 0
3 0 0.02 0.28 0.37 0.16 0.13 0.03 0.01 0.00 0.00 0
4 0 0.01 0.22 0.39 0.19 0.13 0.02 0.00 0.00 0.00 0

TABLE 1. Simulation study 3. For each value of the difference between the estimated and true K, the entries of the
table show a proportion indicating the aggregated number of datasets and time frames where the value was obtained.

Table 2 illustrates, instead, some summaries of the corresponding NMI values. Also in this

Scenario

1 2 3 4

min 0.61 0.60 0.06 0.45
Q1 0.87 0.87 0.88 0.88

median 0.94 0.93 0.94 0.93
Q3 0.97 0.97 0.99 0.97

max 1 1 1 1
TABLE 2. Simulation study 3. For each scenario, the table reports summary statistics for the collection of NMI values
obtained for each dataset and time frame.

regard, the different prior settings do not have a relevant effect on the final results. This essentially
demonstrates that, even in small network datasets, the likelihood part of the model plays a crucial
role in determining the results.

It should be noted that, differently from the sparse finite mixture models studied by Rousseau
and Mengersen (2011) and Malsiner-Walli et al. (2016), the modification of the hyperparameter δ

does not necessarily affect the shrinkage properties for the prior on the number of groups; i.e. the
regulation of the estimated K through δ seems not possible for the model considered here.

7.4. Simulation study 4

The last simulation study considers a particular structure resembling that of the real dataset which
is analysed in the following section. This study considers 100 large artificial datasets where a
high proportion of allocations are known to be 0, hence the nodes generally exhibit high levels
of inactivity. The data observations are generated using T = 1000, N = 100, K = 2, and the
connection probabilities are randomly sampled using hyperparameters equal to 0.2. As concerns
the allocations, these are sampled for each node at each time frame independently from the
set {0,1,2}, with probabilities {0.8,0.1,0.1}, respectively. On each of these 100 datasets, the
GreedyICL procedure is run once with Kup = 20.

The left panel of Figure 5 illustrates the distribution of the difference between the estimated
number of groups and its true value. The peak at 0 signals that the correct number of groups is
recovered in a large number of datasets and time frames. The right panel of the same figure shows
instead the NMI indexes, measuring the agreement between the true clusterings and the estimated
ones. This plot shows that in the vast majority of cases a NMI of 1 (or nearly 1) is achieved.
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FIGURE 5. Simulation study 4. The left panel shows the overall proportion of datasets and time frames for each
value of the difference between the estimated and true number of groups. The plot exhibits a peak at the correct value
indicating that the correct model is selected in most cases. The right panel shows instead the NMI indexes between the
true clusterings and the estimated clusterings, evaluated for every time frame and dataset.

This signals that, even if the two partitions may have a different number of groups, the clustering
solutions that they denote are very similar to one another.

8. Reality Mining dataset

The Reality Mining experiment was performed in 2004 as part of the Reality Commons project.
The data was collected and first described by Eagle and Pentland (2006), and it includes human
contacts between Massachusetts Institute of Technology (MIT) students, from 14 September
2004 to 5 May 2005. KONECT (the Koblenz Network Collection) provides a public version of
a proximity network extracted from the Reality Mining data. The dataset describes proximity
interactions of students through a list of undirected edges and their corresponding time stamp. The
number of nodes having at least one interaction is N = 96, and the total number of interactions
is 1,086,404. The 9 months were discretised in T = 1392 time frames of 4 hours each. Then, an
adjacency cube X of size N×N×T was created as follows:

x(t)i j =

{
1 if nodes i and j had at least one interaction between t−1 and t,
0 otherwise.

(20)

The distribution of edges in the new representation is shown in Figure 6. The nodes were
considered inactive in all of the time frames where they had zero interactions: as a consequence,
approximately 83% of the allocation variables were set to zero, overall. The algorithm was then
run once with Kup = 20, using k-means initialisation, and it converged after 15 iterations and 115
seconds.
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FIGURE 6. Reality mining dataset. The plot on the left panel shows the number of edges at each of the time frames.
The plot on the right panel shows instead the frequencies for the total number of edges incident to each node.

The resulting number of groups is K = 5, meaning that if a node is active, it will select one
of 5 different connectivity profiles at each time frame. The sizes of the groups of active nodes
aggregated over time are N1 = 10,143, N2 = 5,940, N3 = 2,095, N4 = 4,315, and N5 = 547.
Figure 7 shows the frequencies of the number of groups across all of the time frames. These plots
suggest that very often several of the groups are empty, meaning that the network is temporarily
homogeneous. This is emphasised in Figure 8, where the size of all groups is shown for each
time frame. The migrations between groups exhibit a clear temporal pattern, mostly following the
day/night cycle. Additionally, a longer period of inactivity is observed at the end of December,
where most nodes become inactive.

Plug-in estimators for the connection probabilities are available as follows:

P̂gh =
U01

gh

U01
gh +U00

gh
; Q̂gh =

U10
gh

U10
gh +U11

gh
; θ̂gh =

ηgh

ηgh +ζgh
; π̂gh =

Rgh

∑
K
h=0 Rgh

. (21)

For the Reality Mining dataset considered, these quantities are shown in Figure 9 through the
matrices P̂, Q̂, Θ̂ and Π̂, respectively. Overall, the matrices Θ̂ and P̂ exhibit high values on the
leading diagonal suggesting assortative behaviour and the presence of community structure. The
matrix Q̂ exhibits the opposite situation, suggesting that edges are deleted more frequently only if
the nodes do not belong to the same group. This is reasonable, since it implies that edges between
nodes in the same group are created more frequently and kept for a longer time, confirming the
presence of communities and edge-persistence.

One can combine the information from these matrices to notice interesting disassortative
patterns. In group number one, for example, the diagonal element in P̂ is small, and the nodes
are more likely to connect with nodes in group five. Group five is also particularly connected
with groups two and three, suggesting that the nodes in this group act like hubs in the network.
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FIGURE 7. Reality mining dataset. The plot on the left panel shows the proportion of nodes which are active in each
time frame. The plot on the right panel shows instead the number of time frames where the number of non empty groups
is equal to k, for k = 1, . . . ,6.

By contrast, group four is the only one exhibiting a very strong community structure, since the
nodes in this groups interact almost exclusively with each other. This group may correspond to a
particular community which displays isolation from the rest of the network.

As concerns the transition probabilities, the matrix Π̂ exhibits high values on the diagonal
which suggest high stability, since nodes tend not to change much their allocations over time. This
is particularly true for group zero, containing the inactive nodes, which also continuously attracts
nodes from all other groups.

9. Conclusions

This paper has introduced a new methodology to estimate the number of groups and the optimal
clustering of the nodes in a Stochastic Block Transition Model. The criterion optimised is the exact
Integrated Completed Likelihood, which has recently also been adopted in several other network
modelling contexts. Such criterion is maximised using an iterative greedy procedure, which is
known to be particularly computationally efficient. Although the framework is Bayesian, a non-
informative set of prior distributions may be used, therefore resembling a black-box procedure.

One important advantage is that the method infers the number of latent groups within the same
algorithmic framework, hence without requiring a grid search over all possible models. In the
context considered, the number of groups reflects the number of different node behaviours that are
observed at each time. One interesting feature of the method proposed is that groups may become
relevant only in certain intervals and then remain empty for the remaining time frames. Hence,
the number of groups may change at each time frame according to how heterogeneous the data is,
or based on how many profiles are needed to represent the data.

The generative process considered allows nodes to become temporarily or permanently inactive,
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FIGURE 8. Reality mining dataset. These plots show the number of nodes contained by each group at every time frame.
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P̂ Q̂

0.16 0.22 0.61 0 0.77

0.01 0.01 0 0.34 0

0.04 0.13 0.36 0 0.61

0.05 0.39 0.13 0.01 0.22

0.04 0.05 0.04 0.01 0.16

0.42 0.52 0.19 0.9 0.08

0.69 0.65 0.98 0.33 0.9

0.75 0.66 0.07 0.98 0.19

0.61 0.17 0.66 0.65 0.52

0.38 0.61 0.75 0.69 0.42

Θ̂ Π̂

0.22 0.21 0.64 0 0.58

0.01 0.01 0 0.34 0

0.04 0.12 0.75 0 0.64

0.07 0.57 0.12 0.01 0.21

0.07 0.07 0.04 0.01 0.22

0.21 0.44 0.01 0 0 0.32

0.37 0.03 0.01 0 0.6 0

0.29 0.02 0.01 0.68 0 0

0.27 0.04 0.68 0 0.01 0

0.44 0.53 0.01 0 0 0.02

0.92 0.04 0.02 0.01 0.02 0

FIGURE 9. Reality mining dataset: Estimated connection and transition probability matrices. The values for the group
of inactive nodes are included only in Π̂, in the bottom-right corner.

making this approach appropriate for temporal networks with very many time frames. Crucially,
the inactivity of the nodes is modelled in a very natural way, which can potentially lighten the
computational burden substantially.

The procedure has been applied to both artificial and real dataset, showing that it can scale well
with the size of the data. The simulation studies have shown that the method usually converges to
excellent solutions, yet in larger datasets it may overestimate the number of groups. This seems
to be a weak spot for the exact ICL method, since similar issues may be argued in other related
works, such as Rastelli et al. (2018). The issue should be further addressed in future research to
understand whether this may be a consequence of the heuristic estimation method, which fails
at converging to solutions with fewer groups, or if this may be a limitation of the exact criterion
itself, which may not be consistent for the framework considered. In addition, the simulations
highlight that other available methods that do not account for edge persistence may fail to capture
the true generative mechanisms of the data, and hence lead to qualitatively different clustering
solutions and interpretations.

The application to the Reality Mining dataset offers a demonstration of the results that can
be obtained. In this dataset, intense interaction periods appear to be distinctly fragmented due to
recurring intervals of inactivity. The modelling approach proposed in this paper can handle this
scenario in a natural way, and, more importantly, it can exploit the presence of inactive nodes to
mitigate the computational burden.
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This paper has focused on undirected binary dynamic networks only. It may be interesting to
extend this approach to the non-binary case, and to find a way to model the transitions on the
edge values that allow for computationally efficient inferential procedures. Also, the discretisation
of the time dimension may have a non-negligible effect on the data analysis: this is for example
highlighted in Matias et al. (2018). Hence, another important future step would be to extend the
Stochastic Block Transition Model principle to networks that evolve continuously on time.

Regarding the inferential procedure, several alternatives may be considered: similarly to Matias
and Miele (2017), a variational Expectation-Maximisation algorithm may be employed to find the
latent clustering and the model parameters within the same algorithmic framework; or, following
the approaches of Wyse and Friel (2012), McDaid et al. (2013), and White et al. (2016), a collapsed
Gibbs sampler may be used to sample the allocations from their marginal posterior distribution,
hence obtaining an assessment of the uncertainty regarding both clustering and number of groups.

The initialisation of the algorithm remains a very central issue, since the procedure is known
to be sensitive to initial conditions, and the final solutions may potentially differ a lot between
various restarts. This paper uses the same initialisation method of Matias and Miele (2017) and
Rastelli et al. (2018), however other possibilities (such as spectral clustering) may be explored.

The R package GreedySBTM accompanies this paper: it contains a C++ implementation of the
algorithms described in Section 6, and it includes the adapted version of the Reality Mining
dataset used in Section 8. The package is publicly available on CRAN (R Core Team, 2017).
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