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Abstract: Mixture of Experts (MoE) are successful models for modeling heterogeneous data in many statistical learning
problems including regression, clustering and classification. Generally fitted by maximum likelihood estimation via the
well-known EM algorithm, their application to high-dimensional problems is still therefore challenging. We consider the
problem of fitting and feature selection in MoE models, and propose a regularized maximum likelihood estimation approach
that encourages sparse solutions for heterogeneous regression data models with potentially high-dimensional predictors.
Unlike state-of-the art regularized MLE for MoE, the proposed modelings do not require an approximate of the penalty
function. We develop two hybrid EM algorithms: an Expectation-Majorization-Maximization (EM/MM) algorithm, and an
EM algorithm with coordinate ascent algorithm. The proposed algorithms allow to automatically obtaining sparse solutions
without thresholding, and avoid matrix inversion by allowing univariate parameter updates. An experimental study shows the
good performance of the algorithms in terms of recovering the actual sparse solutions, parameter estimation, and clustering
of heterogeneous regression data.

Résumé : Les mélanges d’experts (MoE) sont des modèles efficaces pour la modélisation de données hétérogènes dans
de nombreux problèmes en apprentissage statistique, y compris en régression, en classification et en discrimination.
Généralement ajustés par maximum de vraisemblance via l’algorithme EM, leur application aux problémes de grande
dimension est difficile dans un tel contexte. Nous considérons le problème de l’estimation et de la sélection de variables
dans les modèles de mélanges d’experts, et proposons une approche d’estimation par maximum de vraisemblance régularisé
qui encourage des solutions parcimonieuses pour des modéles de données de régression hétérogènes comportant un nombre
de prédicteurs potentiellement grand. La méthode de régularisation proposée, contrairement aux méthodes de l’état de l’art
sur les mélanges d’experts, ne se base pas sur une pénalisation approchée et ne nécessite pas de seuillage pour retrouver
la solution parcimonieuse. L’estimation parcimonieuse des paramètres s’appuie sur une régularisation de l’estimateur du
maximum de vraisemblance pour les experts et les fonctions d’activations, mise en œuvre par deux versions d’un algorithme
EM hybride. L’étape M de l’algorithme, effectuée par montée de coordonnées ou par un algorithme MM, évite l’inversion
de matrices dans la mise à jour et rend ainsi prometteur le passage de l’algorithme à l’échelle. Une étude expérimentale met
en évidence de bonnes performances de l’approche proposée.
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1. Introduction

Mixture of experts (MoE) models introduced by Jacobs et al. (1991) are successful for modeling
heterogeneous data in statistics and machine learning problems including regression, clustering and
classification. MoE belong to the family of mixture models (Titterington et al., 1985; McLachlan
and Peel., 2000; Frühwirth-Schnatter, 2006) and is a fully conditional mixture model where both the
mixing proportions, i.e, the gating network, and the components densities, i.e, the experts network,
depend on the inputs. A general review of the MoE models and their applications can be found in
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Nguyen and Chamroukhi (2018). While the MoE modeling with maximum likelihood estimation
(MLE) is widely used, its application in high-dimensional problems is still challenging due to the
well-known problem of the ML estimator in such a setting. Indeed, in high-dimensional setting,
the features can be correlated and thus the actual features that explain the problem reside in a low-
dimensional space. Hence, there is a need to select a subset of the potentially large number of features,
that really explain the data. To avoid singularities and degeneracies of the MLE as highlighted namely
in Stephens and Phil (1997); Snoussi and Mohammad-Djafari (2005); Fraley and Raftery (2005, 2007),
one can regularize the likelihood through a prior distribution over the model parameter space. A better
fitting can therefore be achieved by regularizing the objective function so that to encourage sparse
solutions. However, feature selection by regularized inference encourages sparse solutions, while
having a reasonable computational cost. Several approaches have been proposed to deal with the
feature selection task, both in regression and in clustering.

For regression, the well-known Lasso method (Tibshirani, 1996) is one of the most popular and
successful regularization technique which utilizes the `1 penalty to regularize the squared error
function, or by equivalence the log-likelihood in Gaussian regression, and to achieve parameter
estimation and feature selection. This allows to shrink coefficients toward zero, and can also set many
coefficients to be exactly zero. While the problem of feature selection and regularization is more
popular in this supervised learning context, it has took an increasing interest in the unsupervised
context, namely in clustering, as in Witten and Tibshirani (2010) where a sparse K-means algorithm
is introduced for clustering high-dimensional data using a Lasso-type penalty to select the features,
including in model-based clustering. In that context, Pan and Shen (2007) considered the problem of
fitting mixture of Gaussians by maximizing a penalized log-likelihood with an `1 penalty over the
mean vectors. This allows to shrink some variables in the mean vectors to zero and to provide a sparse
mixture model with respect to the means and thus to perform the clustering in a low-dimensional space.
Maugis et al. (2009b) proposed the SRUW model, by relying on the role of the variables in clustering
and by distinguishing between relevant variables and irrelevant variables to clustering. In this approach,
the feature selection problem is considered as a model selection problem for model-based clustering,
by maximizing a BIC-type criterion given a collection of models. The drawback of this approach is
that it is time demanding for high-dimensional data sets. To overcome this drawback, Celeux et al.
(2018) proposed an alternative variable selection procedure in two steps. First, the variables are ranked
through a Lasso-like procedure, by an `1 penalties for the mean and the covariance matrices. Then their
roles are determined by using the SRUW model. Other interesting approaches for feature selection
in model-based clustering for high-dimensional data can be found in Law et al. (2004); Raftery and
Dean (2006); Maugis et al. (2009a).

In related mixture models for simultaneous regression and clustering, including mixture of linear
regressions (MLR), where the mixing proportions are constant, Khalili and Chen (2007) proposed
regularized ML inference, including MIXLASSO, MIXHARD and MIXSCAD and provided asymp-
totic properties corresponding to these penalty functions. Another `1 penalization for MLR models for
high-dimensional data was proposed by Städler et al. (2010) which uses an adaptive Lasso penalized
estimator. An efficient EM algorithm with provable convergence properties has been introduced for the
optimization variable selection. Meynet (2013) provided an `1-oracle inequality for a Lasso estimator
in finite mixture of Gaussian regression models. This result can be seen as a complementary result to
Städler et al. (2010), by studying the `1-regularization properties of the Lasso in parameter estimation,
rather than by considering it as a variable selection procedure. This work was extended later in
Devijver (2015) by considering a mixture of multivariate Gaussian regression models. When the set of
features can be structued in the form of groups, Hui et al. (2015) introduced the two types of penalty
functions called MIXGL1 and MIXGL2 for MLR models, based on the structured regularization of the
group Lasso. A MM algorithm Lange (2013) for MLR with Lasso penalty can be found in Lloyd-Jones
et al. (2018), which allows to avoid matrix operations. In Khalili (2010), the author extended his MLR
regularization to the MoE setting, and provided a root-n consistent and oracle properties for Lasso and
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SCAD penalties, and developed an EM algorithm for fitting the models. However, as we will discuss
it in Section 3, this is based on approximated penalty function, and uses a Newton-Raphson procedure
in the updates of the gating network parameters, and thus requires matrix inversion.

In this paper, we consider the regularized MLE and clustering in MoE models as in Khalili (2010).
We propose a new regularized maximum likelihood estimation approach with two hybrid algorithms for
maximizing the proposed objective function. The proposed algorithms for fitting the model consist of
an Expectation-Majorization-Maximization (EMM) algorithm and an EM algorithm with a coordinate
ascent algorithm. The proposed approach does not require an approximate of the regularization term,
and the two developed hybrid algorithms, allow to automatically select sparse solutions without
thresholding.

The remainder of this paper is organized as follows. In Section 2 we present the modeling with MoE
for heterogeneous data. Then, in Section 3, we present, the regularized maximum likelihood strategy
of the MoE model, and the two proposed EM-based algorithms. An experimental study, carried out on
simulated and two real data sets, are given in Section 4. In Section 5, we discuss the effectiveness
of our method in dealing with moderate dimensional problems, and consider an experiment which
promotes its use in high-dimensional scenarios. Finally, in Section 6, we draw concluding remarks
and mention future direction.

2. Modeling with Mixture of Experts (MoE)

Let ((XXX1,YYY 1), . . . ,(XXXn,YYY n)) be a random sample of n independently and identically distributed (i.i.d)
pairs (XXX i,YYY i), (i = 1, . . . ,n) where Yi ∈X ⊂ Rd is the ith response given some vector of predictors
XXX i ∈X ⊂ Rp. We consider the MoE modeling for the analysis of a heteregeneous set of such data.
Let D = ((xxx1,y1), . . . ,(xxxn,yn)) be an observed data sample.

2.1. The model

The mixture of experts model assumes that the observed pairs (xxx,yyy) are generated from K ∈N (possibly
unknown) tailored probability density components (the experts) governed by a hidden categorical
random variable Z ∈ [K] = {1, . . . ,K} that indicates the component from which a particular observed
pair is drawn. The latter represents the gating network. Formally, the gating network is defined by the
distribution of the hidden variable Z given the predictor xxx, i.e., πk(xxx;www) = P(Z = k|XXX = xxx;www), which
is in general given by gating softmax functions of the form:

πk(xxxi;www) = P(Zi = k|XXX i = xxxi;www) =
exp(wk0 + xxxT

i wwwk)

1+
K−1
∑

l=1
exp(wl0 + xxxT

i wwwl)

(1)

for k = 1, . . . ,K−1 with (wk0,wwwT
k ) ∈Rp+1 and (wK0,wwwT

K) = (0,0) for identifiability Jiang and Tanner
(1999). The experts network is defined by the conditional densities f (yyyi|xxxi;θθθ k) which is the short
notation of f (yyyi|XXX = xxx,Zi = k;θθθ). The MoE thus decomposes the probability density of the observed
data as a convex sum of a finite experts weighted by a softmax gating network, and can be defined by
the following semi-parametric probability density (or mass) function:

f (yyyi|xxxi;θθθ) =
K

∑
k=1

πk(xxxi;www) f (yyyi|xxxi;θθθ k) (2)

that is parameterized by the parameter vector defined by θθθ = (wwwT
1 , . . . ,www

T
K−1,θθθ

T
1 , . . . ,θθθ

T
K)

T ∈ Rνθθθ

(νθθθ ∈ N) where θθθ k (k = 1, . . . ,K) is the parameter vector of the kth expert.
For a complete account of MoE, types of gating networks and experts networks, the reader is referred
to Nguyen and Chamroukhi (2018).
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The generative process of the data assumes the following hierarchical representation. First, given
the predictor xxxi, the categorical variable Zi follows the multinomial distribution:

Zi|xxxi ∼Mult(1;π1(xxxi;www), . . . ,πK(xxxi;www)) (3)

where each of the probabilities πzi(xxxi;www) = P(Zi = zi|xxxi) is given by the multinomial logistic function
(1). Then, conditional on the hidden variable Zi = zi, given the covariate xxxi, a random variable Yi is
assumed to be generated according to the following representation

YYY i|Zi = zi,XXX i = xxxi ∼ p(yyyi|xxxi;θθθ zi) (4)

where p(yyyi|xxxi;θθθ k) = p(yyyi|Zi = zi,XXX i = xxxi;θθθ zi) is the probability density or the probability mass
function of the expert zi depending on the nature of the data (xxx,yyy) within the group zi. In the following,
we consider MoE models for regression and clustering of continuous data. Consider the case of
univariate continuous outputs Yi. A common choice to model the relationship between the input xxx and
the output Y is by considering regression functions. Thus, within each homogeneous group Zi = zi,
the response Yi, given the expert k, is modeled by the noisy linear model: Yi = βzi0 +βββ

T
zi

xxxi +σziεi,
where the εi are standard i.i.d zero-mean unit variance Gaussian noise variables, the bias coefficient
βββ k0 ∈ R and βββ k ∈ Rp are the usual unknown regression coefficients describing the expert Zi = k, and
σk > 0 corresponds to the standard deviation of the noise. In such a case, the generative model (4) of
Y becomes

Yi|Zi = zi,xxxi ∼N (.;βzi0 +βββ
T
zi

xxxi,σ
2
zi
)· (5)

2.2. Maximum likelihood parameter estimation

Assume that, D = ((xxx1,yyy1), . . . ,(xxxn,yyyn)) is an observed data sample generated from the MoE (2)
with unknown parameter θθθ . The parameter vector θθθ is commonly estimated by maximizing the
observed data log-likelihood logL(θθθ)=∑

n
i=1 log∑

K
k=1 πk(xxxi;www) f (yyyi|xxxi;θθθ k) by using the EM algorithm

(Dempster et al., 1977; Jacobs et al., 1991) which allows to iteratively find an appropriate local
maximizer of the log-likelihood function. In the considered model for Gaussian regression, the
maximized log-likelihood is given by

logL(θθθ) =
n

∑
i=1

log
[ K

∑
k=1

πk(xxxi;www)N (yi;βk0 +βββ
T
k xxxi,σ

2
k )
]
. (6)

However, it is well-known that the MLE may be unstable of even infeasible in high-dimension namely
due to possibly redundant and correlated features. In such a context, a regularization of the MLE is
needed.

3. Regularized Maximum Likelihood parameter Estimation of the MoE

Regularized maximum likelihood estimation allows the selection of a relevant subset of features for
prediction and thus encourages sparse solutions. In mixture of experts modeling, one may consider
both sparsity in the feature space of the gates, and of the experts. We propose to infer the MoE model
by maximizing a regularized log-likelihood criterion, which encourages sparsity for both the gating
network parameters and the experts network parameters, and does not require any approximation,
along with performing the maximization, so that to avoid matrix inversion. The proposed regularization
combines a Lasso penalty for the experts parameters, and an elastic net like penalty for the gating
network, defined by:

PL(θθθ) = L(θθθ)−
K

∑
k=1

λk‖βββ k‖1−
K−1

∑
k=1

γk‖wwwk‖1−
ρ

2

K−1

∑
k=1
‖wwwk‖2

2. (7)
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A similar strategy has been proposed in Khalili (2010) where the author proposed a regularized ML
function like (7) but which is then approximated in the EM algorithm of the model inference. The EM
algorithm for fitting the model follows indeed the suggestion of Fan and Li (2001) to approximate the
penalty function in a some neighborhood by a local quadratic function. Therefore, a Newton-Raphson
can be used to update parameters in the M-step. The weakness of this scheme is that once a feature is
set to zero, it may never reenter the model at a later stage of the algorithm. To avoid this numerical
instability of the algorithm due to the small values of some of the features in the denominator of
this approximation, Khalili (2010) replaced that approximation by an ε-local quadratic function.
Unfortunately, these strategies have some drawbacks. First, by approximating the penalty functions
with (ε-)quadratic functions, none of the components will be exactly zero. Hence, a threshold should
be considered to declare a coefficient is zero, and this threshold affects the degree of sparsity. Secondly,
it cannot guarantee the non-decreasing property of the EM algorithm of the penalized objective
function. Thus, the convergence of the EM algorithm cannot be ensured. One has also to choose ε as
an additional tuning parameter in practice. Our proposal overcomes these limitations.

The `2 term penalty is added in our model to take into account possible strong correlation between
the features x j which could be translated especially on the coefficients of the gating network www because
they are related between the different experts, contrary to the regression coefficients βββ . The resulting
combination of `1 and `2 for www leads to an elastic net-like regularization, which enjoys similar sparsity
of representation as the `1 penalty. The `2 term is not however essential especially when the main goal
is to retrieve the sparsity, rather than to perform prediction.

3.1. Parameter estimation with block-wise EM

We propose two block-wise EM algorithms to monotonically find at least local maximizers of (7).
The E-step is common to both algorithms, while in the M-step, two different algorithms are proposed
to update the model parameters. More specifically, the first one relies on a MM algorithm, while
the second one uses a coordinate ascent to update the gating network www parameters and the experts
network βββ ’ parameters. The EM algorithm for the maximization of (7) firstly requires the construction
of the penalized complete-data log-likelihood

logPLc(θθθ) = logLc(θθθ)−
K

∑
k=1

λk‖βββ k‖1−
K−1

∑
k=1

γk‖wwwk‖1−
ρ

2

K−1

∑
k=1
‖wwwk‖2

2 (8)

where logLc(θθθ)=∑
n
i=1 ∑

K
k=1 Zik log [πk(xxxi;www) f (yyyi|xxxi;θθθ k)] is the standard complete-data log-likelihood,

Zik is an indicator binary-valued variable such that Zik = 1 if Zi = k (i.e., if the ith pair (xxxi,yyyi) is
generated from the kth expert component) and Zik = 0 otherwise. Thus, the EM algorithm for the
RMoE in its general form runs as follows. After starting with an initial solution θθθ

[0], it alternates
between the two following steps until convergence (e.g., when there is no longer a significant change
in the relative variation of the regularized log-likelihood).

3.2. E-step

The E-Step computes the conditional expectation of the penalized complete-data log-likelihood (8),
given the observed data D and a current parameter vector θθθ

[q], q being the current iteration number of
the block-wise EM algorithm:

Q(θθθ ;θθθ
[q]) = E

[
logPLc(θθθ)|D ;θθθ

[q]
]

=
n

∑
i=1

K

∑
k=1

τ
[q]
ik log [πk(xxxi;www) fk(yyyi|xxxi;θθθ k)]−

K

∑
k=1

λk‖βββ k‖1−
K−1

∑
k=1

γk‖wwwk‖1−
ρ

2

K−1

∑
k=1
‖wwwk‖2

2 (9)
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where

τ
[q]
ik = P(Zi = k|yyyi,xxxi;θθθ

[q]) =
πk(xxxi;www[q])N (yi;β

[q]
k0 + xxxT

i βββ
[q]
k ,σ

[q]2
k )

K
∑

l=1
πl(xxxi;www[q])N (yi;β

[q]
l0 + xxxT

i βββ
[q]
l ,σ

[q]2
l )

(10)

is the conditional probability that the data pair (xxxi,yyyi) is generated by the kth expert. This step therefore
only requires the computation of the conditional component probabilities τ

[q]
ik (i = 1, . . . ,n) for each

of the K experts.

3.3. M-step

The M-Step updates the parameters by maximizing the Q function (9), which can be written as

Q(θθθ ;θθθ
[q]) = Q(www;θθθ

[q])+Q(βββ ,σ ;θθθ
[q]) (11)

with

Q(www;θθθ
[q]) =

n

∑
i=1

K

∑
k=1

τ
[q]
ik logπk(xxxi;www)−

K−1

∑
k=1

γk‖wwwk‖1−
ρ

2

K−1

∑
k=1
‖wwwk‖2

2, (12)

and

Q(βββ ,σ ;θθθ
[q]) =

n

∑
i=1

K

∑
k=1

τ
[q]
ik logN (yi;βk0 + xxxT

i βββ k,σ
2
k )−

K

∑
k=1

λk‖βββ k‖1. (13)

The parameters www are therefore separately updated by maximizing the function

Q(www;θθθ
[q]) =

n

∑
i=1

K−1

∑
k=1

τ
[q]
ik (wk0 + xxxT

i wwwk)−
n

∑
i=1

log
[
1+

K−1

∑
k=1

ewk0+xxxT
i wwwk

]
−

K−1

∑
k=1

γk‖wwwk‖1−
ρ

2

K−1

∑
k=1
‖wwwk‖2

2.

(14)
We propose and compare two approaches for maximizing (12) based on a MM algorithm and a
coordinate ascent algorithm. These approaches have some advantages since they do not use any
approximate for the penalty function, and have a separate structure which avoid matrix inversion.

3.3.1. MM algorithm for updating the gating network

In this part, we construct a MM algorithm to iteratively update the gating network parameters (wk0,wwwk).
At each iteration step s of the MM algorithm, we maximize a minorizing function of the initial function
(14). We begin this task by giving the definition of a minorizing function.

Definition 3.1. (see Lange (2013)) Let F(x) be a function of x. A function G(x|xm) is called a
minorizing function of F(x) at xm iff

F(x)≥ G(x|xm) and F(xm) = G(xm|xm), ∀x.

In the maximization step of the MM algorithm, we maximize the surrogate function G(x|xm), rather
than the function F(x) itself. If xm+1 is the maximum of G(x|xm), then we can show that the MM
algorithm forces F(x) uphill, because

F(xm) = G(xm|xm)≤ G(xm+1|xm)≤ F(xm+1).

By doing so, we can find a local maximizer of F(x). If G(xm|xm) is well constructed, then we can
avoid matrix inversion when maximizing it. Next, we derive the surrogate function for Q(www;θθθ

[q]). We
start by the following lemma.
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Lemma 3.1. If x > 0, then the function f (x) =− ln(1+ x) can be minorized by

g(x|xm) =− ln(1+ xm)−
x− xm

1+ xm
, at xm > 0.

By applying this lemma and following (Lange, 2013, page 211) we have

Theorem 3.1. The function I1(www) =−
n
∑

i=1
log
[
1+

K−1
∑

k=1
ewk0+xxxT

i wwwk

]
is a majorizer of

G1(www|www[s]) =
n

∑
i=1

[
−

K−1

∑
k=1

πk(xxxi;www[s])

p+1

p

∑
j=0

e(p+1)xi j(wk j−w[s]
k j)− logCm

i +1− 1
Cm

i

]
,

where Cm
i = 1+

K−1
∑

k=1
ew[s]

k0+xxxT
i www[s]

k and xi0 = 1.

Proof. Using Lemma 3.1, I1i(w) =− log
[
1+

K−1
∑

k=1
ewk0+xxxT

i wwwk

]
can be minorized by

Gi(www|www[s]) =− log
[
1+

K−1

∑
k=1

ew[s]
k0+xxxT

i www[s]
k

]
−

K−1
∑

k=1
(ewk0+xxxT

i wwwk − ew[s]
k0+xxxT

i www[s]
k )

1+
K−1
∑

k=1
ew[s]

k0+xxxT
i www[s]

k

=− logCm
i +1− 1

Cm
i
−

K−1

∑
k=1

ew[s]
k0+xxxT

i www[s]
k

Cm
i

e(wk0+xxxT
i wwwk)−(w

[s]
k0+xxxT

i www[s]
k )·

Now, by using arithmetic-geometric mean inequality then

e(wk0+xxxT
i wwwk)−(w

[s]
k0+xxxT

i www[s]
k ) =

p

∏
j=0

exi j(wk j−w[s]
k j) ≤

p
∑
j=0

e(p+1)xi j(wk j−w[s]
k j)

p+1
· (15)

When (wk0,wwwk) = (w[s]
k0,www

[s]
k ) the equality holds.

Thus, I1i(w) can be minorized by

G1i(www|www[s]) =−
K−1

∑
k=1

ew[s]
k0+xxxT

i www[s]
k

(p+1)Cm
i

p

∑
j=0

e(p+1)xi j(wk j−w[s]
k j)− logCm

i +1− 1
Cm

i

=−
K−1

∑
k=1

πk(xxxi;www[s])

p+1

p

∑
j=0

e(p+1)xi j(wk j−w[s]
k j)− logCm

i +1− 1
Cm

i
·

This leads us to the minorizing function G1(www|www[s]) for I1(w)

G1(www|www[s]) =
n

∑
i=1

[
−

K−1

∑
k=1

πk(xxxi;www[s])

p+1

p

∑
j=0

e(p+1)xi j(wk j−w[s]
k j)− logCm

i +1− 1
Cm

i

]
·

Therefore, the minorizing function G[q](www|www[s]) for Q(www;θθθ
[q]) is given by

G[q](www|www[s]) =
n

∑
i=1

K−1

∑
k=1

τ
[q]
ik (wk0 + xxxT

i wwwk)+G1(www|www[s])−
K−1

∑
k=1

γk

p

∑
j=1
|wk j|−

ρ

2

K−1

∑
k=1

p

∑
j=1

w2
k j.
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Now, let us separate G[q](www|www[s]) into each parameter for all k ∈ {1, . . . ,K−1}, j ∈ {1, . . . , p}, we
have:

G[q](wk0|www[s]) =
n

∑
i=1

τ
[q]
ik wk0−

n

∑
i=1

πk(xxxi;www[s])

p+1
e(p+1)(wk0−w[s]

k0)+Ak(www[s]), (16)

G[q](wk j|www[s]) =
n

∑
i=1

τ
[q]
ik xi jwk j−

n

∑
i=1

πk(xxxi;www[s])

p+1
e(p+1)xi j(wk j−w[s]

k j)− γk|wk j|−
ρ

2
w2

k j +Bk j(www[s]), (17)

where Ak(www[s]) and Bk j(www[s]) are only functions of www[s].
The update of w[s]

k0 is straightforward by maximizing (16) and given by

w[s+1]
k0 = w[s]

k0 +
1

p+1
ln


n
∑

i=1
τ
[q]
ik

n
∑

i=1
πk(xxxi;www[s])

 . (18)

The function G[q](wk j|www[s]) is a concave function. Moreover, it is a univariate function w.r.t wk j. We
can therefore maximize it globally and w.r.t each coeffcient wk j separately and thus avoid matrix
inversion. Indeed, let us denote by

F [q]
k jm(wk j) =

n

∑
i=1

τ
[q]
ik xi jwk j−

n

∑
i=1

πk(xxxi;www[s])

p+1
e(p+1)xi j(wk j−w[s]

k j)− ρ

2
w2

k j +Bk j(www[s]),

hence, G[q](wk j|www[s]) can be rewritten as

G[q](wk j|www[s]) =


F [q]

k jm(wk j)− γkwk j , if wk j > 0

F [q]
k jm(0) , if wk j = 0

F [q]
k jm(wk j)+ γkwk j , if wk j < 0

.

We therefore have both F [q]
k jm(wk j)− γkwk j and F [q]

k jm(wk j)+ γkwk j are smooth concave functions. Thus,
one can use one-dimensional Newton-Raphson algorithm to find the global maximizers of these
functions and compare with F [q]

k jm(0) in order to update w[s]
k j by

w[s+1]
k j = argmax

wk j
G[q](wk j|www[s]).

The update of wk j can then be computed by a one-dimensional generalized Newton-Raphson (NR)
algorithm, which updates, after starting from and initial value w[0]

k j = w[s]
k j , at each iteration t of the NR,

according to the following updating rule:

w[t+1]
k j = w[t]

k j−
(

∂ 2G[q](wk j|www[s])

∂ 2wk j

)−1∣∣∣
w[t]

k j

∂G[q](wk j|www[s])

∂wk j

∣∣∣
w[t]

k j

,

where the first and the scalar gradient and hessian are respectively given by:

∂G[q](wk j|www[s])

∂wk j
=

{
U(wk j)− γk ,G[q](wk j|www[s]) = F [q]

k jm(wk j)− γkwk j

U(wk j)+ γk ,G[q](wk j|www[s]) = F [q]
k jm(wk j)+ γkwk j

,

and
∂ 2G[q](wk j|www[s])

∂ 2wk j
=−(p+1)

n

∑
i=1

x2
i jπk(xxxi;www[s])e(p+1)xi j(wk j−w[s]

k j)−ρ,
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with

U(wk j) =
n

∑
i=1

τ
[q]
ik xi j−

n

∑
i=1

xi jπk(xxxi;www[s])e(p+1)xi j(wk j−w[s]
k j)−ρwk j.

Unluckily, while this method allows to compute separate univariate updates by globally maximizing
concave functions, it has some drawbacks. First, we found the same behaviour of the MM algorithm
for this non-smooth function setting as in Hunter and Li (2005): once a coefficient is set to be zero, it
may never reenter the model at a later stage of the algorithm. Second, the MM algorithm can stuck
on non-optimal points of the objective function. Schifano et al. (2010) made an interesting study
on the convergence of the MM algorithms for nonsmoothly penalized objective functions, in which
they proof that with some conditions on the minorizing function (see Theorem 2.1 of Schifano et al.
(2010)), then the MM algorithm will converge to the optimal value. One of these conditions requires
the minorizing function must be strickly positive, which is not guaranteed in our method, since we use
the arithmetic-geometric mean inequality in (15) to construct our surrogate function. Hence, we just
ensure that the value of Q(www;θθθ

[q]) will not decrease in our algorithm. In the next section, we propose
updating (wk0,wwwk) by using coordinate ascent algorithm. This approach overcomes this weakness of
the MM algorithm.

3.3.2. Coordinate ascent algorithm for updating the gating network

We now consider another approach for updating (wk0,wwwk) by using coordinate ascent algorithm.
Indeed, based on Tseng (1988, 2001), with regularity conditions, then the coordinate ascent algorithm
is successful in updating www. Thus, the www parameters are updated in a cyclic way, where a coefficient
wk j ( j 6= 0) is updated at each time, while fixing the other parameters to their previous values. Hence,
at each iteration one just needs to update only one parameter. With this setting, the update of wk j is
performed by maximizing the component (k, j) of (14) given by

Q(wk j;θθθ
[q]) = F(wk j;θθθ

[q])− γk|wk j|, (19)

where

F(wk j;θθθ
[q]) =

n

∑
i=1

τ
[q]
ik (wk0 +wwwT

k xxxi)−
n

∑
i=1

log
[
1+

K−1

∑
l=1

ewl0+wwwT
l xxxi
]
−ρ

2
w2

k j. (20)

Hence, Q(wk j;θθθ
[q]) can be rewritten as

Q(wk j;θθθ
[q]) =


F(wk j;θθθ

[q])− γkwk j , if wk j > 0
F(0;θθθ

[q]) , if wk j = 0
F(wk j;θθθ

[q])+ γkwk j , if wk j < 0

.

Again, both F(wk j;θθθ
[q])− γkwk j and F(wk j;θθθ

[q])+ γkwk j are smooth concave functions. Thus, one
can use one-dimensional generalized Newton-Raphson algorithm with initial value w[0]

k j = w[q]
k j to find

the maximizers of these functions and compare with F(0;θθθ
[q]) in order to update w[s]

k j by

w[s+1]
k j = argmax

wk j
Q(wk j;θθθ

[q]),

where s denotes the sth loop of the coordinate ascent algorithm. The update of wk j is therefore
computed iteratively after starting from and initial value w[0]

k j = w[s]
k j following the update equation

w[t+1]
k j = w[t]

k j−
(

∂ 2Q(wk j;θθθ
[q])

∂ 2wk j

)−1∣∣∣
w[t]

k j

∂Q(wk j;θθθ
[q])

∂wk j

∣∣∣
w[t]

k j

, (21)
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where t in the inner NR iteration number, and the one-dimensional gradient and hessian functions are
respectively given by

∂Q(wk j;θθθ
[q])

∂wk j
=

{
U(wk j)− γk , if Q(wk j;θθθ

[q]) = F(wk j;θθθ
[q])− γkwk j

U(wk j)+ γk , if Q(wk j;θθθ
[q]) = F(wk j;θθθ

[q])+ γkwk j
, (22)

and
∂ 2Q(wk j;θθθ

[q])

∂ 2wk j
=−

n

∑
i=1

x2
i je

wk0+xT
i wwwk(Ci(wk j)− ewk0+xT

i wwwk)

C2
i (wk j)

−ρ.

with

U(wk j) =
n

∑
i=1

xi jτ
[q]
ik −

n

∑
i=1

xi jewk0+xxxT
i wwwk

Ci(wk j)
−ρwk j,

and
Ci(wk j) = 1+∑

l 6=k
ewl0+xT

i wwwl + ewk0+xT
i wwwk ,

is a univariate function of wk j when fixing other parameters. For other parameter we set w[s+1]
lh = w[s]

lh .
Similarly, for the update of wk0, a univariate Newton-Raphson algorithm with initial value w[0]

k0 = w[q]
k0

can be used to provide the update w[s]
k0 given by

w[s+1]
k0 = argmax

wk0
Q(wk0;θθθ

[q]),

where Q(wk0;θθθ
[q]) is a univariate concave function given by

Q(wk0;θθθ
[q]) =

n

∑
i=1

τ
[q]
ik (wk0 + xxxT

i wwwk)−
n

∑
i=1

log
[
1+

K−1

∑
l=1

ewl0+xxxT
i wwwl

]
, (23)

with
∂Q(wk0;θθθ

[q])

∂wk0
=

n

∑
i=1

τ
[q]
ik −

n

∑
i=1

ewk0+xxxT
i wwwk

Ci(wk0)
(24)

and
∂ 2Q(wk0;θθθ

[q])

∂ 2wk0
=−

n

∑
i=1

ewk0+xT
i wwwk(Ci(wk0)− ewk0+xT

i wwwk)

C2
i (wk0)

. (25)

The other parameters are fixed while updating wk0. By using the coordinate ascent algorithm, we have
univariate updates, and make sure that the parameters wk j may change during the algorithm even after
they shrink to zero at an earlier stage of the algorithm.

3.3.3. Updating the experts network

Now once we have these two methods to update the gating network parameters, we move on updating
the experts network parameters ({βββ ,σ2}). To do that, we first perform the update for (βk0,βk), while
fixing σk. This corresponds to solving K separated weighted Lasso problems. Hence, we choose to
use a coordinate ascent algorithm to deal with this. Actually, in this situation the coordinate ascent
algorithm can be seen as a special case of the MM algorithm, and hence, this updating step is common
to both of the proposed algorithms. More specifically, the update of βk j is performed by maximizing

Q(βββ ,σ ;θθθ
[q]) =

n

∑
i=1

K

∑
k=1

τ
[q]
ik logN (yi;βk0 +βββ

T
k xxxi,σ

2
k )−

K

∑
k=1

λk‖βββ k‖1; (26)
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using a coordinate ascent algorithm, with initial values (β [0]
k0 ,βββ

[0]
k ) = (β

[q]
k0 ,βββ

[q]
k ). We obtain closed-

form coordinate updates that can be computed for each component following the results in (Hastie
et al., 2015, sec. 5.4), and are given by

β
[s+1]
k j =

S
λkσ

(s)2
k

(
∑

n
i=1 τ

[q]
ik r[s]ik jxi j

)
∑

n
i=1 τ

[q]
ik x2

i j

, (27)

with r[s]ik j = yi − β
[s]
k0 − βββ

[s]T
k xxxi + β

[s]
k j xi j and S

λkσ
(s)2
k

(.) is a soft-thresholding operator defined by

[Sγ(u)] j = sign(u j)(|u j|− γ)+ and (x)+ a shorthand for max{x,0}. For h 6= j, we set β
[s+1]
kh = β

[s]
kh .

At each iteration m, βk0 is updated by

β
[s+1]
k0 =

∑
n
i=1 τ

[q]
ik (yi−βββ

[s+1]T
k xxxi)

∑
n
i=1 τ

[q]
ik

· (28)

In the next step, we take (w[q+2]
k0 ,www[q+2]

k ) = (w[q+1]
k0 ,www[q+1]

k ), (β [q+2]
k0 ,βββ

[q+2]
k ) = (β

[q+1]
k0 ,βββ

[q+1]
k ), rerun

the E-step, and update σ2
k according to the standard update of a weighted Gaussian regression

σ
2[q+2]
k =

∑
n
i=1 τ

[q+1]
ik (yi−β

[q+2]
k0 −βββ

[q+2]
k

T
xxxi)

2

∑
n
i=1 τ

[q+1]
ik

· (29)

Each of the two proposed algorithms is iterated until the change in PL(θθθ) is small enough. These
algorithms increase the penalised log-likelihood function (7) as shown in Appendix. Also we can
directly get zero coefficients without any thresholding unlike in Khalili (2010); Hunter and Li (2005).

The R codes of the developed algorithms and the documentation are publicly available on this link 1.
An R package will be submitted and available soon on the CRAN.

3.4. Algorithm tuning and model selection

In practice, appropriate values of the tuning parameters (λ ,γ,ρ) should be chosen. To select the tuning
parameters, we propose a modified BIC with a grid search scheme, as an extension of the criterion used
in Städler et al. (2010) for regularized mixture of regressions. First, assume that K0 ∈ {K1, . . . ,KM}
whereupon K0 is the true number of expert components. For each value of K, we choose a grid of the
tuning parameters. Consider grids of values {λ1, . . . ,λM1}, {γ1, . . . ,γM2} in the size of

√
n and a small

enough value of ρ ≈ O(logn) for the ridge turning parameter. ρ = 0.1logn can be used in practice.
For a given triplet (K,λi,γ j), we select the maximal penalized log-likelihood estimators θ̂θθ K,λ ,γ using
each of our hybrid EM algorithms presented above. Then, the following modified BIC criterion,

BIC(K,λ ,γ) = L(θ̂θθ K,λ ,γ)−DF(λ ,γ)
logn

2
, (30)

where DF(λ ,γ) is the estimated number of non-zero coefficients in the model, is computed. Finally,
the model with parameters (K,λ ,γ) = (K̃, λ̃ , γ̃) which maximizes the modified BIC value, is selected.
While the problem of choosing optimal values of the tuning parameters for penalized MoE models is
still an open research, the modified BIC performs reasonably well in our experiments.

1 https://chamroukhi.users.lmno.cnrs.fr/software/RMoE/RCode-RMoE.zip
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4. Experimental study

We study the performance of our methods on both simulated data and real data. We compare the results
of our two algorithms (Lasso+`2 (MM) and Lasso+`2 with coordinate ascent (CA)), with the following
four methods: i) the standard non-penalized MoE (MoE), ii) the MoE with `2 regularization (MoE+`2),
iii) the mixture of linear regressions with Lasso penalty (MIXLASSO), and the iv) MoE with BIC
penalty for feature selection. We consider several evaluation criteria to assess the performance of the
models, including sparsity, parameters estimation and clustering criteria.

4.1. Evaluation criteria

We compare the results of all the models for three different criteria: sensitivity/specificity, parameters
estimation, and clustering performance for simulation data. The sensitivity/specificity is defined by

– Sensitivity: proportion of correctly estimated zero coefficients;
– Specificity: proportion of correctly estimated nonzero coefficients.

In this way, we compute the ratio of the estimated zero/nonzero coefficients to the true number of
zero/nonzero coefficients of the true parameter for each component. In our simulation, the proportion
of correctly estimated zero coefficients and nonzero coefficients have been calculated for each data
set for the experts parameters and the gating parameters, and we present the average proportion of
these criteria computed over 100 different data sets. Also, to deal with the label switching before
calculating these criteria, we permuted the estimated coefficients based on an ordered between the
expert parameters. If the label switching happens, one can permute the expert parameters and the
gating parameters then replace the second one wwwper

k with wwwper
k −wwwper

K . By doing so, we ensure that the
log-likelihood will not change, that means L(θ̂θθ) = L(θ̂θθ

per
) and these parameters satisfy the initialized

condition wwwper
K = 000. However, the penalized log-likelihood value can be different from the one before

permutation. So this may result in misleading values of the sparsity criterion of the model when
we permute the parameters. However, for K = 2 both log-likelihood function and the penalized
log-likelihood function will not change since we have wwwper

1 =−www1.
For the second criterion of parameter estimation, we compute the mean and standard deviation of both
penalized parameters and non penalized parameters in comparison with the true value θθθ . We also
consider the mean squared error (MSE) between each component of the true parameter vector and the
estimated one, which is given by ‖θ j− θ̂ j‖2.
For the clustering criterion, once the parameters are estimated and permuted, the provided conditional
component probabilities τ̂ik defined in (10) represent a soft partition of the data. A hard partition of
the data is given by applying the Bayes’s allocation rule

ẑi = arg
K

max
k=1

τik(θ̂θθ),

where ẑi represents the estimated cluster label for the ith observation. Given the estimated and true
cluster labels, we therefore compute the correct classification rate and the Adjusted Rand Index (ARI).
Also, we note that for the standard MoE with BIC penalty, we consider a pool of 5× 4× 5 = 100
submodels. Our EM algorithm with coordinate ascent has been used with zero penalty coefficients and
without updating the given zero parameters in the experts and the gating network to obtain the (local)
MLE of each submodel. After that, the BIC criterion in (30) was used to choose the best submodel
among 100 model candidates.

4.2. Simulation study

For each data set, we consider n = 300 predictors xxx generated from a multivariate Gaussian distribution
with zero mean and correlation defined by corr(xi j,xi j′) = 0.5| j− j′|. The response Y |xxx is generated
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from a normal MoE model of K = 2 expert components as defined by (3) and (5), with the following
regression coefficients:

(β10,βββ 1)
T = (0,0,1.5,0,0,0,1)T ;

(β20,βββ 2)
T = (0,1,−1.5,0,0,2,0)T ;

(w10,www1)
T = (1,2,0,0,−1,0,0)T ;

and σ1 = σ2 = σ = 1. 100 data sets were generated for this simulation. The results will be presented
in the following sections.

4.2.1. Sensitivity/specificity criteria

Table 1 presents the sensitivity (S1) and specificity (S2) values for the experts 1 and 2 and the gates for
each of the considered models. As it can be seen in the obtained results that the `2 and MoE models
cannot be considered as model selection methods since their sensitivity almost surely equals zero.
However, it is obvious that the Lasso+`2, with both the MM and the CA algorithms, performs quite
well for experts 1 and 2. The feature selection becomes more difficult for the gate πk(xxx;www) since
there is correlation between features. While Lasso+`2 using MM (Lasso+`2 (MM)) may get trouble in
detecting non-zero coefficients in the gating network, the Lasso+`2 with coordinate ascent (Lasso+`2
(CA)) performs quite well. The MIXLASSO, can detect the zero coefficients in the experts but it will
be shown in the later clustering results that this model has a poor result when clustering the data. Note
that for the MIXLASSO we do not have gates, so variable “N/A" is mentioned in the results. Finally,
while the BIC provides the best results in general, it is hard to apply BIC in reality since the number
of submodels may be huge.

Method Expert 1 Expert 2 Gate
S1 S2 S1 S2 S1 S2

MoE 0.000 1.000 0.000 1.000 0.000 1.000
MoE+`2 0.000 1.000 0.000 1.000 0.000 1.000

MoE-BIC 0.920 1.000 0.930 1.000 0.850 1.000
MIXLASSO 0.775 1.000 0.693 1.000 N/A N/A

Lasso+`2 (MM) 0.720 1.000 0.777 1.000 0.815 0.615
Lasso+`2 (CA) 0.700 1.000 0.803 1.000 0.853 0.945

TABLE 1. Sensitivity (S1) and specificity (S2) results.

4.2.2. Parameter estimation

The boxplots of all estimated parameters are shown in Figures 1, 2 and 3. It turns out that the MoE and
MoE+`2 could not be considered as model selection methods. Besides that, by adding the `2 penalty
functions, we can reduce the variance of the parameters in the gate. The BIC, Lasso+`2 (MM) and
Lasso+`2 (CA) provide sparse results for the model, not only in the experts, but also in the gates.
However, the Lasso+`2 (MM) in this situation forces the nonzero parameter w14 toward zero, and this
effects the clustering result. The MIXLASSO can also detect zero coefficients in the experts, but since
this model does not have a mixture proportions that depend on the inputs, it is least competitive than
others. For the mean and standard derivation results shown in Table 2, we can see that the model using
BIC for selection, the non penalized MoE, and the MoE with `2 penalty have better results, while
Lasso+`2 and MIXLASSO can cause bias to the estimated parameters, since the penalty functions
are added to the log-likelihood function. In contrast, from Table 3, in terms of average mean squared
error, the Lasso+`2 and MIXLASSO provide a better result than MoE and the MoE with `2 penalty
for estimating the zero coefficients. Between the two Lasso+`2 algorithms, we see that the algorithm
using coordinate ascent can overcome the weakness of the algorithm using MM method: once the
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Figure 1: Boxplots of the expert 1’s parameter (β10,βββ 1)
T = (0,0,1.5,0,0,0,1)T .

coefficient is set to zero, it can reenter nonzero value in the progress of the EM algorithm. The BIC
still provides the best result, but as we commented before, it is hard to apply BIC in reality especially
for high-dimensional data, since this involves a huge collection of model candidates.
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Figure 2: Boxplots of the expert 2’s parameter (β20,βββ 2)
T = (0,1,−1.5,0,0,2,0)T .

4.2.3. Clustering

We calculate the accuracy of clustering of all these mentioned models for each data set. The results
in terms of ARI and correct classification rate values are provided in Table 4. We can see that the
Lasso+`2 (CA) model provides a good result for clustering data. The BIC model gives the best result
but always with a very significant computational load. The difference between Lasso+`2 (CA) and
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Figure 3: Boxplots of the gate’s parameter (w10,www1)
T = (1,2,0,0,−1,0,0)T .

BIC is smaller than 1%, while the MIXLASSO provides a poor result in terms of clustering. Here, we
also see that the Lasso+`2 (MM) estimates the parameters in the experts quite well. However, the MM
algorithm for updating the gate’s parameter causes bad effect, since this approach forces the non-zero
coefficient w14 toward zero. Hence, this may decrease the clustering performance.
Overall, we can clearly see the Lasso+`2 (CA) algorithm performs quite well to retrieve the actual
sparse support; the sensitivity and specificity results are quite reasonable for the proposed Lasso+`2
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Comp. True MoE MoE+`2 MoE-BIC Lasso+`2 Lasso+`2 MIXLASSO
value (MM) (CA)

0 0.010(.096) 0.009(.097) 0.014(.083) 0.031(.091) 0.026(.089) 0.043(.093)
0 −0.002(.106) −0.002(.107) −0.003(.026) 0.009(.041) 0.011(.046) 0.011(.036)

1.5 1.501(.099) 1.502(.099) 1.495(.075) 1.435(.080) 1.435(.080) 1.404(.086)
Exp.1 0 0.000(.099) 0.001(.099) 0.000(.037) 0.012(.042) 0.013(.044) 0.013(.036)

0 −0.022(.102) −0.022(.102) 0.002(.020) 0.001(.031) 0.000(.032) 0.003(.027)
0 −0.001(.097) −0.003(.097) 0.000(.045) 0.013(.044) 0.012(.043) 0.013(.040)
1 1.003(.090) 1.004(.090) 0.998(.077) 0.930(.082) 0.930(.082) 0.903(.088)
0 0.006(.185) 0.005(.184) 0.002(.178) −0.158(.183) −0.162(.177) −0.063(.188)
1 1.007(.188) 1.006(.188) 1.002(.187) 0.661(.209) 0.675(.202) 0.755(.220)
−1.5 −1.492(.149) −1.494(.149) −1.491(.129) −1.216(.152) −1.242(.139) −1.285(.146)

Exp.2 0 −0.011(.159) −0.012(.158) −0.005(.047) −0.018(.055) −0.018(.055) −0.023(.071)
0 −0.010(.172) −0.008(.171) −0.006(.079) 0.013(.061) 0.011(.059) 0.016(.075)
2 2.004(.169) 2.005(.169) 2.003(.128) 1.856(.150) 1.876(.149) 1.891(.159)
0 0.008(.139) 0.007(.140) 0.008(.053) 0.022(.062) 0.020(.060) 0.031(.086)
1 1.095(.359) 1.008(.306) 1.055(.328) 0.651(.331) 0.759(.221)
2 2.186(.480) 1.935(.344) 2.107(.438) 1.194(.403) 1.332(.208)
0 0.007(.287) 0.038(.250) −0.006(.086) 0.058(.193) 0.024(.068)

Gate 0 −0.001(.383) −0.031(.222) 0.004(.1.55) −0.025(.214) −0.011(.039) N/A
−1 −1.131(.413) −0.991(.336) −1.078(.336) −0.223(.408) −0.526(.253)
0 −0.022(.331) −0.033(.281) −0.017(.172) −0.082(.243) −0.032(.104)
0 0.025(.283) 0.016(.246) 0.005(.055) −0.002(.132) −0.007(.036)

σ 1 0.965(.045) 0.961(.045) 0.978(.046) 1.000(.052) 0.989(.050) 1.000(.053)
TABLE 2. Mean and standard derivation between each component of the estimated parameter vector of MoE, MoE+`2, BIC,
Lasso+`2 (MM), Lasso+`2 (CA) and the MIXLASSO.

Mean squared error
Comp. True MoE MoE+`2 MoE-BIC Lasso+`2 Lasso+`2 MIXLASSO

value (MM) (CA)
0 0.0093(.015) 0.0094(.015) 0.0070(.011) 0.0092(.015) 0.0087(.014) 0.0106(.016)
0 0.0112(.016) 0.0114(.017) 0.0007(.007) 0.0018(.005) 0.0022(.008) 0.0014(.005)

1.5 0.0098(.014) 0.0098(.015) 0.0057(.007) 0.0106(.012) 0.0107(.012) 0.0166(.019)
Exp.1 0 0.0099(.016) 0.0099(.016) 0.0013(.009) 0.0019(.005) 0.0021(.006) 0.0015(.005)

0 0.0108(.015) 0.0109(.016) 0.0004(.004) 0.0010(.004) 0.0001(.004) 0.0007(.003)
0 0.0094(.014) 0.0094(.014) 0.0020(.010) 0.0021(.007) 0.0020(.006) 0.0017(.008)
1 0.0081(.012) 0.0082(.012) 0.0059(.009) 0.0117(.015) 0.0116(.015) 0.0172(.021)
0 0.0342(.042) 0.0338(.042) 0.0315(.049) 0.0585(.072) 0.0575(.079) 0.0392(.059)
1 0.0355(.044) 0.0354(.044) 0.0350(.044) 0.1583(.157) 0.1465(.148) 0.1084(.130)
−1.5 0.0222(.028) 0.0221(.028) 0.0166(.240) 0.1034(.098) 0.0860(.087) 0.0672(.070)

Exp.2 0 0.0253(.032) 0.0252(.031) 0.0022(.022) 0.0033(.013) 0.0034(.017) 0.0056(.022)
0 0.0296(.049) 0.0294(.049) 0.0063(.032) 0.0039(.019) 0.0037(.020) 0.0059(.023)
2 0.0286(.040) 0.0287(.040) 0.0163(.023) 0.0432(.056) 0.0375(.050) 0.0371(.051)
0 0.0195(.029) 0.0195(.029) 0.0028(.020) 0.0043(.017) 0.0040(.015) 0.0083(.028)
1 0.1379(.213) 0.0936(.126) 0.1104(.178) 0.2315(.240) 0.1067(.125)
2 0.2650(.471) 0.1225(.157) 0.2035(.371) 0.8123(.792) 0.4890(.277)
0 0.0825(.116) 0.0641(.086) 0.0075(.040) 0.0404(.032) 0.0052(.015)

Gate 0 0.1466(.302) 0.1052(.196) 0.0239(.147) 0.0501(.050) 0.0017(.007) N/A
−1 0.1875(.263) 0.1129(.148) 0.1189(.191) 0.7703(.760) 0.2885(.295)
0 0.1101(.217) 0.0803(.164) 0.0299(.195) 0.0656(.066) 0.0120(.062)
0 0.0806(.121) 0.0610(.095) 0.0030(.030) 0.0175(.018) 0.0013(.008)

σ 1 0.0033(.004) 0.0035(.004) 0.0026(.003) 0.0027(.003) 0.0027(.003) 0.0028(.003)
TABLE 3. Mean squared error between each component of the estimated parameter vector of MoE, MoE+`2, BIC,
Lasso+`2 (MM), Lasso+`2 (CA) and the MIXLASSO.

regularization. While the penalty function will cause bias to the parameters, as shown in the results
of the MSE, the algorithm can perform parameter density estimation with an acceptable loss of
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Model C.rate ARI
MoE 89.57%(1.65%) 0.6226(.053)

MoE+`2 89.62%(1.63%) 0.6241(.052)
MoE-BIC 90.05%(1.65%) 0.6380(.053)

Lasso+`2 (MM) 87.76%(2.19%) 0.5667(.067)
Lasso+`2 (CA) 89.46%(1.76%) 0.6190(.056)
MIXLASSO 82.89%(1.92%) 0.4218(.050)

TABLE 4. Average of the accuracy of clustering (correct classification rate and Adjusted Rand Index).

information due to the bias induced by the regularization. In terms of clustering, the Lasso+`2 (CA)
works as well as two other MoE models and BIC, better than the Lasso+`2 (MM), MIXLASSO
models.

4.3. Applications to real data sets

We analyze two real data sets as a further test of the methodology. Here, we investigate the housing
data described on the website UC Irvine Machine Learning Repository and baseball salaries from
the Journal of Statistics Education (www.amstat.org/publications/jse). This was done to provide a
comparison with the work of Khalili (2010), Khalili and Chen (2007). While in Khalili and Chen
(2007) the authors used Lasso-penalized mixture of linear regression (MLR) models, we still apply
penalized mixture of experts (to better represent the data than when using MRL models). We compare
the results of each model based upon two different criteria: the average mean squared error (MSE)
between observation values of the response variable and the predicted values of this variable; we also
consider the correlation of these values. After the parameters are estimated, the following expected
value under the estimated model

E
θ̂θθ
(Y |xxx) =

K

∑
k=1

πk(xxx; ŵww)E
θ̂θθ
(Y |Z = k,xxx)

=
K

∑
k=1

πk(xxx; ŵww)(β̂k0 + xxxT
β̂ββ k),

is used as a predicted value for Y . We note that here for the real data we do not consider the MoE
model with BIC selection since it is computationally expensive.

4.3.1. Housing data

This data set concerns houses’ value in the suburbs of Boston. It contains 506 observations and
13 features that may affect the house value. These features are: Per capita crime rate by town
(x1); proportion of residential land zoned for lots over 25,000 sq.ft. (x2); proportion of non-retail
business acres per town (x3); Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
(x4); nitric oxides concentration (parts per 10 million) (x5); average number of rooms per dwelling
(x6); proportion of owner-occupied units built prior to 1940 (x7); weighted distances to five Boston
employment centres (x8); index of accessibility to radial highways (x9); full-value property-tax rate
per $10,000 (x10); pupil-teacher ratio by town (x11); 1000(Bk−0.63)2 where Bk is the proportion of
blacks by town (x12); % lower status of the population (x13). The columns of X were standardized
to have mean 0 and variance 1. The response homes in variable of interest is the median value of
owner occupied homes in $1000′s, MEDV. Based on the histogram of Y = MEDV/sd(MEDV), where
sd(MEDV) is the standard deviation of MEDV, Khalili decided to separate Y into two groups of houses
with “low” and “high” values. Hence, a MoE model is used to fit the response

Y ∼ π1(xxx;www)N (y;β10 + xxxT
βββ 1,σ

2)+(1−π1(xxx;www))N (y;β20 + xxxT
βββ 2,σ

2),
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Features MLE, σ̂ = 0.320 Lasso+`2 (Khalili), σ̂ = 0.352 Lasso+`2, σ̂ = 0.346
Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate

x0 2.23 3.39 19.17 2.16 2.84 1.04 2.20 2.82 0.79
x1 -0.12 3.80 -4.85 -0.09 - - -0.09 - -
x2 0.07 0.04 -5.09 - 0.07 - - 0.07 -
x3 0.05 -0.03 7.74 - - 0.67 - - 0.41
x4 0.03 -0.01 -1.46 - 0.05 - 0.05 0.06 -
x5 -0.18 -0.16 9.39 - - - -0.08 - -
x6 -0.01 0.63 1.36 - 0.60 -0.27 - 0.56 -
x7 -0.06 -0.07 -8.34 - - - -0.05 - -
x8 -0.20 -0.21 8.81 - -0.20 - -0.03 -0.19 -
x9 0.02 0.31 0.96 - 0.55 - - 0.60 -
x10 -0.19 -0.33 -0.45 - - - -0.01 - -
x11 -0.14 -0.18 7.06 - - 0.54 -0.10 -0.08 0.28
x12 0.06 0.01 -6.17 0.05 - - 0.05 - -
x13 -0.32 -0.73 36.27 -0.29 -0.49 1.56 -0.29 -0.57 1.05

TABLE 5. Fitted models for housing data.

where π1(xxx;www) =
ew10+xxxT www1

1+ ew10+xxxT www1
. The parameter estimates of the MoE models obtained by Lasso+`2

and MLE are given in Table 5. We compare our results with those of Khalili and the non-penalized
MoE. In Table 6, we provide the result in terms of average MSE and the correlation between the true
observation value Y and its prediction Ŷ . Our result provides a least sparse model than Khalili’s. Some
parameters in both methods have the same value. However, the MSE and the correlation from our
method are better than those of Khalili. Hence, in application one would consider the sparsity and the
prediction of each estimated parameters. Both Lasso+`2 algorithms give comparative results with the
MLE.

MoE Lasso+`2 (Khalili) Lasso+`2
R2 0.8457 0.8094 0.8221

MSE 0.1544(.577) 0.2044(.709) 0.1989(.619)
TABLE 6. Results for Housing data set.

4.3.2. Baseball salaries data

We now consider baseball salaries data set from the Journal of Statistics Education (see also Khalili
and Chen (2007)) as a further test of the methodology. This data set contains 337 observations and 33
features. We compare our results with the non-penalized MoE models and the MIXLASSO models
(see Khalili and Chen (2007)). Khalili and Chen (2007) used this data set in the analysis, which
included an addition of 16 interaction features, making in total 32 predictors. The columns of XXX were
standardized to have mean 0 and variance 1. Histogram of the log of salary shows multimodality
making it a good candidate for the response variable under the MoE model with two components:

Y = log(salary)∼ π1(xxx;www)N (y;β10 + xxxT
βββ 1,σ

2)+(1−π1(xxx;www))N (y;β20 + xxxT
βββ 2,σ

2).

By taking all the tuning parameters to zero, we obtain the maximum likelihood estimator of the model.
We also compare our result with MIXLASSO from Khalili and Chen (2007). Table 7 presents the
estimated parameters for baseball salary data and Table 8 shows the results in terms of MSE, and R2

between the true value of Y and its predicted value. These results suggest that the proposed algorithm
with the Lasso+`2 penalty also shrinks some parameters to zero and have acceptable results compared
to MoE. It also shows that this model provides better results than that of the MIXLASSO model.
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Features MLE, σ̂ = 0.277 Lasso+`2, σ̂ = 0.345 MIXLASSO, σ̂ = 0.25
Exp.1 Exp.2 Gate Exp.1 Exp.2 Gate Exp.1 Exp.2

x0 6.0472 6.7101 -0.3958 5.9580 6.9297 0.0046 6.41 7.00
x1 -0.0073 -0.0197 0.1238 -0.0122 - - - -0.32
x2 -0.0283 0.1377 0.1315 -0.0064 - - - 0.29
x3 0.0566 -0.4746 1.5379 - - - - -0.70
x4 0.3859 0.5761 -1.9359 0.4521 0.0749 - 0.20 0.96
x5 -0.2190 -0.0170 -0.9687 - - - - -
x6 -0.0586 0.0178 0.4477 -0.0051 - - - -
x7 -0.0430 0.0242 -0.3682 - - - -0.19 -
x8 0.3991 0.0085 1.7570 - 0.0088 - 0.26 -
x9 -0.0238 -0.0345 -1.3150 0.0135 0.0192 - - -
x10 -0.1944 0.0412 0.6550 -0.1146 - - - -
x11 0.0726 0.1152 0.0279 -0.0108 0.0762 - - -
x12 0.0250 -0.0823 0.1383 - - - - -
x13 -2.7529 1.1153 -7.0559 - 0.3855 -0.3946 0.79 0.70
x14 2.3905 -1.4185 5.6419 0.0927 -0.0550 - 0.72 -
x15 -0.0386 1.1150 -2.8818 0.3268 0.3179 - 0.15 0.50
x16 0.2380 0.0917 -7.9505 - - - - -0.36

x1 ∗ x13 3.3338 -0.8335 8.7834 0.3218 - - -0.21 -
x1 ∗ x14 -2.4869 2.5106 -7.1692 - - - 0.63 -
x1 ∗ x15 0.4946 -0.9399 2.6319 - - - 0.34 -
x1 ∗ x16 -0.4272 -0.4151 7.9715 -0.0319 - - - -
x3 ∗ x13 0.7445 0.3201 0.5622 - 0.0284 -0.5828 - -
x3 ∗ x14 -0.0900 -1.4934 0.1417 -0.0883 - - 0.14 -0.38
x3 ∗ x15 -0.2876 0.4381 -0.9124 - - - - -
x3 ∗ x16 -0.2451 -0.2242 -5.6630 - - - -0.18 0.74
x7 ∗ x13 0.7738 0.1335 4.3174 - 0.004 - - -
x7 ∗ x14 -0.1566 1.2809 -3.5625 -0.1362 0.0245 - - -
x7 ∗ x15 -0.0104 0.2296 -0.4348 - - - - 0.34
x7 ∗ x16 0.5733 -0.2905 3.2613 - - - - -
x8 ∗ x13 -1.6898 -0.0091 -8.7320 - 0.2727 -0.3628 0.29 -0.46
x8 ∗ x14 0.7843 -1.3341 6.2614 - 0.0133 - -0.14 -
x8 ∗ x15 0.3711 -0.4310 0.8033 0.3154 - - - -
x8 ∗ x16 -0.2158 0.7790 2.6731 0.0157 - - - -

TABLE 7. Fitted models for baseball salary data.

MoE Lasso+`2 MIXLASSO
R2 0.8099 0.8020 0.4252

MSE 0.2625(.758) 0.2821(.633) 1.1858(2.792)
TABLE 8. Results for Baseball salaries data set.

5. Discussion for the high-dimensional setting

Indeed, the developed MM and coordinate ascent algorithms for the estimation of the parameters of
our model could be slow in a high-dimensional setting since we do not have the closed-form updates
of the parameters of the gating network www at each step of the EM algorithm; while a univariate Newton-
Raphson is derived to avoid matrix inversion operations, it is still slow in high-dimension. However, as
we very recently developed it, this difficulty can be overcome by a proximal Newton algorithm. The
idea is that, for updating the parameters of the gating network www, rather than maximizing Q(www;θ [q])
which is non-smooth and non-quadratic, we maximize an approximate of the smooth part of Q(www;θ [q])
by its local quadratic form by using Taylor expansion around the current parameter estimate, Q̃(www;θ [q]).
For more details on the proximal Newton methods, we refer to Lee et al. (2006), Friedman et al.
(2010) and Lee et al. (2014). The resulting proximal function Q̃(www;θ [q]) is then maximized, by using
a coordinate ascent algorithm, but which has a closed-form update at each step, and thus also still
avoid computing matrix inversions. Hence, this new algorithm improves the running time of the EMM
algorithm with MM and coordinate ascent algorithm, and performs quite well in a high-dimensional
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setting. The R code we publicly provide also contains this version.
To evaluate the algorithm in a situation in which we have a high number of features, we consider

the Residential Building Data Set (UCI Machine Learning Repository). This data set contains 372
and 108 features with the two response variables (V-9 and V-10), which represent the sale prices and
construction costs. We choose the V-9 variable (sale prices) as the response variable to be predicted.
All the features are standardized to have zero-mean and unit-variance. We provide the results of our
algorithm with K = 3 expert components and λ = 15, γ = 5. The estimated parameters are given
in Table 9 and 10. The correlation and the mean squared error between the true value V-9 with its
prediction can be found in Table 11. These results show that the proximal Newton method performs
well in this setting, in which it provides a sparse model and competitive criteria in prediction and
clustering. We also provide the correlation and the mean squared error between those values after
clustering the data in Table 12. For the CPU times, we compare two methods: the coordinate ascent
algorithm (CA) and the proximal Newton method (PN). We test these algorithms on different data
sets. The first one is the one of 100 data sets used for the simulation study. With this data set, we run
these algorithms 10 times and the number of clusters K = 2 and K = 3.
The second data set is the baseball salaries. Finally, we also consider the residential building data set
as a further comparison with the proximal Newton method. The computer used for this work has CPU
Intel i5-6500T 2.5GHz with 16GB RAM. The obtained results are given in Table 13. We can see that
the algorithm for the residential data which has a quite high number of features, requires only few
minutes and is thus has a very reasonable speed, and for moderate dimensional problems, is very fast.

An experiment for d > n: To consider the high-dimensional setting, we take the first n = 90 observa-
tions of the residential building data with all the d = 108 features. We use a mixture of three experts
and provide the results by applying the proximal Newton method of the algorithm. The parameter
estimation results are provided in Table 16 and Table 17. The results in terms of correlation and the
mean squared error between the true value V-9 and its prediction, are given in Table 14 and Table 15.

From these Tables we can see that, in this high-dimensional setting, we still obtain acceptable
results for the regularized MoE models and the EM algorithm using the proximal Newton method is a
good tool for the parameter estimation. The running time in this experiment is about only few (∼ 8)
minutes and the algorithm is quite effective in this setting.

6. Conclusion and future work

In this paper, we proposed a regularized MLE for the MoE model which encourages sparsity, and
developed two versions of a blockwise EM algorithm to monotonically maximize this regularized
objective towards at least a local maximum. The proposed regularization does not require using
approximations as in standard MoE regularization. The proposed algorithms are based on univariate
updates of the model parameters via and MM and coordinate ascent, which allows to tackle matrix
inversion problems and obtain sparse solutions. The results in terms of parameter estimation, the
estimation of the actual support of the sparsity, and clustering accuracy, obtained on simulated and
three real data sets, confirm the effectiveness of our proposal at least for problems of moderate
dimension. Namely, the model sparsity does not include significant bias in terms of parameter
estimation nor in terms of recovering the actual clusters of the heterogeneous data. The obtained
models with the proposed approach are sparse which promote its scalability to high-dimensional
problems. The hybrid EM/MM algorithm is a potential approach. However, this model should be
considered carefully, especially for non-smooth penalty functions. The coordinate ascent approach for
maximizing the M-step, however, works quite well although, while we do not have the closed form
update in this situation. A proximal Newton extension is possible to obtain closed form solutions for
an approximate of the M-step as an efficient method that is promoted to deal with high-dimensional
data sets. First experiments on an example of a quite high-dimensional scenario with a subset of real
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Features Expert, σ = 0.0255 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x0 -0.00631 -0.01394 -0.07825 0.43542 2.40874
x1 - - 0.00599 - -
x2 0.02946 -0.00442 - - -
x3 - - 0.00849 - -
x4 -0.00776 0.00406 0.01485 - -
x5 -0.00619 -0.00759 -0.04185 -0.23943 -
x6 0.00125 0.02581 - - -
x7 - -0.01823 0.00233 - -
x8 0.02271 -0.01962 0.01964 -0.04267 -
x9 0.06822 0.00274 0.02101 - -
x10 -0.03166 -0.00008 - - -
x11 0.12789 0.05117 0.03515 - -0.91114
x12 1.10946 1.00213 0.78915 0.22049 -0.71761
x13 0.00878 -0.00647 - 0.41648 -
x14 - - - - -
x15 - - - - -
x16 -0.01495 -0.00103 0.03774 - -
x17 - - - - -
x18 - -0.03344 - - -
x19 - 0.06296 - - -
x20 0.04560 0.02466 - - -
x21 0.02368 0.03210 - - -
x22 - -0.00546 -0.00398 - -
x23 - -0.03934 - - -
x24 - -0.04612 - - -
x25 0.01205 -0.00352 - - -
x26 - - - - -
x27 - 0.00409 - - -
x28 - - - - -
x29 - - 0.00047 - -
x30 - - - - -
x31 - 0.03494 0.04131 - -
x32 - -0.00003 0.02288 - -
x33 - - - - -
x34 - - - - -
x35 - 0.01468 -0.01095 - -
x36 - - - - -
x37 - 0.00899 - - -
x38 - 0.00061 - - -
x39 -0.01694 -0.00559 - - -
x40 0.10214 0.02533 - 0.07086 -
x41 0.03770 - - - -
x42 - -0.04162 - - -
x43 - - - - -
x44 - 0.00561 0.01148 - -
x45 - 0.00770 - - -
x46 - - - - -
x47 - - - - -
x48 -0.07316 0.03138 - - -
x49 - 0.00493 -0.00183 - -
x50 - 0.01320 - - -
x51 -0.00076 -0.00041 - - 0.03819
x52 - - - - -
x53 - - - - -

TABLE 9. Fitted model parameters for residential building data (part 1).

data containing 90 observations and 108 features provide encouraging results. A future work will
consist in investigating more the high-dimensional setting, and performing additional model selection
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Features Expert, σ = 0.0255 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x54 -0.00854 0.00077 - - -
x55 - 0.00039 - - -
x56 - - -0.11177 - -
x57 - 0.00334 - - -
x58 0.04779 0.00405 0.00733 0.35226 -
x59 0.06726 0.03743 0.02988 0.08489 -0.20694
x60 0.02520 0.00128 0.01473 - -
x61 - 0.00843 - - -
x62 - 0.00034 - - -
x63 - -0.00920 0.01184 - -
x64 - 0.00002 - - -
x65 - - - - -
x66 - - - - -
x67 -0.03840 - 0.02505 - -
x68 - 0.00234 0.00238 - -
x69 - - - - -
x70 0.06026 0.01750 0.05879 - -
x71 - - - - -
x72 - -0.03636 - - -
x73 - - -0.02932 - -
x74 - - - - -
x75 -0.02725 -0.02474 - - -
x76 -0.01399 -0.16005 -0.08654 - -
x77 - 0.00526 - - -
x78 -0.05816 0.02821 - 0.01303 -0.35566
x79 - -0.00358 - 1.12522 -
x80 -0.05416 - - - -
x81 - - - - -
x82 - - 0.04329 - -
x83 - - - - -
x84 - - - - -
x85 - - - - -
x86 - 0.00783 - - -
x87 - - 0.01463 - -
x88 0.02337 0.03903 - - -
x89 -0.04720 0.00909 - - -
x90 - - - - -
x91 - - - - -
x92 -0.00070 -0.00626 -0.00458 - -
x93 - - - - -
x94 -0.00067 0.00309 - - -
x95 - -0.00925 - - -
x96 -0.00705 -0.00656 - - 0.03610
x97 - -0.00406 - - -
x98 - 0.00714 0.01911 0.06610 -
x99 - 0.00364 - - -
x100 - 0.00327 - - -
x101 - 0.02858 0.03974 - -
x102 0.01623 -0.01236 - - -
x103 - - - - -
x104 - - - - -
x105 - 0.00215 - - -
x106 -0.00006 -0.00129 - - -
x107 - 0.00851 - - -

TABLE 10. Fitted model parameters for residential building data (part 2).

experiments as well as considering hierarchical MoE and MoE for discrete data.
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Predictive criteria Number of zero coefficients
Method R2 MSE Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

Proximal Newton 0.991 0.0093(.059) 71 38 75 97 101
TABLE 11. Results for residential building data set.

Predictive criteria Number of observations
Method R2 MSE Class 1 Class 2 Class 3

Proximal Newton 0.9994 0.00064(.0018) 59 292 21
TABLE 12. Results for clustering the residential building data set.

Data No. features No. observations No. experts CA PN
Simulation 7 300 2 45.34(14.28) (s) 5.03(1.09) (s)
Simulation 7 300 3 7.94(13.22) (m) 20.52(9.23) (s)

Baseball salaries 33 337 2 17.9(15.87) (m) 46.76(21.02) (s)
Residential Data 108 372 3 N/A 3.63(0.58) (m)

TABLE 13. Results for CPU times.

Predictive criteria Number of zero coefficients
Method R2 MSE Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

Proximal Newton 0.9895 0.0204(.056) 31 60 55 106 104
TABLE 14. Results for the subset of the residential building data set.

Predictive criteria Number of observations
Method R2 MSE Class 1 Class 2 Class 3

Proximal Newton 0.9999 0.00025(.0014) 63 11 16
TABLE 15. Results for clustering the subset of residential building data set.

Appendix

The proposed EMM algorithm maximizes the penalised log-likelihood function (7). To show that the
penalized log-likelihood is monotonically improved, that is

PL(θθθ [q+1])≥ PL(θθθ [q]), (31)

we need to show that

Q(θθθ [q+1],θθθ [q])≥ Q(θθθ [q],θθθ [q]). (32)

Indeed, as in the standard EM algorithm algorithm for the non-penalised maximum likelihood
estimation, by applying Bayes theorem we have

logPL(θθθ) = logPLc(θθθ)− log p(z|D ;θθθ), (33)

and by taking the conditional expectation with respect to the latent variables z, given the observed data
D and the current parameter estimation θθθ

[q], the conditional expectation of the penalised completed-
data log-likelhood is given by:

E
[
logPL(θθθ)|D ,θθθ [q]

]
= E

[
logPLc(θθθ)|D ,θθθ [q]

]
−E

[
log p(z|D ;θθθ)|D ,θθθ [q]

]
. (34)

Since the penalised log-likelihood function logPL(θθθ) does not depend on the variables z, its expecta-
tion with respect to z therefore still unchanged and we get the following relation:

logPL(θθθ) = E
[
logPLc(θθθ)|D ,θθθ [q]

]
︸ ︷︷ ︸

Q(θθθ ,θθθ [q])

−E
[
log p

(
z|D ;θθθ

)
|D ,θθθ [q]

]
︸ ︷︷ ︸

H(θθθ ,θθθ [q])

. (35)
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Features Expert, σ = 0.0159 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x0 0.09048 0.21992 0.05460 0.73646 -0.54048
x1 - - - - -
x2 0.00837 - 0.00112 - -
x3 - - - - -
x4 0.04498 0.07325 0.00001 - -
x5 0.08075 0.00807 0.00010 - -
x6 -0.00836 - -0.02235 0.02205 -
x7 0.01337 -0.00009 -0.00922 - -
x8 0.02375 0.00443 0.00668 - -
x9 0.02194 0.00379 -0.03344 - -
x10 -0.01305 -0.00079 0.00560 - -
x11 0.12763 0.01256 0.08537 - 0.16264
x12 1.08977 0.72843 1.04263 - -
x13 0.00171 0.09792 - - -
x14 -0.03158 - - - -
x15 - - -0.00001 - -
x16 -0.02218 0.00987 -0.00527 - -
x17 - - - - -
x18 - - -0.10258 - -
x19 -0.06036 - - - -
x20 0.03513 - -0.00602 - -
x21 0.01947 0.12495 0.07810 - -
x22 -0.00347 0.01317 - - -
x23 -0.03255 -0.00125 - - -
x24 -0.06659 -0.00007 - - -
x25 0.03478 - 0.01314 - -
x26 0.01209 0.03787 -0.00287 - -
x27 - - - - -
x28 - - - - -
x29 0.06476 0.02369 -0.00461 - -
x30 -0.01017 -0.00813 0.01805 - -
x31 0.03331 - - - -
x32 -0.03870 0.01708 - - -
x33 - - - - -
x34 - - - - -
x35 0.02278 -0.02794 0.01933 - -
x36 - - - - -
x37 -0.09359 - -0.06125 - -
x38 - - -0.00356 - -
x39 -0.11611 - -0.01973 - -
x40 0.21178 0.06134 0.13879 - -
x41 0.09095 - - - -
x42 -0.03243 - - - -
x43 -0.00032 - -0.01455 - -
x44 -0.01643 - - - -
x45 -0.03152 0.01812 -0.02303 - -
x46 - - - - -
x47 - - - - -
x48 0.13661 0.00862 - - -
x49 0.04914 0.06704 - - -
x50 0.00424 - -0.02954 - -
x51 0.04225 0.05518 -0.01411 - -
x52 - - - - -
x53 -0.01697 - - - -

TABLE 16. Fitted model parameters for the subset of residential building data (part 1).

Thus, the value of change of the penalised log-likelihood function between two successive iterations
is given by:

logPL(θθθ [q+1])− logPL(θθθ [q]) =
(

Q(θθθ [q+1],θθθ [q])−Q(θθθ [q],θθθ [q])
)
−
(

H(θθθ [q+1],θθθ [q])−H(θθθ [q],θθθ [q])
)
. (36)
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Features Expert, σ = 0.0159 Gating network
Exp.1 Exp.2 Exp.3 Gate.1 Gate.2

x54 0.02922 0.00057 -0.00501 - -
x55 - - - - -
x56 - -0.02272 0.00131 - -
x57 - - - - -
x58 0.11223 - 0.05349 - -
x59 0.23868 -0.00711 0.07830 - -
x60 -0.07807 -0.05727 - - -0.02819
x61 -0.06729 - - - -
x62 -0.02121 - - - -
x63 -0.01886 0.04294 0.00548 - -
x64 -0.01265 0.02236 - - -
x65 - - - - -
x66 - - - - -
x67 -0.03609 - - - -
x68 -0.07929 0.01190 -0.00001 - -
x69 - - - - -
x70 0.09774 -0.01388 0.01683 - -
x71 - - - - -
x72 -0.08791 - - - -
x73 -0.06590 -0.13467 0.03526 - -
x74 0.05718 - - - -
x75 -0.14786 -0.03133 - - -
x76 -0.12865 -0.07620 -0.09485 - -
x77 0.04578 0.04694 - - -
x78 0.01510 0.01860 0.08887 - -
x79 -0.00755 0.00441 0.01526 - -0.56947
x80 -0.06835 - - - -
x81 - - -0.00166 - -
x82 -0.07267 - - - -
x83 -0.00061 0.02782 - - -
x84 - - - - -
x85 - - - - -
x86 -0.02223 0.02194 0.03417 - -
x87 0.00029 - - - -
x88 - - - - -
x89 -0.06311 0.03682 -0.00977 - -
x90 - - - - -
x91 - - - - -
x92 0.06938 -0.03040 -0.00542 - -
x93 - - - - -
x94 0.05246 - -0.00793 - -
x95 -0.01214 - -0.00345 - -
x96 - -0.06544 -0.00007 - -
x97 0.03763 - - - -
x98 0.04560 0.04346 0.00717 - -
x99 0.03892 - -0.01578 - -
x100 0.01633 - -0.01509 - -
x101 0.04869 0.01218 0.00076 - -
x102 -0.01996 - - - -
x103 - - - - -
x104 - - - - -
x105 -0.00248 - - - -
x106 -0.00344 -0.03221 0.01461 - -
x107 -0.00779 -0.01415 0.00106 - -

TABLE 17. Fitted model parameters for the subset of the residential building data (part 2).

As in the standard EM algorithm, it can be easily shown, by using Jensen’ inequality, that the second
term H(θθθ [q+1],θθθ [q])−H(θθθ [q],θθθ [q]) in the r.h.s of (36) is negative and we therefore just need to show
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that the first term Q(θθθ [q+1],θθθ [q])−Q(θθθ [q],θθθ [q]) is positive.
In the following, we show that Q(θθθ [q+1],θθθ [q])≥ Q(θθθ [q],θθθ [q]). First, the Q-function is decomposed

as
Q(θθθ ;θθθ

[q]) = Q(www;θθθ
[q])+Q({βββ k,σ

2
k };θθθ

[q]) (37)

and is accordingly maximized separately w.r.t. www, {βββ k} and {σ2
k }.

To update www, first we use a univariate MM algirthm to iteratively maximize the minorizing function
which satisfies

Q(www;θθθ
[q])≥ G(www|www[q]),∀www (38)

and
Q(www[q];θθθ

[q]) = G(www[q]|www[q]). (39)

In our situation, the minorizing function is concave and has a separate structure. We thus use a
one-dimensional Newton Raphson algorithm to maximize it. Thus, the solution www[q+1] guarantees

G(www[q+1]|www[q])≥ G(www[q]|www[q]) (40)

and hence we have

Q(www[q+1];θθθ
[q])≥ G(www[q+1]|www[q])≥ G(www[q]|www[q]) = Q(www[q];θθθ

[q]). (41)

Hence, the MM algorithm leads to the improvement of the value of the Q(www;θθθ
[q]) function.

For the second version of the EM algorithm which uses the coordinate ascent algorithm to update
www, we rely on the work of Tseng (1988) and Tseng (2001), where it is proved that, if the nonsmooth
part of Q(www;θθθ

[q]) has a separate structure, the coordinate ascent algorithm is successful in finding the
www[q+1] = argmax

www
Q(www;θθθ

[q]). At each step of the coordinate ascent algorithm, within the M-step of the
EM algorithm, we iteratively update the jth component, while fixing the other parameters to their
previous values:

w[q,s+1]
k j = argmax

wk j
Q(wk j;θθθ

[q,s]), (42)

s being the current iteration of the coordinate ascent algorithm. The function Q(wk j;θθθ
[q]) is concave,

and the used iterative procedure to find w[q+1]
k j is the Newton Raphson algorithm. Hence, the coordinate

ascent leads to the improvement of the function Q(www;θθθ
[q]), that is

Q(www[q+1];θθθ
[q])≥ Q(www[q];θθθ

[q]). (43)

The updates of the experts’ parameters {βββ} and {σ2} are performed by separate maximizations
of Q(βββ ,σ2;θθθ

[q]). This function is concave and has the quadratic form. Hence, the coordinate ascent
algorithm with soft-thresholding operator is successful to provide the updates

βββ
[q+1] = argmax

βββ

Q(βββ ,σ [q];θθθ
[q]), (44)

and
σ
[q+1] = argmax

σ
Q(βββ [q+1],σ ;θθθ

[q]) (45)

and thus we have
Q(βββ [q+1];θθθ

[q])≥ Q(βββ ;θθθ
[q])≥ Q(βββ [q];θθθ

[q]), (46)

and
Q(σ [q+1];θθθ

[q])≥ Q(σ ;θθθ
[q])≥ Q(σ [q];θθθ

[q]). (47)

Equations (41), (43), (46), and (47) show that (32) holds, and hence the penalised log-likelihood in
monotonically increased by the proposed algorithm.

Journal de la Société Française de Statistique, Vol. 160 No. 1 57-85
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



84 Chamroukhi, Huynh

Acknowledgements

The authors would like to thank the Région Normandie for the financial support of this research via
the research project RIN AStERiCs. The authors would also like to very much thank the anonymous
reviewers and the editor for their comments who helped to improve the manuscript.

References

Celeux, G., Maugis-Rabusseau, C., and Sedki, M. (2018). Variable selection in model-based clustering and discriminant
analysis with a regularization approach. Advances in Data Analysis and Classification. to appear in 2018 (available on
line).

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. J.
of the royal statistical society. Series B, pages 1–38.

Devijver, E. (2015). An `1-oracle inequality for the lasso in multivariate finite mixture of multivariate gaussian regression
models. ESAIM: Probability and Statistics, 19:649–670.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the
American statistical Association, 96(456):1348–1360.

Fraley, C. and Raftery, A. E. (2005). Bayesian regularization for normal mixture estimation and model-based clustering.
Technical report, Washington Univ Seattle Dept of Statistics.

Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and model-based clustering.
Journal of classification, 24(2):155–181.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent.
Journal of statistical software, 33(1):1.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models (Springer Series in Statistics). Springer
Verlag, New York.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations.
Taylor & Francis.

Hui, F. K., Warton, D. I., Foster, S. D., et al. (2015). Multi-species distribution modeling using penalized mixture of
regressions. The Annals of Applied Statistics, 9(2):866–882.

Hunter, D. R. and Li, R. (2005). Variable selection using mm algorithms. Annals of statistics, 33(4):1617.
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural computation,

3(1):79–87.
Jiang, W. and Tanner, M. A. (1999). Hierarchical mixtures-of-experts for exponential family regression models: approxima-

tion and maximum likelihood estimation. Annals of Statistics, pages 987–1011.
Khalili, A. (2010). New estimation and feature selection methods in mixture-of-experts models. Canadian Journal of

Statistics, 38(4):519–539.
Khalili, A. and Chen, J. (2007). Variable selection in finite mixture of regression models. Journal of the American Statistical

association, 102(479):1025–1038.
Lange, K. (2013). Optimization (2nd edition). Springer.
Law, M. H., Figueiredo, M. A., and Jain, A. K. (2004). Simultaneous feature selection and clustering using mixture models.

IEEE transactions on pattern analysis and machine intelligence, 26(9):1154–1166.
Lee, J. D., Sun, Y., and Saunders, M. A. (2014). Proximal newton-type methods for minimizing composite functions. SIAM

Journal on Optimization, 24(3):1420–1443.
Lee, S.-I., Lee, H., Abbeel, P., and Ng, A. Y. (2006). Efficient l1 regularized logistic regression. In AAAI, volume 6, pages

401–408.
Lloyd-Jones, L. R., Nguyen, H. D., and McLachlan, G. J. (2018). A globally convergent algorithm for lasso-penalized

mixture of linear regression models. Computational Statistics & Data Analysis, 119:19 – 38.
Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009a). Variable selection for clustering with gaussian mixture

models. Biometrics, 65(3):701–709.
Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009b). Variable selection in model-based clustering: A general

variable role modeling. Computational Statistics & Data Analysis, 53(11):3872–3882.
McLachlan, G. J. and Peel., D. (2000). Finite mixture models. New York: Wiley.
Meynet, C. (2013). An `1-oracle inequality for the lasso in finite mixture gaussian regression models. ESAIM: Probability

and Statistics, 17:650–671.
Nguyen, H. D. and Chamroukhi, F. (2018). Practical and theoretical aspects of mixture-of-experts modeling:

An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, pages e1246–n/a.
https://arxiv.org/abs/1707.03538v1.

Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine
Learning Research, 8(May):1145–1164.

Raftery, A. E. and Dean, N. (2006). Variable selection for model-based clustering. Journal of the American Statistical
Association, 101(473):168–178.

Journal de la Société Française de Statistique, Vol. 160 No. 1 57-85
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Regularized Estimation and Feature Selection in Mixtures of Experts 85

Schifano, E. D., Strawderman, R. L., Wells, M. T., et al. (2010). Majorization-minimization algorithms for nonsmoothly
penalized objective functions. Electronic Journal of Statistics, 4:1258–1299.

Snoussi, H. and Mohammad-Djafari, A. (2005). Degeneracy and likelihood penalization in multivariate gaussian mixture
models. Univ. of Technology of Troyes, Troyes, France, Tech. Rep. UTT.

Städler, N., Bühlmann, P., and Van De Geer, S. (2010). l1-penalization for mixture regression models. Test, 19(2):209–256.
Stephens, M. and Phil, D. (1997). Bayesian methods for mixtures of normal distributions.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B,

pages 267–288.
Titterington, D., Smith, A., and Makov, U. (1985). Statistical Analysis of Finite Mixture Distributions. John Wiley & Sons.
Tseng, P. (1988). Coordinate ascent for maximizing nondifferentiable concave functions. Technical report, Massachusetts

Institute of Technology, Laboratory for Information and Decision Systems].
Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of

optimization theory and applications, 109(3):475–494.
Witten, D. M. and Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical

Association, 105(490):713–726.

Journal de la Société Française de Statistique, Vol. 160 No. 1 57-85
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238


	Introduction
	Modeling with Mixture of Experts (MoE)
	The model
	Maximum likelihood parameter estimation

	Regularized Maximum Likelihood parameter Estimation of the MoE
	Parameter estimation with block-wise EM
	E-step
	M-step
	MM algorithm for updating the gating network
	Coordinate ascent algorithm for updating the gating network
	Updating the experts network

	Algorithm tuning and model selection

	Experimental study
	Evaluation criteria
	Simulation study
	Sensitivity/specificity criteria
	Parameter estimation
	Clustering

	Applications to real data sets
	Housing data
	Baseball salaries data


	Discussion for the high-dimensional setting
	Conclusion and future work
	Appendix
	Acknowledgements
	References

