Discussion
Can we trust L 2 -criteria and L 2 -losses?
[Peut-on avoir confiance dans les critères et les fonctions de perte L 2  ?]
Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 107-110.
@article{JSFS_2019__160_3_107_0,
     author = {Baraud, Yannick},
     title = {Can we trust $L_{2}$-criteria and $L_{2}$-losses?},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {107--110},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {160},
     number = {3},
     year = {2019},
     mrnumber = {4021409},
     zbl = {1431.62102},
     language = {en},
     url = {http://archive.numdam.org/item/JSFS_2019__160_3_107_0/}
}
TY  - JOUR
AU  - Baraud, Yannick
TI  - Can we trust $L_{2}$-criteria and $L_{2}$-losses?
JO  - Journal de la société française de statistique
PY  - 2019
SP  - 107
EP  - 110
VL  - 160
IS  - 3
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/JSFS_2019__160_3_107_0/
LA  - en
ID  - JSFS_2019__160_3_107_0
ER  - 
%0 Journal Article
%A Baraud, Yannick
%T Can we trust $L_{2}$-criteria and $L_{2}$-losses?
%J Journal de la société française de statistique
%D 2019
%P 107-110
%V 160
%N 3
%I Société française de statistique
%U http://archive.numdam.org/item/JSFS_2019__160_3_107_0/
%G en
%F JSFS_2019__160_3_107_0
Baraud, Yannick. Can we trust $L_{2}$-criteria and $L_{2}$-losses?. Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 107-110. http://archive.numdam.org/item/JSFS_2019__160_3_107_0/

[Birgé, 2006] Birgé, L. (2006). Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré Probab. Statist., 42(3):273–325. | Numdam | MR

[Birgé, 2014] Birgé, L. (2014). Model selection for density estimation with L 2 -loss. Probab. Theory Related Fields, 158(3-4):533–574. | MR | Zbl

[Devroye and Lugosi, 2001] Devroye, L. and Lugosi, G. (2001). Combinatorial methods in density estimation. Springer Series in Statistics. Springer-Verlag, New York. | MR | Zbl