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Some thoughts about variable selection without
information on the errors’ structure

Titre: Quelques pensées sur la sélection de variables sans information sur la structure des erreurs

Lucien Birgé1

As mentioned in Sylvain’s long and thorough study, I worked with Pascal Massart on the subject
of calibration of the penalty terms for model selection but that was actually many years ago. Since
then I worked on a somewhat different subject and forgot a large part of this old work. Reading
Sylvain’s paper reminded me of a few things and I also learned much from it in particular that
a lot of progress has been made on the subject. Although I have been interested by another
(but as we shall see not so different) type of problem, I occasionally thought about a particular
case of this old stuff, namely complete variable selection. Let me first describe the mathematical
framework that I was interested in.

One observes n real random variables Y1, . . . ,Yn with the following structure:

Yi = θi +σεi, i = 1, . . . ,n or equivalently Y = θ +σε ∈ Rn,

where the εi are i.i.d., θ ∈ Rn and σ being unknown parameters. An implicit assumption is that
the number of θi that are large is relatively small compared to n. By “large” I mean distinguish-
able from the size σ of the noise (assuming that the distribution of the εi has been suitably

normalized). The risk of an estimator θ̂ of θ is then usually measured by Eθ

[∥∥∥θ̂ −θ

∥∥∥2
]

, which

is quite reasonable when the εi ∼N (0,1) but not necessarily in a general case since, depending
on the distribution of the εi, the Euclidean distance between θ̂ and θ may not reflect the distance
(total variation or Hellinger distance) between the associated distributions P

θ̂
and Pθ of Y .

The case we studied in Birgé and Massart (2001, 2007) was that of εi ∼N (0,1). If θ belongs
to a linear subspace of Rn the natural estimator of θ is the least squares estimator. Given a subset
m of {1, . . . ,n} with cardinality |m|, we may introduce as a model the set Θm = {θ ∈ Rn |θi =
0 for i 6∈m}. The least squares method provides an estimator for each of these models and a good
way of selecting one is via penalization, penalizing the least squares on model m by a penalty
of the form Cσ |m|, proportional to the dimension of the model Θm. This estimator, with a good
choice of C, actually results in a thresholding of the observations Yi of the following form: let Tn =
Kσ
(
1+
√

2logn
)

with K > 1 and set θ̂i = Yi if |Yi| ≥ Tn, θ̂i = 0 otherwise. This is an example
of the hard-thresholding method with threshold Tn depending on n and σ and popularized by
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Donoho and Johnstone for wavelet estimators in the early 90’s. This estimator has been studied
by Donoho and Johnstone (1994) and Birgé and Massart (2001) among many others and its
optimality properties are well-known. When σ is unknown, it should be somehow estimated and
the procedure modified in a suitable way. It is in this case that Pascal and I introduced in Birgé
and Massart (2007) the concepts of minimum and optimal penalties which form the starting
point for Sylvain’s paper. The analysis of the performance of thresholding procedures and the
construction of an optimal penalty rely heavily on large deviations arguments for the εi. What
if the εi are not sub-gaussian, for instance Cauchy? And what if the true distribution of the εi is
unknown?

If σ and the distribution of εi is known, but not Gaussian, say Cauchy, the least squares estima-
tor does not coincide with the maximum likelihood estimator and an idea would be to use instead
a penalized maximum likelihood. Again, one should find a suitable method to estimate σ which
is likely to depend on the distribution of εi. Another fact which is worth noticing is that tech-
niques based on the likelihood will generally lead to a control of the Hellinger distance between

P
θ̂

and Pθ . A risk of the form Eθ

[∥∥∥θ̂ −θ

∥∥∥2
]

is not appropriate anymore. It is also well-known

that the maximum likelihood estimator is not robust. A poor modelling of the distribution of εi

may therefore lead to bad results.
An alternative approach to regression with non-Gaussian errors (including the Cauchy case)

has been introduced in Baraud (2011, Section 8) based on a variant of T-estimators and new
robust tests between two distributions. It nevertheless still suffers from limitations inherent to
T-estimation, in particular boundedness of the parameter space and does not apply to the case of
Θ = Rn.

Following Baraud’s paper, a novel approach to regression with unknown form of the errors has
been developed in Baraud et al. (2017) and Baraud and Birgé (2018) using ρ-estimators. In these
papers we explain how to design estimators of the joint distribution of the Yi by model selection,
even if σ is unknown and the density s of the εi is only approximatively known, the results being
a consequence of the natural robustness of the ρ-estimator. The idea is rather simple: discretize
the parameter σ and introduce a set Q of different guesses q for s. To each choice of σ and q,
build a robust estimator θ̂ σ ,q of θ and use a penalized method to choose one among them. In this
framework, we measure the risk of a procedure by the Hellinger distance between P

θ̂
and Pθ .

The important point here is that the penalty function we use does not depend on an unknown
parameter but only on some universal constant and known quantities. We only know an upper
bound K for this constant, which results from our computations and even if we can show in
examples that this form of penalty leads to optimal results up to constants it is quite likely that
this bound K is much too large for practical purposes and that the constant driving the penalty
should be empirically calibrated.

The use of ρ-estimators allows a considerable flexibility for estimating the distribution of
Y in this regression framework. If the distribution of εi is known, up to a scaling factor σ , as
is classically assumed, and the model is correct, it is maybe possible to define a concept of
minimal penalty corresponding to the minimal value of the universal constant in the penalty that
is required for the method to work. But this minimal penalty is likely to depend on the distribution
of εi. If this distribution is only approximatively known, the situation seems even more complex.
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Nevertheless, although the ρ-estimator is more a theoretical rather than a practical tool in
many (not all) situations, it would be interesting to know whether some fine tuning, analogous to
the one explained in Sylvain’s paper, could be done for ρ-estimators in a regression framework.
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