Discussion
A note on BIC and the slope heuristic
[Discussion sur l’article de Sylvain Arlot : « Pénalités minimales et heuristique de pente »]
Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 136-139.
@article{JSFS_2019__160_3_136_0,
     author = {Keribin, Christine},
     title = {A note on {BIC} and the slope heuristic},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {136--139},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {160},
     number = {3},
     year = {2019},
     mrnumber = {4021417},
     zbl = {1431.62118},
     language = {en},
     url = {http://archive.numdam.org/item/JSFS_2019__160_3_136_0/}
}
TY  - JOUR
AU  - Keribin, Christine
TI  - A note on BIC and the slope heuristic
JO  - Journal de la société française de statistique
PY  - 2019
SP  - 136
EP  - 139
VL  - 160
IS  - 3
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/JSFS_2019__160_3_136_0/
LA  - en
ID  - JSFS_2019__160_3_136_0
ER  - 
%0 Journal Article
%A Keribin, Christine
%T A note on BIC and the slope heuristic
%J Journal de la société française de statistique
%D 2019
%P 136-139
%V 160
%N 3
%I Société française de statistique
%U http://archive.numdam.org/item/JSFS_2019__160_3_136_0/
%G en
%F JSFS_2019__160_3_136_0
Keribin, Christine. A note on BIC and the slope heuristic. Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 136-139. http://archive.numdam.org/item/JSFS_2019__160_3_136_0/

[1] Arlot, Sylvain Minimal penalties and the slope heuristics: a survey, arXiv preprint arXiv:1901.07277 (2019)

[2] Gassiat, Elisabeth; Van Handel, Ramon Consistent order estimation and minimal penalties, IEEE Transactions on Information Theory, Volume 59 (2013) no. 2, pp. 1115-1128 | MR | Zbl

[3] Keribin, Christine Consistent estimation of the order of mixture models, Sankhyā: The Indian Journal of Statistics, Series A (2000), pp. 49-66 | MR | Zbl

[4] Keribin, Christine; Liu, Li; Popova, Tatiana; Rozenholc, Yves A mixture model to characterize genomic alterations of tumors, Journal de la SFdS, Volume 160 (2019) no. 1, pp. 130-148 | Numdam | MR | Zbl

[5] Kass, Robert E; Wasserman, Larry A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion, Journal of the american statistical association, Volume 90 (1995) no. 431, pp. 928-934 | MR | Zbl

[6] Lebarbier, Émilie; Mary-Huard, Tristan Une introduction au critère BIC: fondements théoriques et interprétation, Journal de la Société française de statistique, Volume 147 (2006) no. 1, pp. 39-57 | MR | Zbl

[7] Popova, Tatiana; Manié, Elodie; Stoppa-Lyonnet, Dominique; Rigaill, Guillem; Barillot, Emmanuel; Stern, Marc Henri Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays, Genome Biol, Volume 10 (2009) no. 11, p. R128-R128

[8] Raftery, Adrian E Bayesian model selection in social research, Sociological methodology, Volume 25 (1995), pp. 111-164

[9] Rau, Andrea; Maugis-Rabusseau, Cathy; Martin-Magniette, Marie-Laure; Celeux, Gilles Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models, Bioinformatics, Volume 31 (2015) no. 9, pp. 1420-1427

[10] Schwarz, Gideon Estimating the dimension of a model, The annals of statistics, Volume 6 (1978) no. 2, pp. 461-464 | MR | Zbl

[11] Yang, Yuhong Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation, Biometrika, Volume 92 (2005) no. 4, pp. 937-950 | MR | Zbl