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Assessing trends in vaccine efficacy
by pathogen genetic distance
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Abstract: Preventive vaccines are an effective public health intervention for reducing the burden of infectious diseases, but
have yet to be developed for several major infectious diseases. Vaccine sieve analysis studies whether and how the efficacy of a
vaccine varies with the genetics of the infectious pathogen, which may help guide future vaccine development and deployment.
A standard statistical approach to sieve analysis compares the effect of the vaccine to prevent infection and disease caused by
pathogen types defined dichotomously as genetically near or far from a reference pathogen strain inside the vaccine construct.
For example, near may be defined by amino acid identity at all amino acid positions considered in a multiple alignment and
far defined by at least one amino acid difference. An alternative approach is to study the efficacy of the vaccine as a function
of genetic distance from a pathogen to a reference vaccine strain where the distance cumulates over the set of amino acid
positions. We propose a nonparametric method for estimating and testing the trend in the effect of a vaccine across genetic
distance. We illustrate the operating characteristics of the estimator via simulation and apply the method to a recent preventive
malaria vaccine efficacy trial.
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1. Introduction

Over the past century, disease burden due to infectious pathogens has been substantially reduced by
preventive vaccines. However, many existing vaccines are only partially efficacious, a fact that may be
explained in part by genetic heterogeneity of pathogens. Whereas vaccines are typically constructed
using only one or several specific pathogen sequences, pathogens may exhibit broad genetic heterogene-
ity. Thus, the vaccine may stimulate immune responses that are protective against infection or disease
caused by pathogens with these few sequences, but may not confer protection more broadly, leading to
reduced overall efficacy. Therefore, it is often informative to study whether and how the efficacy of a
partially effective vaccine varies by pathogen genetics.

A common analogy used to describe the protective mechanism of vaccines is to imagine a vaccine as
a sieve: the vaccine blocks infection or disease caused by some genotypes of pathogens, but lets others
through. Equivalently, the sieve may be regarded as the latent immune response elicited by vaccination,
which may differ based on pathogen genotypes and may impact risk of infection or disease. These
analogies have led to the study of vaccine efficacy as a function of pathogen genetics to be referred to as
vaccine sieve analysis (Gilbert et al., 1998, 2001). A vaccine is said to exhibit a sieve effect at a particular
genetic region of the pathogen if the vaccine is differentially efficacious against pathogens depending on
their amino acid sequence in that region. Identification of sieve effects may help guide the selection of
antigens to include in future multivalent vaccines.

It is common practice in sieve analysis to compare binary categories of genetic sequences, such as
the vaccine’s efficacy for preventing infection or disease caused by (a) pathogens that are fully matched
to the vaccine in a particular region, i.e., have the same genetic sequence versus (b) pathogens that are
mismatched to the vaccine in this region, i.e., have at least one amino acid difference, (e.g., Rolland
et al. (2012); Neafsey et al. (2015)). We expect that if a sieve effect is present, (a) will be greater than
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(b), indicating that the vaccine works better against matched than mismatched pathogens. Under a bi-
nary categorization, many genotypes are combined in the mismatched category: the category includes
pathogens with a single amino acid that differs from the vaccine, as well as pathogens with many amino
acids that differ from the vaccine. An alternative approach is to study how vaccine efficacy depends
on genetic distance from the vaccine, which can be helpful for better understanding mechanisms of
protection associated with antibody epitopes in the selected region. This approach can help overcome
the common problem that, although a large number of discrete genotypes exist, there are often too-few
infection or disease endpoints of individual genotypes to reliably assess vaccine efficacy against each
genotype. Several methodologies have been proposed for estimating genotype-specific vaccine efficacy
with genotypes defined by genetic distance from the vaccine (Gilbert et al., 2008; Sun et al., 2009, 2012;
Juraska and Gilbert, 2013, 2016). Whereas most approaches have developed tests centered around pa-
rameters that describe the vaccine’s effect on the hazard or instantaneous risk of disease or infection
acquisition, Gilbert et al. (2008) studies the vaccine’s effect on cumulative risk of disease or infection as
a function of genetic distance, which may be more relevant for public health decision making in the com-
mon setting of waning vaccine efficacy. We propose a new approach to studying the vaccine’s effect on
cumulative risk as a function of genetic distance. Our approach differs from that of Gilbert et al. (2008)
in several ways. Gilbert and colleagues focused on nonparametric smoothing for a continuous distance,
while our approach treats distance as an ordered count with many categories and avoids nonparametric
smoothing. Our approach allows for participant dropout to depend on measured characteristics, whereas
the approach of Gilbert and colleagues assumed random censoring. Finally, our approach lends itself to
a causal interpretation under assumptions, whereas that of Gilbert et al. (2008) does not.

Our study is motivated by a Phase III randomized, controlled trial of the RTS,S/AS01 vaccine (hence,
RTS,S), which, from a regulatory perspective, is the most advanced vaccine candidate for malaria pre-
vention. Malaria is the clinical disease associated with infection by the Plasmodium parasite. The para-
site has a complicated life-cycle, which involves stages in the human blood and liver, as well as stages
in a mosquito host. The RTS,S vaccine consists of a single antigen: a portion of the circumsporozoite
protein (CS protein) found on the surface of the Plasmodium falciparum parasite during the human
blood phase of its life-cycle. The vaccine reduced the average instantaneous risk of clinical malaria over
12 months by an estimated 63% in 5–17 month old children (RTS,S Clinical Trials Partnership, 2011;
Agnandji et al., 2012) and pilot implementation programs are disseminating the vaccine in areas of high
malaria transmission (WHO, 2016). The protective mechanism of the vaccine is incompletely under-
stood and differing hypotheses exist regarding how immunity is mediated through immune responses.
We are thus motivated to study how vaccine efficacy varies as a function of genetic distance to contribute
to scientific understanding of the immune mechanisms associated with the RTS,S vaccine.

The remainder of the article is organized as follows. In Section 2, we introduce notation, formalize
our definition of a sieve effect, and define a parameter to describe the trend in vaccine efficacy as a
function of genetic distance. In Section 3, we discuss estimation of sieve effects and inference for the
trend parameter. In Section 4, we include a simulation study and in Section 5 we analyze the RTS,S data.
We conclude with a discussion.

2. Notation and parameter of interest

Data typical of vaccine sieve analysis are generated as follows. Trial participants are enrolled and base-
line covariates W are measured. Participants are subsequently randomly assigned to either an active
vaccine (Z = 1) or a control vaccine (Z = 0). The random assignment could depend on covariates, as
in the RTS,S/AS01 trial, where vaccine assignment was randomized within each of eleven study sites.
Participants are followed for a fixed study period and monitored for the occurrence of a study endpoint,
such as pathogen infection or clinical disease with documentation of pathogen infection. We use T to
denote the time from baseline until the first endpoint. We assume that T takes only a finite-number of
values, as is the case if T corresponds to days until first endpoint. Participants who do not experience an
endpoint are followed until completion of the study at a pre-specified time τ . It is common in trials with
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longitudinal follow-up that some participants are right-censored before τ . We use U to denote the time
until last follow-up. We set U = τ for participants who do not experience a study endpoint by τ . For each
observed endpoint, we obtain the genetic sequence of the pathogen at the time of the endpoint. Based
on a multiple alignment of pathogen amino acid sequences from subjects with the failure event, we use
J ∈ {1, . . . ,K +1} to categorize sequences based on their genetic distance from the vaccine antigen in a
genetic region of interest comprised of K amino acids. Sequences are categorized so that a categorization
of J−1 corresponds to endpoints with genetic distance J. For example, we use J = 1 to denote sequences
that are fully matched to the vaccine along the entire region of interest (i.e., genetic distance of zero),
J = 2 for sequences with genetic distance of one, and so on. Due to censoring, we do not observe T ,
U , and J for all participants; instead, we observe T̃ := min(T,U) and ∆J, where ∆ := I(T̃ = T ). The
observed data are assumed to be independent and identically distributed copies of O := (W,Z, T̃ ,∆,∆J).

For our developments, it is useful to alternatively express the observed data in terms of discrete
counting processes. Specifically, we write O =

(
W,Z,{N j(t),C(t) : j = 0, . . . ,K and t = 1, ...,τ}

)
, where

for j = 0, . . . ,K, N j(t) := I(T̃ ≤ t,∆J = j + 1), and C(t) := I(T̃ ≤ t,∆ = 0). In words, N j(t) is an
indicator that an observed endpoint occurred prior to or at time t, and that the pathogen associated with
endpoint had j+ 1 distance from the vaccine insert. Similarly, C(t) is an indicator that right-censoring
has occurred prior to or at time t. We will also use the shorthand N•(t) to simultaneously refer to N j(t) for
all j = 0, . . . ,K; for example, we write N•(t) = 0 to denote that N0(t) = 0, . . . ,NK(t) = 0. By convention,
if a participant has an endpoint with genetic distance k at time s, then we set Nk(t) = 1 for all t > s,
N j(t) = 0 for j 6= k and t > s, and C(t) = 0 for all t ≥ s. If a participant is censored at time s, we
arbitrarily set N•(t) = 0 for all t > s. We denote by P0 the true distribution of O and denote by M our
statistical model, which we take to be nonparametric. However, our theoretical developments apply to
any model that makes assumptions about the probability of receiving vaccine given covariates and the
probability of censoring given vaccine status and covariates.

We define our causal parameter of interest using a structural causal model (Pearl, 2009). We assume
that each component of the observed data structure is a function of a set of observed parent variables
and an unmeasured exogenous error term. The observed parent of Z is W . For t = 1, . . . ,τ , the observed
parents of N j(t) are W , Z, C(t−1), and N•(t−1), and the observed parents of C(t) are W , Z, C(t−1) and
N•(t). We denote by Pz

0 the distribution the data would have under an intervention that sets Z = z (e.g.,
assigning vaccine to all participants) and sets C(t) = 0 for t = 1, . . . ,τ−1 (i.e., assigning all participants
to remain under study). We refer to this distribution as the post-intervention distribution and define Nz

• (t)
to be a counterfactual random variable with this distribution. The counterfactual parameter

Fz
j,0(τ) := EPz

0
{Nz

j(τ)} (1)

is the proportion of participants who experience an endpoint with genetic distance j from the vaccine
antigen by time τ if all participants are assigned Z = z and remain under study until τ . A typical summary
of the causal effect of the vaccine relative to the control vaccine for preventing endpoints with genetic
distance j is genotype-specific vaccine efficacy VE j,0(τ) := 1−F1

j,0(τ)/F0
j,0(τ). Values of VE j,0(τ) near

to one indicate reduced incidence of endpoints caused by a pathogen of genetic distance j. Note that the
scale of VE j,0(τ) ∈ (−∞,1] is not symmetric, so we instead focus on a parameter with a symmetric
scale, the log-ratio of counterfactual cumulative incidence control vs. vaccine,

L j,0(τ) := log
{F0

j,0(τ)

F1
j,0(τ)

}
. (2)

Values of L j,0(τ) greater than zero indicate a higher incidence of j-distance endpoints when control
vaccine is assigned compared to when the active vaccine is assigned. Large positive values of L j,0(τ)
indicate the vaccine works well at preventing endpoints with distance j from the vaccine. Furthermore,
L j,0(τ) can be related back to vaccine efficacy, VE j,0(τ) = 1− exp{−L j,0(τ)}.

We are interested in testing the null hypothesis that L j,0(τ) is the same for all j = 0, . . . ,K. One
approach for testing this hypothesis is to estimate L j,0(τ) for j = 0, . . . ,K, test each pairwise null hy-
pothesis L j,0 = Lk,0 for j = 0, . . . ,K and k 6= j, and perform a multiplicity correction to properly control
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the type-one error rate. However, if K is large, there will be many pairwise comparisons and multiplicity
corrections may result in a test with low overall power to detect sieve effects. Instead, we propose to test
for a trend in the effect across genetic distances. We expect that if there is a sieve effect present in the
genetic region under study, then L j,0(τ) will be monotone non-increasing in j. That is, the vaccine will
work best against endpoints that are genetically similar to the vaccine antigen with efficacy decreasing
as endpoints become less similar to the vaccine. Thus, we would like to design a test that has high power
under this alternative hypothesis. To that end, we consider the parameter

(α0,β0) := argmin(α,β )

K

∑
j=0

ω j

{
L j,0(τ)−α−β j

}2

, (3)

where ω := (ω j : j) is a user-specified vector of positive weights. We discuss choices of weight function
in Section 3.4. This parameter equals the weighted L2 projection of the true function describing how
L j,0(τ) varies with j onto a linear working model. Notice that the linear working model is truly a working
model in the sense that the definition of the parameter does not depend on the true function being linear.
The parameter β0 merely provides a useful summary of the trend in the vaccine’s effect across genetic
distance. In particular, note that β0 = 0 corresponds with the null hypothesis of interest, that L j,0(τ) is
the same for all j = 0, . . . ,K, while values of β0 less than 0 indicate decreasing efficacy with increasing
distance. Our goal is to estimate β0 and design a test of the null hypothesis that β0 = 0.

3. Identification, estimation and inference

3.1. Identification

Our approach to estimating β0 is to estimate the counterfactual cumulative incidence Fz
j,0(τ) for z = 0,1

and j = 0, . . . ,K. Subsequently, these estimates are plugged into (2) and (3) to obtain estimates of L j,0
and (α0,β0), respectively. The counterfactual cumulative incidence Fz

j,0(τ) may be estimated using the
observed data under the following assumptions:

1. (consistency) Nz
j(t) = N j(t) if Z = z,C(t−1) = 0 for t = 1, . . . ,τ−1;

2. (no interference) the counterfactual outcome for participant i, Nz
j,i(τ) depends only on the treat-

ment assignment for patient i;

3. (sequential randomization) Nz
j(t) ⊥ Z | W and Nz

j(t) ⊥ C(t − 1) | Z = z,N•(t − 1),W , for t =
1, . . . ,τ;

4. (positivity) P0(Z = z |W ) and P0(C(t − 1) = 0 | Z = z,C(t − 2) = 0,N•(t − 2) = 0,W ) for t =
1, . . . ,τ−1 are each strictly greater than zero with probability one.

The first two assumptions are fundamental in order to ensure that the counterfactual endpoints are
well defined. The consistency assumption essentially says that the hypothetical intervention that assigns
vaccine and no censoring does not fundamentally alter the way the vaccine works. Thus, the outcome we
see in the observed data is the same outcome we would have seen under this hypothetical intervention.
The assumption of no interference is often dubious in infectious disease settings, where the infection
status of a given participant might depend on whether or not their family and friends also received
the vaccine (Hudgens and Halloran, 2008). Given the complicated life cycle of malaria, it is uncertain
the degree to which the assumption of no interference may have been violated in the RTS,S trial. We
proceed as though this assumption approximately holds, leaving to future work the development of
methodologies which fully relax this assumption. The sequential randomization assumption states that
there are no unmeasured confounders of vaccine assignment nor of censoring. The former is guaranteed
by randomization of vaccine assignment in clinical trials, while the latter is generally not testable based
on observed data. Instead, we must hope that the covariates W collected are sufficiently rich so as to
include all possible variables that might influence both a participant’s risk of the endpoint and her/his
propensity to drop out of the trial. The positivity assumption states that there are no groups of participants

Journal de la Société Française de Statistique, Vol. 161 No. 1 164-175
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



168 Benkeser, Juraska, Gilbert

with zero probability of receiving the vaccine and remaining uncensored. Because this is an assumption
on the observed data distribution P0, this assumption can be studied empirically (Petersen et al., 2010).

If these assumptions hold, then we can estimate counterfactual cumulative incidence by estimating

Fz
j,0(τ) =

∫ ( τ

∑
t=1

[
λ

z
j,0(t)(w)

t−1

∏
s=1

{
1−λ

z
•,0(s)(w)

}])
dG0(w) , (4)

where for t = 1, . . . ,τ , we define λ
z
j,0(t)(w) := P0(N j(t) = 1 | Z = z,C(t−1) = 0,N•(t−1) = 0,W = w),

λ
z
•,0(t)(w) := ∑

K
j=0 λ j,0(t)(w), and G0(w) := P0(W ≤ w). We refer to λ

z
j,0 as the conditional genotype-

specific hazard function, λ
z
•,0 as the conditional total hazard function, and G0 as the distribution of base-

line covariates. The key to proving (4) is that for t = 1, . . . ,τ , under sequential randomization

Pz
0(N

z
j(t) | Z = z,C(t−1) = 0,Nz

• (t−1) = 0,W ) = P0(N(t) | Z = z,C(t−1) = 0,N•(t−1) = 0,W ) .

(5)
That is, the covariate-conditional cause-specific hazard function for the counterfactual counting process
is equal to the covariate-conditional cause-specific hazard function for the observed counting process.
Intuitively, if W contains all information about meaningful differences between participants with respect
to their probability of endpoints and censoring, then within each stratum defined by W at a given time,
there are no meaningful differences (with respect to the probability of experiencing an endpoint) between
participants who have previously dropped out of the trial and those who remain. Thus, the counterfactual
probability of an endpoint at the next time point in each stratum is identical to the observed data proba-
bility of an endpoint at the next time point. Notice that the positivity assumption is required in order that
the right-hand-side of (5) is well-defined.

Once the equivalence of counterfactual and observed data hazard functions is established, all that
remains is to relate the observed data hazard function to cumulative incidence. Toward that end, it is
helpful to enumerate the possible ways that an endpoint with genetic distance j may be observed by time
τ given vaccine assignment Z = z and covariates W = w. Such an endpoint may be observed at the first
time point, which occurs with probability λ

z
j,0(1)(w). The endpoint may also be observed to occur at the

second time point, in which case no endpoint of any type must have occurred at the first time point. Given
no endpoint at the first time point, the probability of an event at the second time point is λ

z
j,0(2)(w), while

the probability of no endpoint at the first time point is 1−λ
z
•,0(1)(w). Thus, the probability of observing

a j-distance endpoint at the second time is λ
z
j,0(2)(w){1−λ

z
•,0(1)(w)} and the cumulative probability of

observing an endpoint by the second time is λ
z
j,0(1)(w)+λ

z
j,0(2)(w){1−λ

z
•,0(1)(w)}. The summation

in (4) is thus made plain: the t-th term in the sum is the probability of observing a j-distance endpoint at
t given no previous endpoint, λ

z
j,0(t)(w), multiplied by the probability that no endpoint of any distance

was observed prior to t, ∏
t−1
s=1{1−λ

z
•,0(s)(w)}. The sum therefore yields the cumulative probability of

j-distance events in participants with Z = z and W = w, while the integral averages these covariate-
conditional probabilities with respect to the distribution of covariates in the participant population.

3.2. Estimation

Equation (4) implies that an estimate of cumulative incidence may be obtained by estimating λ
z
j,0, λ

z
•,0,

and G0 and substituting these estimates into (4). If covariates are low-dimensional and discrete, then we
can use empirical estimates for each of these components. For t = 1, . . . ,τ we define dNz

j(t)(w) := I(Z =
z,C(t− 1) = 0,N•(t− 1) = 0,N j(t) = 1,W = w) and nz

w(t) := ∑
n
i=1 I(Zi = z,Ci(t− 1) = 0,N•,i(t− 1) =

0,Wi = w). Empirical estimates of the conditional genotype-specific and total hazard at time t = 1, . . . ,τ
can be computed respectively as

λ
z
j,n(t)(w) =

1
nz

w(t)

n

∑
i=1

dNz
j,i(t)(w) and λ

z
•,n(t)(w) =

K

∑
j=0

λ
z
j,n(t)(w) .
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Similarly, we may use empirical estimates of the distribution of baseline covariates,

Gn(w) :=
1
n

n

∑
i=1

I(Wi = w) .

Together, these empirical estimates of the hazard functions and baseline covariate distribution give an
estimate of cumulative incidence:

Fz
j,n(τ) =

1
n

n

∑
i=1

(
τ

∑
t=1

[
λ

z
j,n(t)(Wi)

t−1

∏
s=1

{
1−λ

z
•,n(s)(Wi)

}])
. (6)

An estimate L j,n(τ) of L j,0(τ) may be computed for each j = 0, . . . ,K by computing (6) for j =
0, . . . ,K and z = 0,1 and substituting into (2). An estimate of (α0,β0) can be computed by substituting
L j,n(τ) into (3),

(αn,βn) := argminα,β

K

∑
j=0

ω j

{
L j,n(τ)−α−β j

}2

,

which can be computed explicitly. To wit, we define

XXX :=


1 0
1 1
...

...
1 K

 , ΩΩΩ :=


ω0 0 . . . 0
0 ω1 . . . 0
...

...
. . .

...
0 0 . . . ωK

 , and LLLn :=


L0,n(τ)
L1,n(τ)

...
LK,n(τ)

 ,

and note that (αn,βn)
ᵀ = SSSLLLn, where

SSS := (XXXᵀ
ΩΩΩXXX)−1XXXᵀ

ΩΩΩ . (7)

3.3. Inference

In this section, we establish an asymptotic distribution for βn, which serves as the basis for con-
struction of Wald-style confidence intervals and hypothesis tests. We begin by establishing asymp-
totic linearity of Fz

j,n(τ) for a given j,z. We show that asymptotic linearity immediately im-
plies a joint distribution for FFFn(τ) := (F0

0,n(τ),F
1

0,n(τ), . . . ,F
0

K,n(τ),F
1

K,n(τ))
ᵀ, an estimator of FFF0 :=

(F0
0,0(τ),F

1
0,0(τ), . . . ,F

0
K,0(τ),F

1
K,0(τ))

ᵀ. We subsequently use this joint distribution and the delta method
to derive an asymptotic distribution for βn.

By definition, an estimator F̂z
j,n(τ) of Fj,0(τ) is asymptotically linear if F̂z

j,n(τ) − Fz
j,0(τ) =

1
n ∑

n
i=1 D0(Oi)+ oP(n−1/2), where D0 is a mean-zero, finite-variance function of the observed data that

is referred to as the influence function of F̂z
j,n(τ) (Hampel, 1974). The central limit theorem implies that

n1/2{F̂z
j,n(τ)−Fz

j,0(τ)} converges in distribution to a normally distributed random variable with mean
zero and variance E0{D0(O)2}. In previous work, we have shown that Fz

j,n(τ) is asymptotically linear
and have derived its influence function (Benkeser et al., 2018). We restate those results here. Define
ζ

z
0(w) := P0(Z = z |W = w) as the conditional probability of vaccine and for t = 1, . . . ,τ − 1 define

π
z
0(t)(w) := P0(C(t) = 0 | Z = z,C(t−1) = 0,N(t) = 0,W = w) as the conditional hazard of censoring.

Define

Az
0(t)(o) :=

I(z = 1,n•(t−1) = 0,c(t−1) = 0)
ζ

z
0(w)∏

t−1
s=1 π

z
0(s)(w)

,

Bz
j,0(t)(w) :=

t0

∑
s=t+1

[
λ

z
j,0(s)(w)

s−1

∏
m=t+1

{
1−λ

z
•,0(m)(w)

}]
.
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The influence function of Fz
j,n(τ) is

Dz
j,0(o) :=

τ

∑
t=1

(
Az

0(t)(o){1−Bz
j,0(t)(w)}{n j(t)−λ

z
j,0(t)(w)} −

Az
0(t)(o)B

z
j,0(t)(w)

[ K

∑
i=1
i 6= j

{
ni(t)−λ

z
i,0(t)(w)

}])
+Bz

j,0(0)(w)−Fz
j,0(τ) .

(8)

Obtaining the joint distribution of several asymptotically linear estimators is straightforward: by the
asymptotic linearity of each component estimators of FFFn(τ),

n1/2{FFFn(τ)−FFF0(τ)}= n1/2


 F0

0,n(τ)
...

F1
K,n(τ)

−
 F0

0,0(τ)
...

F1
K,0(τ)


=


1

n1/2

n
∑

i=1
D0

0,0(Oi)+oP(1)

...
1

n1/2

n
∑

i=1
D1

K,0(Oi)+oP(1)

 .

(9)
By the multivariate central limit theorem, (9) converges in distribution to a mean-zero multivariate nor-
mal distribution with covariance matrix E0{DDD0(O)DDDᵀ

0(O)} where DDD0 := (D0
0,0, D1

0,0, . . . , D0
K,0, D1

K,0)
ᵀ.

Based on this joint distribution, we can use the delta method to derive a distribution for βn. We use
SSS[i, j] to denote the (i, j) entry in SSS, as defined in (7), and note that β0 = h(FFF0), where

h(FFF0) :=
K

∑
j=0

SSS[2, j+1] log
{F0

j,0(τ)

F1
j,0(τ)

}
.

The delta method implies that n1/2(βn−β0) converges in distribution to a mean-zero normally distributed
variate with variance

σ
2
0 := ∇h(FFF0)

ᵀE0{DDD0(O)DDDᵀ
0(O)}∇h(FFF0) , (10)

where ∇h is the gradient of h,

∇h(FFF0) =

(
SSS[2,1]

F0
0,0(τ)

, −
SSS[2,1]

F1
0,0(τ)

, . . . ,
SSS[2,K+1]

F0
K,0(τ)

, −
SSS[2,K+1]

F1
K,0(τ)

)ᵀ

.

A consistent estimate of σ2
0 can be computed by substituting the gradient evaluated at FFFn and es-

timated influence function into (10). Specifically, we define Dz
j,n to be the estimated influence func-

tion that substitutes λ
z
j,n, λ z

•,n, and empirical estimates of ζ0 and {πz
0(t) : t} into (8). We additionally

define DDDn := (D0
0,n,D

1
0,n, . . . ,D

0
K,n,D

1
K,n)

ᵀ and FFFn := (F0
0,n,F

1
0,n, . . . ,F

0
K,n,F

1
K,n)

ᵀ. An estimate of σ2
0 is

σ2
n := ∇h(FFFn)

ᵀ[n−1
∑

n
i=1{DDDn(Oi)DDD

ᵀ
n(Oi)}]∇h(FFFn). This variance estimate may be used to construct

asymptotic 100(1− α)% confidence intervals of the form βn ± z1−α/2n−1/2σn, where z1−α/2 is the
1−α/2 quantile of the standard normal distribution. Similarly, two-sided level α Wald-style hypothesis
tests of the null hypothesis that β0 = 0 may be performed by rejecting the null hypothesis whenever
|n1/2βn/σn|> z1−α/2.

Remark: While not the focus of the present work, if W features many discrete components, then the
empirical estimator will likely have high variance and perform poorly in finite samples. If W contains
continuous-valued variates, then the stratified estimator cannot be constructed without some discretiza-
tion of covariates, which risks incurring bias. In these cases, rather than empirical hazard estimators,
we may prefer instead regression-based hazard functions that borrow information over time and across
covariate levels. The bias-variance tradeoff for the hazard regression may be optimized through the use
of cross-validated estimator selection or by regression stacking, also known as super learning (Wolpert,
1992; Breiman, 1996; van der Laan et al., 2007). This approach allows for pre-specification of a large

Journal de la Société Française de Statistique, Vol. 161 No. 1 164-175
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



Trends in efficacy by genetic distance 171

number of candidate regressions, which can include parametric regression as well as adaptive regres-
sion approaches. Cross-validation is used to estimate the convex combination of candidate regression
estimators that optimizes a user-selected risk criteria. Under assumptions, the selected combination of
regression functions estimates the true hazard function essentially as well as the unknown best com-
bination of regression function estimates (van der Laan et al., 2004). Stitelman et al. (2011) discusses
super learning in the context of estimating hazard functions. We note, however, that if these techniques
are used instead of empirical estimators in (6), FFFn is no longer asymptotically linear and performing
valid inference for estimates of β0 is challenging. Techniques from the semiparametric efficiency theory
literature, such as targeted minimum loss-based estimation (van der Laan and Rubin, 2006), may be
used to modify initial hazard estimates in such a way that the estimator (6) based on the modified hazard
estimators is asymptotically linear. Benkeser et al. (2018) discusses targeted minimum loss-based esti-
mation in this context. These methods are implemented in the R package survtmle freely available from
the Comprehensive R Archive Network (Benkeser and Hejazi, 2017).

3.4. Choice of weights

We now turn to selection of the weight matrix ΩΩΩ. At many amino acid positions, a specific residue is
required for biological viability of the pathogen, and, at positions that tolerate multiple residues, viable
residues typically have different associations with pathogen fitness. Because of these physiological con-
straints, endpoints with certain genetic distances may be uncommon. Therefore, we may wish to give
more weight to genetic distances that are commonly observed in the population of interest, for example,
by weighting estimates of L j,0 proportional to the inverse asymptotic covariance matrix of an efficient
estimator of LLL0 := (L0,0, . . . ,LK,0)

ᵀ. If this matrix were known, the efficiency bound for estimation of
projection parameter defined by this choice of weights would have the lowest efficiency bound of any
choice of weight matrix (Aitken, 1936).

In practice, the covariance matrix of LLL0 is unknown, but can be estimated using the influence function
methodology of the previous section. We define g(FFF0) := (log{F0

0,0/F1
0,0}, . . . , log{F0

K,0/F1
K,0})

ᵀ and
the Jacobian of g as

∇g(FFF0) :=


1

F0
0,0(τ)

− 1
F1

0,0(τ)
0 0 . . . 0 0

0 0 1
F0

1,0(τ)
− 1

F1
1,0(τ)

. . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1
F0

K,0(τ)
− 1

F1
K,0(τ)

 .

An estimate of the covariance matrix of LLL0 is ϒϒϒn := ∇g(FFFn)[n−1
∑

n
i=1{DDDn(Oi)DDDn(Oi)

ᵀ}]∇g(FFFn)
ᵀ. The

projection parameter of interest based on this choice of weights is (α0n,β0n)
ᵀ = (XXXᵀ

ϒϒϒ
−1
n XXX)−1XXXᵀ

ϒϒϒ
−1
n LLL0.

We index the parameter by n to denote that it depends on the sample. Such parameters are sometimes
referred to as data-adaptive, in that they are unknown until one has seen the data (Hubbard et al., 2016).
Similarly as above, an estimate of this parameter is

(αn,βn)
ᵀ
= (XXXᵀ

ϒϒϒ
−1
n XXX)−1XXXᵀ

ϒϒϒ
−1
n LLLn . (11)

Theorem 3 of Hubbard et al. (2016) establishes conditions for asymptotic linearity of estimators of data-
adaptive target parameters. Under the conditions of this theorem, we may apply our previous results
without modification for the estimated weight matrix.

An alternative approach is to define the target parameter as a weighted L2 projection based on ϒϒϒ0,
the true asymptotic covariance matrix of an efficient estimator of LLL0. The inference we have derived
would likely be anti-conservative for estimation of this parameter as we ignore uncertainty induced by
estimation of ϒϒϒ0. However, a nonparametric bootstrap wherein in each resample one estimates both ϒϒϒ0
and the projection parameter may well lead to confidence intervals with proper coverage. We leave this
study to future work.
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4. Simulation

We studied the performance of our estimators of β0n via simulation. A single covariate W was drawn
from a Binomial(4,0.5) distribution, which mimics the geographic site variable used in the RTS,S anal-
ysis. Vaccine assignment Z was drawn from a Bernoulli(0.5) distribution, which mimics a randomized
trial with equal vaccine allocation. Given W = w and Z = z an endpoint time was generated from a geo-
metric distribution with failure probability expit[−2+0.4{I(w = 0)+ I(w = 1)+ I(w = 2)}−0.2I(w =
3)− z]. Similarly, a censoring time was generated from a geometric distribution with failure probability
expit{−3+0.2I(w = 2)−0.2I(w = 3)}. The observed failure time was taken to be the minimum of the
endpoint and censoring times, with ties recorded as endpoints. Given Z = z, the genetic distance asso-
ciated with each endpoint was drawn from a Binomial(4,expit(0.2z)) distribution. This choice resulted
in vaccine efficacy that decreased with genetic distance, the direction most commonly seen in vaccine
sieve analysis. We set the final observation at τ = 6, and any observations with an endpoint beyond this
time were right-censored at τ . We analyzed 1,000 data sets of size 1000,2500, and 5000.

Figure 1 shows the true efficacy across genetic distance for this data generating mechanism. The
log-ratio of cumulative incidences is greater than zero for each distance indicating efficacy against each
distance value, though the efficacy decreases with distance. To illustrate the impact of the estimated
weight matrix on the parameter of interest, the figure shows the projection lines with the largest and
smallest true value of the slope parameter β0n across all simulations. The two lines are quite similar
indicating that the estimated covariance matrix ϒϒϒn was relatively stable and had only a minor effect on
the true value of the parameter of interest across simulations.
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FIGURE 1. True values of the log ratio of cumulative incidences by genetic distance (circles). The two lines are the lines
associated with the most extreme true slope parameters across all simulated data sets.

For each of the sample sizes considered, the estimators of β0n were approximately unbiased (Table
1). The bias and variance of the estimators decreased appropriately with sample size and the confidence
intervals achieved approximately nominal coverage at all sample sizes. Overall, the estimators had ex-
cellent finite-sample performance.

Bias Variance MSE Coverage
x 1e2 x 1e2 x 1e2 %

n = 1,000 0.59 1.20 1.20 94.2
n = 2,500 0.38 0.45 0.46 94.9
n = 5,000 0.28 0.21 0.21 96.1

TABLE 1. Results from the simulation study showing bias, variance, and mean squared-error (MSE) of βn as an estimator of
β0n. The coverage of nominal 95% Wald-style confidence intervals for β0n is also shown.
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5. Data analysis

The design of the Phase III RTS,S/AS01 trial has been previously described (RTS,S Clinical Trials
Partnership, 2011; Agnandji et al., 2012), as have the methods for Plasmodium parasite sequencing
(Neafsey et al., 2015). We illustrate the proposed method by studying the efficacy of the RTS,S efficacy
as a function of Hamming distance, i.e., the number of mismatched amino acid residues, between an
aligned founder sequence and the vaccine insert sequence in the Th3R epitope region contained within
the sequenced C-terminus amplicon of the CS protein. Th3R is a putative T-cell epitope region that is
12 amino acids long. Figure 2 shows the distribution of the Th3R distance from the RTS,S vaccine by
treatment arm in children aged 5 to 17 months. We also analyzed Hamming distances defined based on
the entire C-terminus amplicon of CS and on three other pre-specified epitope regions, but for brevity
restrict reporting of results to the Th3R distances.

0 1 2 3 4

Th3R Hamming distance, j

P
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0.3

0.4

0.5 Vaccine
Control

FIGURE 2. Distribution of the Th3R Hamming distance of clinical malaria sequences to the vaccine insert sequence in children
aged 5–17 months

A unique feature of the pathogen sequence collection was that multiple founder parasites could be
sequenced from the dried blood spot sample of a single participant. The majority of the 2,090 clini-
cal malaria endpoints through τ = 12 months post-vaccination with available C-terminus sequence data
were found to have multiple parasite genotypes, with each founder parasite likely caused by a transmis-
sion event from a distinct mosquito. The presence of multiple founder infections complicates the assess-
ment of sieve effects by genetic distance, as a single participant may have several founder parasites each
with a unique genetic distance. We used multiple outputation (Follmann et al., 2003) to estimate the trend
in the vaccine’s effect across the Th3R Hamming distance for a randomly sampled founder parasite of
a clinical malaria case. This approach separates the genetic component of a sieve effect from any effect
that the vaccine might have on the number of infecting parasites (Neafsey et al., 2015). Multiple outpu-
tation was performed by repeatedly sampling a single parasite genotype at random from each clinical
malaria endpoint and applying a statistical method designed for a single genotype per endpoint. Based
on the guidelines of Follmann et al. (2003), the estimated number of outputations required for stable
inference was B = 4,127. For each resample, we estimated L j,0(τ), j = 0, . . . ,4, adjusting for geograph-
ical study site as the sole covariate, and averaged of these estimates over resamples. We then estimated
and tested the proposed trend parameter on the outputation-averaged estimates of L j,0(τ) weighting by
the estimated inverse variance of the multiple-outputation estimates.

Point estimates of VE j,0(τ) with 95% Wald-style confidence intervals (CIs) are plotted in Figure 3,
with VE0,n(τ) = 46% (95% CI, 32 to 57%) against a perfectly vaccine-matched parasite in the Th3R
region and a steady decline to VE4,n(τ) = 11% (95% CI, −25 to 36%) against parasites with four
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FIGURE 3. Point estimates of VE j,0(τ) against clinical malaria with Th3R Hamming distance j = 0, . . . ,4 to the vaccine insert
sequence, with 95% Wald-style confidence intervals, in children aged 5–17 months. The superimposed curve 1− exp{−αn−
βn j} is a transformation to the VE scale of the linear projection of L j,n(τ). The two-sided Wald-style test of the null hypothesis
that β0 = 0 yields the p-value of 0.0036.

vaccine-mismatched Th3R residues. The two-sided Wald-style test of the null hypothesis that β0 = 0
yields the p-value of 0.0036 suggesting potential immunological relevance of Th3R epitopes for multi-
valent vaccine design.

6. Discussion

The proposed trend parameters are appealing in the context of vaccine sieve analysis in that we often
expect trends in efficacy by genetic distance to be monotone. Thus, the slope of the projection onto a
linear working model provides a reasonable summary of the trend. In other applications, monotonicity
may not be expected. For example, in cardiovascular epidemiology, researchers are interested different
types of heart failure, which are defined by the strength of the heart’s contraction using a measure
called ejection fraction. Our methods could be applied to estimate the trend in a relationship between
biomarkers and ejection fraction. However, we might not have a reason to expect monotonicity in this
relationship. Nevertheless, our methods easily extend to more flexible working models (e.g., including
polynomial terms) with simple modifications to the delta method calculus. Multiple-degree-of-freedom
tests could be developed to test whether there is any variation in the effect of a treatment across levels
of an ordinal competing risk.

The efficacy of vaccines often wanes over time, due to waning immune responses many months or
years after receipt of vaccinations, and this occurred in the Phase III RTS,S efficacy trial. While our
method makes no assumption of time constancy of the vaccine’s effect, it does require the selection of a
single fixed time at which to examine trends in efficacy by pathogen genetic distance, and these trends
may vary over time. Therefore, an interesting elaboration of our method would extend the working
models to summarize trends in efficacy across distance and over time. Working models could include
functions of both genetic distance and time, while hypothesis tests could test how the trend in efficacy
varies over time. Another interesting extension would provide simultaneous confidence bands or regions
for the pattern of vaccine efficacy as it varies over genetic distance and/or time.

A code repository, which can be downloaded as an R package, is available
(https://github.com/benkeser/sievetrend). The repository contains the code used to execute the
simulation study and data analysis.

Journal de la Société Française de Statistique, Vol. 161 No. 1 164-175
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



Trends in efficacy by genetic distance 175

Acknowledgements

The authors thank the RTS,S/AS01 Phase 3 trial study participants and study investigators, and in partic-
ular thank Daniel Neafsey at the Department of Immunology Broad Institute of Massachusetts Institute
of Technology and Dyann Wirth at the Harvard T.H. Chan School of Public Health for collaboration and
generation of the malaria parasite sequence data.

References

Agnandji, S., Lell, B., Fernandes, J., Abossolo, B., Methogo, B., Kabwende, A., Adegnika, A., Mordmüller, B., Issifou, S.,
et al. (2012). A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. New England Journal of Medicine,
367(24):2284–95.

Aitken, A. C. (1936). On least squares and linear combination of observations. Proceedings of the Royal Society of Edinburgh,
55:42–48.

Benkeser, D., Carone, M., and Gilbert, P. B. (2018). Improved estimation of the cumulative incidence of rare outcomes.
Statistics in Medicine, 37(2):280–293.

Benkeser, D. and Hejazi, N. S. (2017). survtmle: Targeted Minimum Loss-Based Estimation for Survival Analysis in R.
Breiman, L. (1996). Stacked regressions. Machine learning, 24(1):49–64.
Follmann, D., Proschan, M., and Leifer, E. (2003). Multiple outputation: Inference for complex clustered data. Biometrics,

59:420–429.
Gilbert, P. B., McKeague, I. W., and Sun, Y. (2008). The two-sample problem for failure rates depending on a continuous

mark: An application to vaccine efficacy. Biostatistics, 9(2):263–276.
Gilbert, P. B., Self, S. G., and Ashby, M. A. (1998). Statistical methods for assessing differential vaccine protection against

human immunodeficiency virus types. Biometrics, 54(3):799–814.
Gilbert, P. B., Self, S. G., Rao, M., Naficy, A., and Clemens, J. (2001). Sieve analysis: methods for assessing from vaccine

trial data how vaccine efficacy varies with genotypic and phenotypic pathogen variation. Journal of Clinical Epidemiology,
54(1):68–85.

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association,
69(346):383–393.

Hubbard, A. E., Kherad-Pajouh, S., and van der Laan, M. J. (2016). Statistical inference for data adaptive target parameters.
The International Journal of Biostatistics, 12(1):3–19.

Hudgens, M. G. and Halloran, M. E. (2008). Toward causal inference with interference. Journal of the American Statistical
Association, 103(482):832–842.

Juraska, M. and Gilbert, P. B. (2013). Mark-specific hazard ratio model with multivariate continuous marks: An application to
vaccine efficacy. Biometrics, 69(2):328–337.

Juraska, M. and Gilbert, P. B. (2016). Mark-specific hazard ratio model with missing multivariate marks. Lifetime Data
Analysis, 22(4):606–625.

Neafsey, D. E., Juraska, M., Bedford, T., Benkeser, D., Valim, C., Griggs, A., Lievens, M., Abdulla, S., Adjei, S., Agbenyega,
T., et al. (2015). Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. New England Journal of
Medicine, 373(21):2025–2037.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY.
Petersen, M. L., Porter, K. E., Gruber, S., Wang, Y., and van der Laan, M. J. (2010). Diagnosing and responding to violations

in the positivity assumption. Statistical Methods in Medical Research, 21(1):31–54.
Rolland, M., Edlefsen, P. T., Larsen, B. B., Tovanabutra, S., Sanders-Buell, E., Hertz, T., Carrico, C., Menis, S., Magaret,

C. A., and Ahmed, H. (2012). Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature,
490(7420):417–420.

RTS,S Clinical Trials Partnership (2011). First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children.
New England Journal of Medicine, 365(20):1863–1875. PMID: 22007715.

Stitelman, O. M., Wester, C. W., De Gruttola, V., and van der Laan, M. J. (2011). Targeted maximum likelihood estimation of
effect modification parameters in survival analysis. The International Journal of Biostatistics, 7(1):1–34.

Sun, Y., Gilbert, P. B., and McKeague, I. W. (2009). Proportional hazards models with continuous marks. Annals of Statistics,
37(1):394.

Sun, Y., Li, M., and Gilbert, P. B. (2012). Mark-specific proportional hazards model with multivariate continuous marks and
its application to HIV vaccine efficacy trials. Biostatistics, 14(1):60–74.

van der Laan, M. and Rubin, D. (2006). Targeted maximum likelihood learning. The International Journal of Biostatistics,
2(1):1–40.

van der Laan, M. J., Dudoit, S., and Keles, S. (2004). Asymptotic optimality of likelihood-based cross-validation. Statistical
Applications in Genetics and Molecular Biology, 3(1):1–23.

van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super learner. Statistical Applications in Genetics and Molecular
Biology, 6(1):1–23.

WHO (2016). Weekly epidemiological record. World Health Organization, 91:33–52.
Wolpert, D. (1992). Stacked generatlization. Neural Networks, 5(2):241–259.

Journal de la Société Française de Statistique, Vol. 161 No. 1 164-175
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238


	Introduction
	Notation and parameter of interest
	Identification, estimation and inference
	Identification
	Estimation
	Inference
	Choice of weights

	Simulation
	Data analysis
	Discussion
	Acknowledgements
	References

