In this paper we deal with the problem of finding the prime-ideal decomposition of a prime integer in a number field defined by an irreducible trinomial of the type , in terms of and . We also compute effectively the discriminant of .
@article{JTNB_1991__3_1_27_0, author = {Llorente, P. and Nart, E. and Vila, N.}, title = {Decomposition of primes in number fields defined by trinomials}, journal = {S\'eminaire de th\'eorie des nombres de Bordeaux}, pages = {27--41}, publisher = {Universit\'e Bordeaux I}, volume = {Ser. 2, 3}, number = {1}, year = {1991}, mrnumber = {1116099}, zbl = {0733.11039}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1991__3_1_27_0/} }
TY - JOUR AU - Llorente, P. AU - Nart, E. AU - Vila, N. TI - Decomposition of primes in number fields defined by trinomials JO - Séminaire de théorie des nombres de Bordeaux PY - 1991 SP - 27 EP - 41 VL - 3 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_1991__3_1_27_0/ LA - en ID - JTNB_1991__3_1_27_0 ER -
%0 Journal Article %A Llorente, P. %A Nart, E. %A Vila, N. %T Decomposition of primes in number fields defined by trinomials %J Séminaire de théorie des nombres de Bordeaux %D 1991 %P 27-41 %V 3 %N 1 %I Université Bordeaux I %U http://archive.numdam.org/item/JTNB_1991__3_1_27_0/ %G en %F JTNB_1991__3_1_27_0
Llorente, P.; Nart, E.; Vila, N. Decomposition of primes in number fields defined by trinomials. Séminaire de théorie des nombres de Bordeaux, Série 2, Tome 3 (1991) no. 1, pp. 27-41. http://archive.numdam.org/item/JTNB_1991__3_1_27_0/
[1] Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585. | MR | Zbl
- ,[2] Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373. | MR | Zbl
- - ,[3] Zur Theorie der algebraischen Körper, Acta Math. 44 (1923), 219-314. | JFM
,[4] Newtonsche Polygone in der Theorie des algebraischen Körper, math. Ann. 99 (1928), 84-117. | JFM | MR
,[5] Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106. | MR | Zbl
,[6] The factorization of p in Q(a1/pk ) and the genus field of Q(a1/n), Tokyo J. Math. 11 (1988), 1-19. | MR | Zbl
,