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, 275-3

Recent results in the theory
of constant reductions

by Barry GREEN

The aim of this paper is to give a survey of recent results in the theory
of constant reductions and in particular to examine the way in which the
approaches via rigid analytic geometry or alternatively function field theory
have been used to prove these results. From both these areas there has been
an interaction of ideas and approaches to solving problems and in this paper
we have attempted to illustrate this by the results we discuss. These results
are all of algebraic or geometric nature and in some cases special forms were
already known from function field theory, rigid analytic geometry, algebraic
geometry and valuation theory. We also illustrate how the model theory of
valued function fields is used to provide the framework in which unknown
cases or more general forms of these results ca.n be proved. Examples of
this phenomenon which are discussed in this paper are:

- a theorem on the existence of regular functions for valued function
fields;

- a stable reduction theorem for curves over an arbitrary valuation ring
with algebraically closed quotient field and a characterisation of such
stable curves by a finite set of constant reductions of its function field;

- a Galois characterisation theorem for function fields of one variable
over finitely generated fields.

1. Situation and notations

Let be a function field in 1 variable with K’ the exact field of
constants. Suppose IF is equipped with a valuation v~~ and that u is any

Manuscrit re~u le 04/09/1991



276

prolongation of v~~ to F . We let Fv and Ilv (suppressing the subscript K
when this does not lead to confusion) denote the residue fields and assume
throughout that Fv is a function field in 1 variable over I(v. In the

literature such valuations are also called constant reductions of FIK. We
shall often refer to such function fields equipped with a constant reduction
as valued function fields and write When we refer to the genus
of a function field we shall mean the genus over the exact constant field

as in Chevalley [C]. The expression gF), where 
[1(1 : K] and gF is the genus, will be denoted by We shall

assume throughout the paper that Il is the exa.ct consta,nt field and so it

is only for the reduction that r(FvII(v) may be greater than one.

Suppose V is a finite set of constant reductions of F, coinciding on
AT with a given valuation vj . Let f E F be residua,lly transcendental for
each v E V. Recall that this is equivalent with the assertion that for each
v E V, is the functional valuation that is for a polynomial of
degree n

its valuation is given by

Let Vf denote the set of all prolongations of to F, noting that
V C Vf. Then:

(i) f E F is defined to be an element with the uniqueness property for
V if V = Vf;

(ii) f E F is defined to be V-regular for if

Remark 1.1. In general

where Fz (respectively denotes taking a henselisation of F (re-
spectively the corresponding henselisation of A"(/)), 6v the henselian de-
fect and ev is the ramification index with respect to v . We shall discuss
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the defect of a valued function field in some detail in §5 but
remark now that 6, is independent of the choice of the residually tran-
scendental element f (this is a non-trivial theorem - see for example [K]
or [G-M-P 1~, proposition 2.12). Note that if f E F is V-regular for 
then V = Vf and for each v E V, 6,=e, = 1.

When the constant field Il is algebraically closed, for each valuation v
the value group is divisible and so there is no ramification, that is ev = 1 .
An important theorem of Grauert-Remmert asserts that in this situation
the defect bv = 1 aswell. Precisely:

The Grauert-Remmert stability theorem [Gr-Re]. Let and

1/j be as above and suppose that Ii is algebraica,lly closed. Then for each

In the paper of Grauert-Remmert this theorem is only proved for rank
1 valued function fields and the methods used are from rigid analytic ge-
ometry. Proofs of this result for arbitrarily valued function fields have been
given independently by Ohm in [03] and Kuhlmann in [K]. The methods
of proof found in [03] and ~K~ are similar in that both authors deduce the
general case by realizing it as a particular constant extension of the rank
1 case. For the rank 1 case Ohm relies on the proof of Grauert-Remmert,
while Kuhlmann has given a new proof which replaces the analytic methods
by valuation theoretical arguments. In [G-1vI-P 1] and [G-M-P 2] different
proofs of this theorem can be found where it appears as a corollary in a
study of the vector space defect of a valued function field and as a conse-
quence of a theorem on the existence of regular functions. However here
also the proofs can be traced back to a rank 1 form of the result; in the
first case by means of a valuation decomposition and in the second case by
means of a model theoretic argument (using the model completeness of the
theory of valued fields [.Rob]). The proof using model theory is perhaps the
most interesting since here in the rank 1 case one only needs to know the
result for Il the algebraic closure of a local field and this can be deduced
directly from the work of Epp [E].

This theorem is important because it assures us that if ~1 is alge-
braically closed then each function f E F B Il is a 1/j-regular function. It

also means that for the given set of constant reductions V if we are able
to find an element with the uniqueness property for V then it will be a
V-regular function. In the next paragraph we shall discuss the existence of
elements with the uniqueness property for V.
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2. Elements with the uniqueness property

The problem:
Given a function field and a set o~’ constant reductions

V, coinciding on the constant field under what conditions
on K do there exist elements with the uniqueness property for
V,

marked a starting point for the recent study of valued function fields. A
positive answer to this problem was first obtained by Matignon, ~M2J, the-
orem 3, p. 197, when the constant reductions are rank 1 valuations and
K is complete with respect to their common restriction. Matignon proved
this result in a paper in which he gave a new genus inequality relating
the genus of the function field to the genera of the residual function fields.
This genus inequality improved the previously known genus inequalites of
Mathieu [Ma] and Lamprecht [L] in several respects:

- firstly the inequality was proved for any rank 1 valuation on the
constant field, whereas previously a weaker inequality was only known
for a discrete valuation on the constant field;
- for each constant reduction v E V it included a factor corresponding
to a vector space defect associated to (FIK, v) ;
- it contained a term corresponding to the number of constant reduc-
tions in V . Because of this term it followed there is at most one v E V
such that with respect to this has good reduction.

In §5 we shall describe the genus inequality precisely, but now we
return to the problem on the existence of elements with the uniqueness
property. In Matignon’s paper this result follows from a structure theorem
for affinoid domains, Fresnel-Matignon [F-M], theorem 1, p. 160. It can

also be deduced directly from a general contraction lemma of Bosch and
Lütkebohmert [B-L].

In valuation theory there is a general philosophy that if an algebraic
property holds for complete rank 1 valuations then it probably holds more
generally for henselian valuations of arbitrary rank. This is the case with
the above problem. The first result in this direction was proved by Polzin
in [Po], when the constant reductions are rank 1 valuations and Il is
henselian with respect to their common restriction. This result of Polzin

depended on that of Matignon and appeared as a corollary of his study
of the Local Skolem problem and its relationship to the existence of ele-
ments with the uniqueness property for valued function fields over a rank
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1 henselian constant field. He used methods from rigid analytic geometry.
The case of a valued rational function field 1 ) having henselian field of con-
stants (arbitrary rank) has been treated in [M-0 2], where a direct proof
of the existence of elements with the uniqueness property for this case is
given. In the general case the following theorem gives sufhcient conditions
for the solution of the problem:

Theorem 2.1 [G-M-P 2]. Let (K, VK) be a henselian valued field, a

function field and V a finite set of constant reductions of F with VIK 
for each v E V. Then there exist elements t E F with the uniqueness
property for V. In particular if 1( is algebraica,lly closed then t is a V-

regular function.

We shall briefly discuss the methods used to prove this theorem and
point out that it is proved without appealing to rigid analytic geometry, but
did involve model theory. As a first step we proved a general theorem giving
a criterion for the existence of V-regular functions of degree bounded by
something depending only on gF and s = card(V) provided there exists
a V-regular function to begin with.

Theorem 2.2. Let (1(, vK) be an algebraically closed valued field and
(FIK, valued function fields with VIK = V¡( for each v E V (V
is assumed finite). Suppose there exists a V-regular function. Then there
exist V-reguiar functions of degree bounded by 4gF - 4 + 5s.

This theorem is a tool to be used in the proof of 2.1. However one

sees from the statement that it only gives information once one knows the
existence of a V-regular function and so it is not evident how it can be

used to prove 2.1. The way we proceed is by first giving a direct proof of
the following very special case of 2.1, namely:

Theorem 2.3. Let be a valued function field and suppose that
is the algebraic closure of a local field Then there is a

v-regular function t for FIK.

As a corollary we conclude from the previous theorem that if v)
is as above with the algebraic closure of a local field (Ko, V¡(o)

1 ) Problems concerned with the constant reductions of a rational function field
have been studied recently by Ohm and Matignon in [01], [02] and 1]
and by Alexandru, Popescu and Zaharescu in [A-P-Z].
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then there is a v-regular function t for with degree bounded by
4gF + 1.

The next step is to show that a certain statement concerning the ex-
istence of regular functions in a valued function field is elementary. More
precisely, let p be a positive real-valued function of N 2 and a

valued field. We say that (K, VK) belongs to the class C, if: for each

unramified valued function field (FIK, v), with v prolonging a functional
valuation v/(,j for some f E F, there exist v-regular functions for 
of degree bounded by deg f). The result is:

The class C~ is either empty or an elementary class. In par-

ticular, if (K, vl,,) and (L, vL) are elementary equivalent and
(K, v/() belongs to the class Clf) then so does (L, vL).

For the benefit of the reader not familiar with model theory or its appli-
cations to algebra we digress briefly in order to explain how this result can
be used to conclude that each algebraically closed valued field belongs to
Clf) for p = 49F + 1- In this connection we also draw the reader’s attention
to the survey article of Roquette [R3], Some Tendencies in Contemporary
Algebra, which appeared in the 1984 a,nniversary of Oberwolfach edition
of Perspectives in Mathematics. In this article Roquette discusses the in-
trusion of model theoretic notions (in the sense of mathematical logic) and
arguments into algebra.

Let C be an elementary language (i.e. first order which means that
the variables in ,C denote individuals only; there are no set variables or
function variables) and T any theory of ~C (set of sentences of ,C ). A
model of the theory is an £-structure Il such that all the sentences of T
hold in K. If 0 is an arbitrary sentence in ,C then 0 may hold in some
models but perhaps not in all models of the theory. If 0 holds in Il we

say that 0 defines an algebraic property Two models K and L
are said to be elementary equivalent if every algebraic property of I( is
shared by L and vice versa. If this is so we write Il m L. A class C of
£-structures is said to be an elementary class if there exists a theory T
such that C is the class of all models Clearly if ~i E C and L is

any £-structure with L - Ii then also L E C .

In our situation the language is the language of valued fields. There
is a classical theorem of A. Robinson [Rob], saying that the theory of al-
gebraically closed valued fields is model complete. We will not discuss the
general notion of model completeness for a theory here; for our purpose it
sufhces to record that here this means that all algebraically closed valued
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fields having the same characteristic and residue characteristic (character-
istic of the residue field) are elementary equivalent.

By the preceeding discussion, if is the algebraic closure of a
local field then it belongs to the class Ccp for p = 4gF + 1. Since C~ is

an elementary class we conclude that each algebraically closed valued field
belongs to C~. In summary we have:

Theorem 2.4. Let be a valued function field uith i alge-
braically closed. Then there exist v-regular functions t E F for FIK.
Moreover, t can be chosen with deg t  4gF + 1.

Using this result we are able to deduce the existence of an element
with the uniqueness property for when the constant field IF is

henselian. This is done by extending the field of constants to an algebraic
closure k and then showing that a regular function t for (F~i ~ Ii , v) can
be chosen in F ( v is a prolongation of v from F to As Il is

henselian vl;,t has a unique prolongation from h’(t) to and so this
function is an element with the uniqueness property for v.

The final step in the proof of 2.1 is quite general and consists of showing
that if is equipped with a finite set of constant reductions V having
common restriction to Il and for each -v E V there is an element with the

uniqueness property then there is an element with the uniqueness property
for V. Indeed, once one has an element with the uniqueness property for
a given v E V, it is an easy exercise to construct an element tv with the
uniqueness property for v so that for all other v’ E V, v’(tv ) &#x3E; 0. Let

t = ~ tv , then by skillfully using the fundamental inequality of valuation
vEV

theory one shows that t is an element with the uniqueness property for V
and that

..

Remark 2.5. If each of the tv are v-regular functions then by the identity
above and remark 1.1, t is a V-regular function.

3. The Local Skolem property

We have already mentioned that in the rank 1 situation theorem 2.1
appeared as a corollary of Polzin’s study of the Local Skolem property and
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its relationship to the existence of elements with the uniqueness property
for valued function fields over a rank 1 constant field. In the general case
the problem of finding such a relationship is still an open question. In this
section we shall describe more precisely what this relationship is in the rank
1 situation and formulate what one could expect in general.

Let v) be a rank 1 valued field, .~~ the completion and K its
algebraic closure. Suppose C7v is the valuation ring of v, 8: the cor-

respondinring in the complete field and 8: its integral closure in K.
Likewise Cw denotes the integral closure of in I(. Suppose W is any
geometrically irreducible variety defined over K, let F = F(W ) denote
the field of rational functions of W and to each closed point P E W set
I( (P) = where is the local ring associated to P and
M p its maximal ideal. Let f = f fl, ..., C F and set

where denotes the set of h-rationa,l points of W. Similarly for
each prolongation v of v to Il set

3.1. The Local Skolem Property for (K, v) asserts that for each geo-
metrically irreducible variety W defined over h’ and set f as above, if

then v) ~ 0.
i) I v

Suppose W is a geometrically irreducible affine variety defined over
K, embedded into affine r-space for some natural number r and denote

by the set of v-integral points of ~W in ~~’’. Let f be the set
of coordinate functions. Then the Local Skolem Property implies that if

=1= 0 then 0.

The result of Polzin giving the relationship between the Local Skolem
property and the existence of elements with the uniqueness is:

Theorem 3.2. Let be a valued field. Then the following
are equivalent:

(i) The va,lued field (Ii , vI; ) satisfies the Local Skolem property;
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(ii) If is a function field with constant field 1(1 purely inseparable
over ~~’ and V a, finite set of constant reductions of F with 

v~~ for each v E 11, then there exist elements t E F B Ili with the

uniqueness property for V .

Notice that by the previous section it follows that if (K, is a rank

1 henselian valued field it satisfies the Local Skolem property.

It is possible to formulate the Local Skolem property more generally
and to ask whether a relationship similar to that above holds. Let v) be
any valued field and Il its algebraic closure. Suppose C7v is the valuation

ring of v, a henselisa.tion and ovh its integral closure in Ov
denotes the integral closure of in The Local Skolem Property for

asserts that for each geometrucaliy irreducible variety W defined
over K and set f as above, then 

vlv

Once again if TV is a geometrically irreducible affine variety over K ,
embedded into affine r-space for some natural number r and f is the

set of coordinate functions, then the Local Skolem Property implies that if

W (wh) ~ ~ then 0.

Question: Given a valued field (1(, VK) are the following equivalent?

(i) The valued field satisfies the Loca,l Skolem property;

If a function field with constant held purely inseparable
over Ii and V a finite set of constant reductions of F with 

vI~ for each v E V, then there exist elements t E F B 1(1 with the

uniq ueness property for V .

4. The Local-Global-Principle of Rumely

The Skolem problem is closely related to the Local-Global-Principle of
Rumely for integer points on varieties. In a recent paper Roquette [R6] has
given a proof of this result by constant reduction theory. The situation is
the following:

C7o a Dedekind domain with quotient field 1(0, and residue fields at
the non zero prime ideals of positive characteristic and absolutely
algebraic, ie each algebraic over a finite field.
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~ = 1(0 an algebraic closure of 1(0.
o = tso the integral closure of Oo in 1(, which is assumed to be a

Bezout domain. By [vdD-McT], proposition 5.2, this implies that
the ideal class group of any Dedekind domain lying between C~o
and 0 is torsion. Examples of this situation are given by Oo = Z
or Fplxl.

V = the space of all non-archimedean valuations (primes) v
of 1(; each valuation v is written additively.

W an irreducible affine variety defined over embedded into affine
r -space for some natural number r.

the set of Il -rational points of 14L

W(O) the set of integral points in TV.

Let v E V with valuation ring Ov. Suppose z = (Zl"’.’ zr) , a
typical point of and set v(z) = the v -norm

of z . If v(z) &#x3E; 0 then the point z is an element of and is called

v -integral, or locally integral at v . If this is so for all v E V then z is said

to be an integral point, or globally integral; this means that z E 

i.e. all coordinates zi are contained in C~ (1  i  r) .

Theorem 4.1 (Local-Global-Principle for integer points). Suppose
that locally everywhere, the variety W admits a v -integral point zv E

W(1(). Then W has a globaJl.y integral point z E W(K).

This theorem is proved by first considering the case when W is a curve,
i.e. dim W = 1. After that, an induction procedure with respect to the
dimension of W leads to the general case. In a previous paper, [C-R], the
Local-Global-Principle had been proved for llnirational varieties W defined
over Q, which admit a parameterization by means of rational functions.
R. Rumely then discovered the validity of the Local-Global-Principle in
full generality for arbitrary irreducible varieties defined over lj . His proof,
which has appeared in [Rul], is based on his deep and elaborate capacity
theory on algebraic curves of higher genus over number fields. In view of

the importance of theorem 4.1 there arises the question whether it is more
directly accessible. The purpose of Roquette’s article is to exhibit such a
direct approach. The proofs are very much along the same lines as in the
paper [C-R] for rational varieties. As in [C-R] the situation is reduced
to the case where the variety W is a curve; but now one has to deal not
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only with the rational curves but also with the curves of higher genus. It

is not clear a. priori whether curves of higher genus can be treated in the
same way, with respect to the above theorem, as was done with the curves
of genus zero in [C-R]. The generalization to curves of higher genus rests
essentially on two results:

(i~ The Reciprocity Lelnma for function fields of arbitrary genus which
has been presented in [R4]. Here use is made of a divisor reduction map
for a valued function field which has good reduction. We discuss this map
in § 6.

(ii) The Jacobi Existence Theorem for functions on curves whose zeros
are situated near prescribed points on the curve. This theorem, in the
non-archimedean case, is entirely due to Run1ely [Ru2]. By extending the
proof of this result in [R2], F. Pop has established a more general theorem
taking rationality conditions into consideration in [P4]. In [R2] both the
Jacobi Existence Theorem aswell as the Unit Density Lemma are presented
as applications of a more general density theorem. Both these results are
needed in the proof of the Local-Global-Principle.

The Local-Global-Principle derives its importance from the fact that
the solvability of local diophantine equa,tions is decidable. This has been

proved by A. Robinson [Rob]. More precisely, for a given prime v E V there
exists an effective algorithm which permits to decide whether is

non-empty. It is however not necessary to check this for all primes v E V -
There are finitely many primes v1, ... , vs, computable from the defining
equations of W , such that the are "critical" for W in the

following sense:

If ~ 0 for ea.ch of those critical primes vi then 

0 for all and hence, by the Local-Global-Principle,
0.

The testing of these finitely many critical primes then leads to an effective
algorithm to decide whether ~~~((~) ~ 0. If one wishes to include arbitrary
varieties, not necessarily irreducible, then one has to observe that there is an
effective algorithm for decomposing an arbitrary variety into its irreducible
components over This yields:

The solvability of a.rbitrary diophantine equations over C7 is
decidable. So the 10~ problem of Hilbert over C7 has a positive
answer.
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For Il = Q and C7 = ~ this is in contrast to the situation over Z where it
is known that the 10~’ problem has a negative answer. A detailed exposition
of the above line of arguments, together with historical remarks and precise
references, can be found in Rumely’s paper ~Rul~.

We remark that similar results for global fields are contained in [M-B
1] and [M-B 2], where they are presented from a scheme theoretic point of
view. The idea of proof for the existence theorem is similar to that in [R2].

5. Good reduction and the genus inequality

Let us recall the notion of good reduction in valued function fields: A
valued function field (FIK, v) is said to have good reduction at v if,

(i) F has the same genus as Fv , gF = 

(ii) there exists a non-constant v-regular function f E F ;

(iii) Kv is the consta,nt field of Fv .

(Recall that throughout the paper Il is assumed to be the exact constant
field of F. )

When studying valued function fields with the aim of giving mini-
mum criteria for good reduction and some measure of the deviation from
good reduction in general, it is suggestive to study whether the natural
invariants, ramification index, residue class degree and a defect associated
with the constant reduction will serve this purpose. The ra,mification index
and residue class degree have their classical meanings, but the "defect",
although defined algebraically, is a, geometric invariant of the reduction,
[G-M-P 1]. Together with equality of the genera these three invariants are
exactly what is needed to characterise good reduction in all cases. This
defect is called the vector space defect to distinguish it from the natural
notion of defect (see 5.3) for the constant reduction which is obtained as
the common henselian defect of a certain family of finite algebraic exten-
sions. More generally for extensions of transcendence degree greater than
one this defect is defined as the supremum of the henselian defects of a
certain family of finite algebraic extensions. This more general situation
is treated by Kuhlman in his doctoral thesis [K], chapter 5; see also [03].
Both these treatments are algebraic and no connections to the geometric
point of view are made.
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Let be a non-archimedian valued field and (N, v) a (K, 
valued vector space. A subset I an indexing set, of elements of

101 will be called valuation independent if aixi) = mini v(aixi),
for any I( -linear combination Ei aixi. One shows that any valuation inde-
pendent subset contained in a maximal one and further any two
maximal valuation independent subsets have the same cardinality. Such a
maximal valuation independent subset will be called a valuation basis for
N over A". (Note: Although linearly independent over K in general this
will not be a basis for N over K. )

Let V be a set of representatives for vN over vI( ( vN is a vll-

set). For any K-subspace M C N and v E V let M" = x 
v}, a IiCv-vector space. If ," C M is a

set of representatives for a basis of ~~~" then = U ~iy is a valuation
vEV

basis of M over Therefore if M is finite dimensional over Il then

the cardinality of any valuation basis B M is exactly 2:: dim/(v Mv.
vEV

Definition 5.1. Let be a non-archimedian valued vec-

tor space. The vector space defect, v), is defined to be:

where the supremum is taken over all non-zero finite h’-subspaces M of
N.

v) be a finite algebraic extension of valued fields. Then one
proves that the vector space defect is related to the classical invariants of
the valued field extension by

where e is the ramifica,tion index and f the residue class degree of v).
Using this result one deduces that if (FIK, v) is a valued function field and

f E F a residually transcendental element, then

where we have simplified notation writing e (resp. bvS ) in place of
e(Fll(, v) (resp. ).
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We now describe how the vector space defect of a valued function field

can be interpreted geometrically. In order to do this we shall first need
to recall briefly certain general definitions and results from the work of
Lamprecht [L] and Nlathieu [Ma].

Let be a function field in 1 variable, denote by the di-

visor group and for each f E FX let ( f ) , ( f )o and (/)00 be the principal
divisor , zero divisor and pole divisor associated with f respectively.

For a finite-dimensional h-subspace M of F denote by the
minimal divisor D such that ( f ) + D &#x3E; 0 for every f E M . It follows

directly from the definitions that for 0 we have: x(tM) = (l ) -
(t). Moreover, if 1 E then 7r( .Af) &#x3E; 0 and if in addition Il is infinite
then there exists f E such that (/)00 == 7r(M), [Ma], Hilfsatz, S. 599.

If F has a va,lua.tion v defined on it so that is a val-

ued function field this method of associating a divisor with a finite di-
mensional vector space has been used in the literature to obtain a map
xv : We recall this briefly here.

Let D E and denote by ,C(D) its associated linear space,
that is E F : D + ( f ) &#x3E; 0}. We also set diMK D = diMK £(D),
supressing the subscripts when there is no confusion. For each D E

one defines 7rv(D) == 7r(£(D)v). When FIK has good reduc-
tion at v then this ma,p is the classical divisor reduction homomorphism
of Roquette [Rl].

More generally, given a set of representatives V for and v E

V, if ,C(D)v ~ 0 then there exists zv fl 0 in £(D) with v(x") = v .
Set 7rv(D)" = ~r((,C(D)xv 1 )v) . We remark that 7rv(D)V depends on the
special XV. Nevertheless, its divisor class does not depend hence

deg 7r,(D)’ and are well defined and do not depend on xv .
Indeed, let y" E ;(D) Wlth v( yv) = v . Then ty = has value 0

and (,C(D)y~ 1)v = = We can now give
the geometrical interpretation of the vector space defect:

Theorem 5.2. Let (FIK, v) be a valued function field. Then for each real
number E &#x3E; 0 there exists no E N depending only 6vs, X(FIK) and

such that for each divisor D E Div(Fll(), D &#x3E; 0, if deg D &#x3E; no
then:
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where V is a set of representatives for vF/vI(. In both cases the value of
max is attained for the same v.

As corolla,ries of this theorem we deduce:

(ii) FII( has good reduction at v if either,

We remark that the result above is obtained directly without appealing to
rank 1 results derived using methods from rigid analytic geometry. Note
also, at this point we are yet unable to deduce that if (FIK, v) has good
reduction then v is the unique good prolongation of to F . For this
we shall need a genus inequality which is better than (i) above a,nd contains
a term corresponding to the number of reductions, but first we mention how
the vector space defect relates to the classical henselian defect. The results
in this direction are the following:

5.3. For a valued function field (FIK, v) , the henselian defect v)
is independent of the residually transcendental element f E F . This num-
ber is called the henselian defect of the valued function field and denoted

by 6(FII(, v) or [G-M-P 1]). Always we have v)  6vS and
in particular when Il is henselian we have equality.

5.4. The genus inequality. Let FII( be a function field in 1 variable

equipped with constant reductions vi, 1  i  s, which have a common
restriction to the exa.ct constant field IF, say VK. Then:

where ei, bi are the ramification index and henselian defect of (FIK, vi)
respectively.

Remark. We have mentioned at the beginning of section 2 that in the
rank 1 situation this result was proved by Matignon, using methods from
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rigid analytic geometry and that in his proof the theorem on the existence
of elements with the uniqueness property over a complete base field was
needed. Our proof of the general ca,se, [G-M-P 1], theorem 3.1, depends
on the rank 1 form of this result and a valuation decomposition lemma. If
the valuations vi, 1  i  s , defined on F above are independent then
in the theorem above a better inequality holds, namely with the henselian
defect bi replaced by the vector space defect bis for each i . Actually
when the valuations are independent, an algebra,ic proof of this inequality,
but without the s - 1 term, can be given without appealing to rank 1

results from rigid a,na,lytic geometry, [M3], theorem 11.9. The corolla,ry
below follows immediately from 5.4 and shows that if 1 then there
is at most one prolongation of a given valuation on IF so that on F it is

a good reduction.

Corollary 5.5. Let be a valued field and a function field
in I variable with ~i tile exact constant field. Suppose v is a prolongation
of vj to F so that a valued function field with 9F = 1.

Then v is unique with this property. If gF = 9F, &#x3E; 1 then ev = bus =
rv=1.

The relative genus inequality. Suppose and are function
fields in 1 variable with E C F . Further let F be equipped with a con-
stant reduction v a,nd denote also by v its restrictions to E and AB
Now we can ask whether there is any relation between the reductions of F
and E. In particular if F has good reduction with respect to v does E
also? Questions of this kind have been studied by Taoufik Youssefi, a stu-
dent of Matignon, in his doctoral thesis [Y], and by Hagen IKnaf, a student
of Roquette, in his Diplomarbeit Youssefi studied the more general
problem, namely that of giving an inequality relating the genera obtained
when considering a number of reductions of F and E . Using this inequal-
ity the question involving good reduction could be answered as a corollary.
His results are proved by rigid geometry using the stable reduction theo-
rem in the rank 1 situa,tion. By means of a valuation decomposition and
combinatorial argument they are then extended to the general case. The
main result is the relative genus inequality. ,

Theorem 5.6 [Y]. Suppose 1( is an algebra.ically closed field and F~~i
and are function fields in I variable with E C F. Suppose via,
1  i  s, are distinct constant reductions of E with common restric-
tion vj~ to I(. Suppose v~, 1  j  t is a set of prolongations of the vi
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to F. Then the following ineq ua,lity holds:

In particular in terms of the genera this inequality a.sserts that

As a corollary one obtains:

Corollary 5.7 [Y]. Suppose is a valued field and and E11(
are conservative function fields variable with E C F and 1.

Suppose v is a. good reduction of F with = VK and so that Fvl1(v
and are conservative. Then E has good reduction at v.

In the case of Ii algebraically closed this follows directly from 5.6
and the criteria for good reduction. The general case is deduced from this
case. We next mention an interesting question concerning the lifting of
morphisms over Pl K asked by Youssefi in his thesis:

Question: Let (1(, is an algebraica.lly closed valued field. Suppose
F11( is a function field in 1 variable over h = and h E F is such
that is separable and (h)o is concentrated in one place of Fll(.
Then does there exist a valued function field v) with v prolonging
vj~ to F and a v-regula.r function such that

In support of this question Youssefi showed that if is an alge-
braically closed complete rank 1 valued field and is galois with
soluble galois group then the answer is positive. He also gave an example
in the non galois case.

In his work hnaf approached the problem more directly by studying
the reduction of function fields and their automorphism groups. His results
were obtained using general theorems from the theory of function fields,
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their reductions and general valuation theory. Special properties of rank
1 valuations were not used, however he was able to strengthen one of his
main results in an appendix by appealing to the work of Youssefi. The

main result he obtained relating to the question of good reduction was:

Theorem 5.8 Let be a valued function field with 9F &#x3E; 1,
having good reduction at v and suppose FvlKv is conservative. Let

be a normal sub function field of F. Then if the extension FvlFv Gv
is tamely ramified, where Gv is the autoinorphism group of FvlEv, then
E has good reduction at v.

The strengthened form of this theorem asserts that E has good re-
duction at v for an arbitrary sub function field E of F.

6. The divisor reduction map

When studying consta.nt reductions of function fields one of the first
questions one is led to ask is what kind of relationship, if any, exists between
the Riemann space of the function field and that of its reduction. This ques-
tion was first studied by Deuring in and [D2] in connection with his
work on the Riemann hypothesis for the congruence zeta function of func-
tion fields over finite fields (For a survey of the work of Deuring we mention
the survey paper of Roquette ~R.S~ in the 1989 DMV Jahresbericht). Deur-
ing considered the case of good reduction and made the assumption that
the valuation on the constant field was discrete rank 1. For this situation
he did more than giving a map between the Riemann spaces of the function
fields. He showed that there is a natural degree preserving homomorhism
between the divisor group of the function field and that of its reduction.
The case of a genera,l valuation on the base has been treated by Roquette
in [Rl]. As this divisor map is the prototype of a more general reduction
map which we shall discuss, we review its properties briefly here.

6.1. The divisor reduction map in the case of good reduction. Let
(FIK, v) be a valued function field having good reduction at v, 
denotes the divisor group of and similarly Then by
Deuring-Roquette, [D l]-[Rl] , there is a natural homomorphism called the
divisor reduction map
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such that

Observe that if li is algebraically closed and P E the set of

prime divisors of FIK, then by (i), deg Pv = deg P = 1 and therefore
Pv E i.e. prime divisors reduce to prime divisors.

We can express the condition that f E F is regular at v in terms of
the zero or pole divisors associated to f and f v. Namely writing ( f ) =

and taking the reduction gives ( f )v = ( f )ov-( f )~v = ( f v) _
( f v)o - by (iii) above. As the zero and pole divisors are positive
we conclude from (ii) above that ( f )ov  ( f v)o and ( f ~~v~  
Now the condition that f be regular means deg ( f )o = deg ( f v~o and

deg (f)oo = deg ( f v)~. Therefore from (i) it follows that f is regular at v
if and only if ( f )ov = ( f v)o or equiva.lently (f)oov = ( f v)~.

Notice that by the results of the previous section in the case of good
reduction the vector space defect is 1. Therefore for every A"-module
M C F of finite dimension

where as always denotes the set of all reductions of elements of M of

non-negative valuation. Taking this into account we observe that for the
divisor reduction:

(i) For each Z E £(Z)v C £(Zv) and dim Z  dim Zv .
Here dim Z = dim ,C(Z) .

(ii) If Z E has deg Z &#x3E; 2gF -1, then by the Riemann-
Roch theorem dim Z = dim Zv and £(Z)v = £(Zv).

The next two results give information about the degree and support
of regular functions:

Proposition. Let FII( be a, function field in 1 variable over K and
n

suppose Z - E 111iPi E where rni &#x3E; 0 and Pi are prime
i=1
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n

divisors for 1  i  n, a,nd deg(Z - ¿ Pi) &#x3E; 2gF -1. Then there exists
i=l

f E F such that (/)00 = Z, where (/)00 is the pole divisor of 1 .

n

Proof. Let B = Z - ¿ Pi and Zi = B + Pi , n. Then
i=l

since deg B &#x3E; 2gF - 1, deg Zi 2:: 2gF -1 and deg Z &#x3E; 2gF -1. By the
Pdemann-Roch theorem it follows that

From this it follows that ,C(B) Let fi E £(Zi)B£(B). Then:

Hence f E £(Z) and = Z .

Remark. Note that by construction ( f ) = A - Z with A &#x3E; 0 and that
A and Z have no common divisor. If A would contain Pi for some i
then A &#x3E; Pi so that ( f ) &#x3E; Pi - Z and f E ,C(Z - Pi). This contradicts
ordp ( f ) = -mi . The divisor A, is the divisor of zeros of f ; we write
(f)o = A.

. Theorem. Suppose a valued function field having good re-
n

duction at v. Let Z E be chosen so that Z =  with
i=l

n

mi&#x3E;0, and Then
i=l

there exists a regular function f E F with (/)oo = Z .

Proof. Note first that as B &#x3E; 0 with deg B &#x3E; 2gF - 1 it follows
k

that £(Z)v = £(Zv) and that if Zv = £ liQi with the Ii &#x3E; 0 and
;=1
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k

Qi prime divisors of then deg(Zv - £ G~i) &#x3E; 2gF - 1 and
I=I

k

Zv - E 0. We apply the proposition above to Zv and obtain f v E
i=l

with ( f v)~ = Let f E £(Z) be a foreimage of f v, so that

( f ) = A - Z with A &#x3E; 0. Observe that A and Z have no common divisor
or otherwise so would Av and Zv ( Av = ( f v)o, the divisor of zeros of f v
and Zv = ( f v)~ ). we conclude that A = ( f )o and Z = Hence

and f is regular at v .

Before turning to the more general context where we define a divisor
map for several constant reductions which have a common restriction to
the constant field there is an important point to note following the theorem
above. Firstly, it is possible to find v-regular functions with pole divisors
having arbitrarily prescribed support and secondly, such functions can be
chosen having degree bounded by something depending only on the genus
of the function field.

We shall next define a divisor reduction map in a more general situation
keeping the prototype above in mind.

6.2. Let FIK be a function field in 1 variable and V a finite set of
constant reductions of F having a, common restriction to Il denoted by

Suppose throughout that f E F is a V-regular function for FIK. We
define the inf norm as w(x) = inf v(x) for x E F and let =

vEV

fx : w(x ) &#x3E; 01 and 1V(X) &#x3E; 0}. Then = n Ov,
vEV

= and = = I1 = Tj Fv where Ov,
vEV vEV vEV

respectively denotes the valuation ring, respectively maximal ideal,
of v in F and the second equality means the identification x + 
( x -~-’ 

The integral closure of respectively in F will be de-
noted by respectively Rf. By [G-11-P 2] proposition 2.1, 

The reduction of Rf to Fw is denoted by R f w and throughout
we use ’ to denote integral closure. In terms of divisors R f can be written

, -- - .. - - 

where S f = ~P E S(FII() : oo} , is the image of x by
the place determined by the prime divisor P and D = (f)oo E 



296

the pole divisor of f.

6.3. The divisor reduction map relative to a regular function.

Let f E F be a V-regula.r function. Then the divisor reduction map
relative to f is defined as follows: First for A E we set

where vp is the ordinal valuation of associated with P . Let (AJw)’
denote the fractional (Rfw)’-ideal, Afw (Rfw)’, obtained by extending to
the integral closure. The conductor of (RJw)’ in Rfw is denoted by Xjw.
Next we set

and denote by the subgroup of of divisors with

support in S’
The divisor reduction map relative to f on 

is defined by r(A) = Aw = E Av, with Av E for each v E V
vEV

and

where prv denotes the projection from Fw onto Fv for each v E V .

The main properties of this ma,p are:

(i) The map r is a degree preserving homomorphism ([G-M-P 2] theorem
2.2);

(ii) For A E DivJ(FII() it holds G(A)w C £(Av) ([G-M-P
vEV

2] theorem 2.2);

(iii) Let f, 9 E F be V-regular functions. Then the divisor reduction

maps relative to f and g coincide on S~ n S’ and moreover
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supp((S~ fl so)w) is an open dense subset of the disjoint
union of the S(FvII(v) and endowed with the induced topology.

The results above were central in a study of the reductions of algebraic
curves (see §7) and were also used to prove the following theorem on the
existence of regular functions with prescribed support. In order to discuss
this result we need to introduce the following notations. First, for any
divisor A E with Av &#x3E; 0 for each v E V we define

R A is the Dedekind ring consisting of all functions in F having poles
only in supp(A) and .RAw the ring consisting of the functions in Fw
having poles only in supp(Aw). Because of the hypothesis on A, we have
RAw = RA, with RAv a non-constant Dedekind ring of Fv for each

v

v E V. The conductor of RAw in will be denoted by = II FA,v.’ 

v 

’

Then:

(iv) the integral closure (RAw)’ = and

saying that the arithmetic genus does not change after reduction, [G-
M-P 2].

Now we state the theorem on the existence of V-regular functions:

Theorem [G-M-P 2]. Let A E DivJ(FII() be a positive divisor and sup-
pose that for each v E Yf there exists a positive divisor Bv E 
satisfying:

(i) 2Bv  Av,

(ii) deg Bv &#x3E; 

Then there exist Vf -regulai- functions h for FIK, such that = A
and hence (hw)~ = A~w .

This theorem contains 2.2 as a, special case. Indeed, suppose K is

algebraically closed and let A = ¿ nvPv E where:
v



298

Then

where the inequality follows from the non-trivial identity

Here the inequality follows from a classical result of Rosenlicht [Ros] and
the final equality from (iv) above.

6.4. Recently in his Diplomarbeit Thomas Kasser, a student of Roquette,
has defined and studied a reduction map -~ !1Fvl/(v , for the mod-
ule of differentials of a valued function field v) possessing a regular
function under the assumption that FvII( v is separable. In particular
he has studied the behaviour of the holomorphic, residue free and exact
differentials under this ma,p. In this work he has made use of the results
above on the divisor reduction map (6.3), in order to find regular-separating
functions for the valued function field.

7. Reductions of algebraic curves

Let be a valued field with valuation ring C7I; . The assertion
concerning the existence of regular functions, for a given finite set of con-
stant reductions V prolonging vI; to a function field can also be
formulated geometrically a.s an assertion concerning the existence of a finite
morphism of OK-schemes from a certain (J/(-curve having function field
F to Pl . In this section we review recent results on these OK-curves.
The proofs can be found in [G-1tI-P 3].

7.1. The associated to a finite family of constant re-
ductions.
Let V be a finite family of constant reductions of F having common re-
striction vI; to Il and possessing a 1/- regular function f E F . The

Cv associa.ted to 1/ is defined to be the (J/(-schenle
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obtained by glueing the affine 0/( -schemes Spec ~j and Spec R j- i along
Observe that 7Zf[f] = 

Equivalently, Cv is the normal closure of P1 0 K relative to the field exten-

sion FII((f).

From the definition above it appears that the OK-curve Cv depends
on the choice of V-regular function f used for its definition. In fact it

only depends on the set of constant reductions V and has the following
properties:

(i) Cv is a projective integral normal flat OK-scheme of pure relative
dimension 1.

More precisely we have:

Let D = (1)00 be the pole divisor of f and set ,S’ = ~ 
n&#x3E;o

where £w( nD) = Then S is a finitely generated graded
-algebra and Proj S.

(ii) Special fibres: Let P be any point of Spec 0/( and vp , respectively
V~ with semi-norm wp , be the corresponding coarsening of the valu-
ation VK, respectively the constant reductions V. Set Of = 
and let Iivp denote the residue field at P. Then f E F is a Vp-
regular function and if Cv, is the Op-curve associated to Vp as

defined above for V then

In particular Cy and CvP have tJ/(-isomorphic generic fibres which
are Ii -isomorphic to the non-singular irreducible projective curve C
associated to F. Further the special fibre Cp of Cv at P is 0/(-
isomorphic to the closed fibre of Cv.

(iii) Cv is independent of the 1l-regula,r function f used for its definition
and hence, depends only on 11.

(iv) For each P E Spec 0/(, C~ is reduced, and x(Cp ) = 

(v) Cv is locally of finite presentation over OK and the morphism
Cv - P1 OK is finite.

This follows from (iii) above and the following algebraic result con-
cerning the rings n associated to regular functions: Let V be a finite
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set of constant reductions of F having common restriction to ~i and
suppose f E F is a V -regular function. Then there existsa V -regular
function t such that 7~ is a finite free O¡([t]-module and lZt-1 is a

finite free 

The following question remains: If f is a V-regular function, is ~f
a finite free When VK is rank 1 and K is complete, -
this result holds, see [G-vdP], p. 100. In the general case we are only
able to show that there exists 8 E with sw = 1 , such that
the localisation (7Z f ) S is a finite free This gives an
alternative way of proving (v) without appealing to (iii).

A natural question to ask is whether given two sets of constant re-
ductions, V, C V , there exists a contraction morphism between Cv and
Cv,.

Contraction Lemma. Let 1/1 C V be finite sets of constant reductions
of F prolonging V¡( and suppose that V1 and V have regular functions.
Let Cv1 , respectively Cv be the corresponding OK-curves. Then there

exists a canonical suijective Oic-iiiorpliism from Cv to 

Finally when is an algebraically closed valued field the 
curves Cv can be chara,cterised by there scheme theoretic properties as
follows:

I. Let X be any proper, integral, normal OK-scheme of pure relative
dimension 1. Let F be the function field of X . Then X is isomorphic
over Spec OK to an OK -curve for some finite set of constant
reductions V of F prolonging 

More precisely, if correspond to the generic points of the
irreducible components of the closed fibre of ~Y, then the local rings

are valuation rings dominating OK and defining the set of
constant reductions V of FIK which determine Cv .

The idea of proof of this result is first to show there exists an birational
X - Cv by using the contraction lemma. Next

one shows that § satisfies the conditions (in particular properness
and quasi finiteness) needed to use Zariski’s Main Theorem EGA IV,
8.12.10, to conclude it is an open immersion. From this it then follows
q5 is an isomorphism as it is proper.
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II. Let X be an integral projective OK -scheme with normal generic fibre
of dimension I and reduced closed fibre. Let F be the function field
of X. Then X is isomorphic over Spec 0/( to an O/(-curve Cv for

some finite set of constant reductions V of F prolonging ’0/(.

The main ingredient for the proof II is a lemma which asserts that if
X is an integral projective OK-scheme with normal generic fibre and
reduced closed fibre, then ~.’ is normal. This lemma is deduced using
methods developed by Roquette in [Rl]. Using this result II follows
directly from EGA IV, lemma 14.3.10 (Artin’s lemma) together with
I above.

7.2. Constant reduction of fields and reduction of curves.

In this paragraph we shall relate the theory of reduction of curves
as presented above with the other theories of reduction, as presented in
the EGA style terminology of arithmetic surfaces, or as presented in the
terminology of formal ana.lytic spa,ces as in [B-L] for example.

7.2.1. Constant reduction and arithmetic surfaces. Let 

be a rank 1 discrete henselian valued field with valuation ring and
a valued algebraic closure of 

Suppose is a, function field in one variable equipped with a finite
family V of constant reductions v coinciding on k with vx. Let us

denote iv := inf v. Then by the results above the following situation is
N 

uniquely determined by and V :

For a.ny V -regula.r function f and the

associated to V with function is

Cv = Proj n Ob).
n

Now there is a finite extension 1(11(0, and a function field C F
N IY

with = F, such that if V = the following holds:

(a) is conservative with exact constant field 7~;

(b) For each v E V, FvII( v is conservative with exact constant field Kv;

(c) f E F is a V- regula.r function.

Let D E be the pole divisor of f in F . Then the OK-
curve associated to V with function field F is 

n
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and Cv x 0’, Note that in addition to the other properties of
C listed in 7.1 it is also geometrically connected. We remark that the
construction above holds for any function field equipped with a family
of constant reductions satisfying (a) , (b) and (c) above.

Suppose is finite and tha,t X is a projective geometrically con-
nected and integral normal OI(-schen1e of pure relative dimension 1 having
reduced special fibres. We show the existence of a finite OK-morphism
X - P1 OK by using effective Cartier divisors and the finiteness of coho-
mology for coherent sheaves on ~.’ as in [B-L-R] . This gives an alternative
proof of 7.1 (vii) in this special situation. We have included the proof to
make the comparison between the methods.

Let be the generic points of the irreducible components
of the special fibre of A’ , then is a discrete valuation ring dominat-
ing OK. Let V = Ivi 1  i  s} be the corresponding valuations of
the function field of the generic fibre X(I~~ . Note that Fvi is the
function field of the irreducible component C X of the special fibre,
so vi) is a, constant reduction.

Now we wa,nt to show that X is isomorphic to the curve Cv of 7.1
associated to t/. For this we have to show the existence of a V-regular
function f E F, with pole divisor D such that X z 

n

First, one can find D , an effective Cartier divisor on X, i.e. a global
section of the sheaf of quotient rings of the structural
sheaf C~x and * denoting invertibility, such that the special fibre 
is concentrated on regular points and meets each irreducible component of

see [B-L-R] p. 169 proposition 4. We denote by D the invert-
ible sheaf associated to D , which can also be considered as an invertible
subsheaf of the sheaf of quotient rings of Then ([B-L-R] p.
167 in the more general context of contractions) A := is a

n 

graded of finite type and = Pro j A. Let Bi be the mini-
mal homogenous primes, then A(L3,) C F is the valuation ring of Vi and

i

Now we show the equality

Let 1 E A, be the constant unit function and 7r a uniformizing element in
K. For z E we «Trite z = where a E An and I is chosen
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minimal positive. If furthermore z E OJ one deduces from (7r) = n Bi
w

that 1 = 0, and ( * ) follows.

The equality ( * ) shows that the algebraic reduction of global sections
of is the same as the reduction relative to wand consequently to
conclude this discussion we need to construct a V-regular function f E F
such that (f). = and 121 D(I(v) for an n1 » 0. For

such a function one has A’ x5 Cv. Now a B1-regular function f is obtained

directly by applying the method of ~G-NI-P 2], proposition 2.5. Precisely
due to the choice of with concentrated in regular
points one deduces using the theorem of Riemann-Roch that

for n » 0 . Hence there exists a fixed I( v-space so that for all n » 0

and now it is ea,sy to give a jl-regular function f .

7.2.2. Constant reduction and formal analytic spaces. Let 
be a rank 1 complete algebraically closed valued field. Suppose is

a function field in one variable endowed with constant reductions V =

1  i  sl prolonging - VK to F and w = inf via. Let f E- - 

t

F be a V-regular function, then the special fibre of Cv at the closed

point E Spec 0 f(, can be viewed as a glueing of affine shemes
affine Kv-schemes SpecRfiv and along 
and it is clear from this description that Cm, is the analytic reduction
of the curve C (the unique non-singular irreducible projective curve
associated with F ), with respect to the formal covering U( f ) =

{P E C : w(,f P) &#x3E; 0}, = ~P E C : w( f P)  0~ , see for
example [M 1~ .

Reciprocally we assume C is a. non-singular projective curve over K
which is equipped with a, formal covering U . One can consider the analytic
reduction of C with respect to U , r: C - C . Choose one (regular) point
Qi from each irreducible component of Cu, then 
is an affinoid space a,nd its canonical reduction is J7 = Cu - [B]
theorem 3.1. Finally using we obtain the existence of f E F (the
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function field of C ) such that U = U( f ) = {P E C : w( fP) &#x3E; 0} , where
w is the spectral nonm defined on U . Further (C, U) is equivalent to

C, V = U f , U f -1 , because Cu (and Cv is the completion of the
-c -c

affine curve UC = U(f) . This completes the proof, for as in the preceding
paragraph if Cv, is the associated to then C .

7.3. On the elementary nature of stable reductions. The stable
reduction theorem for curves over (~, an arbitrary valuation ring with
algebraically closed quotient field can be stated as follows:

Let C~ be a valuations ring with a.lgebra.ica.lly closed quo-
tient field K, a,nd let C be a projective non-singular
irreducible curve over IF of genus g &#x3E; 2. Then there
exists a unique sta,ble curve C over C~ (in the sense of
Deligne - Muiiifbrd [D-1tI]) With generic fibre Cl1 "--r C.

Recall that if s is any scheme and g &#x3E; 2, then a stable curve of genus
g over S is a proper flat morphism - S whose geometric fibres are
reduced, connected, 1-dimensional schemes xs such that

(i) Xs has only ordinary double points as singularites;

(ii) each non-singular rational component of xs meets the other compo-
nents of ,1’s in more than 2 points;

(iii) dim g·

It is well known tha.t the results of Deligne - Mumford on the moduli
space of stable curves can be used to prove the stable reduction theorem
above. Roughly speaking, this theorem is equivalent to the assertion that
the morphism

is proper. Indeed Deligne and Mumford prove the properness of p by
appealing to the stable reduction theorm for curves over discrete valuation
rings and applying the valuative criterion for properness (which here only
needs to be checked for discrete valuation rings). Once properness has been
established one can then go in the other direction to conclude (again by
the valuation criterion) that the stable reduction theorem holds over an
arbitrary valuation ring. +~ precise proof by this argument can be found in
~Ka].

Our interest in the stable reduction theorem has been to show that the
assertion that there exists a unique stable C~ -curve C with generic fibre
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C of genus g &#x3E; 1, is elementary (that is, it is expressible by an assertion
in the first order language of valued fields). Further, to characterise these
C7 -curves as those associated with a finite set of constant reductions of
the function field and to show that they can be described effectively by an
elementary assertion in the language of valued fields having as parameters
the coeffients of certain equations defined over C7.

We briefly explain the method used to prove this result. First a curve
X over a scheme S is defined to be weak stable of genus g if X - S is a

proper flat morphism whose generic and closed geometric fibres are stable
curves of genus g. If S - SpecC? with quotient field Il algebraically
closed and X is projective with normal generic fibre, then by 7.1 II, X
is normal and so is isomorphic to an C~ -curve CY associated to some set

of constant reductions 11 of the function field which prolong the valuation
determined by C7 . Next one shows that for S = Spec 0 as above and

C a projective non-singular irreducible curve of genus g &#x3E; 2 over K, the
assertion that there exists a unique projective weak stable model of C over
O is elementary. Further the projective weak stable model can be described
effectively by an elementary assertion in the language of valued fields having
as parameters the coeffients of certain equations defined over 0. Hence
provided one knows the result over a representative class of algebraically
closed valued fields, using the model completness of the theory of such
fields [Rob], one can deduce the weak stable reduction theorem generally.
For the representative class one could appeal either to Deligne - Mumford,
[D-M], or Artin - Winters, where the theorem is proved for Il the
algebraic closure of a discretely valued field, or alternatively to van der Put,
[vdP], or Bosch - Lütkebohmert, [B-L], where the result is proved when
the valuation on the constant field Ii is rank 1 and Il is algebraically
closed complete.

The reason for introducing the notion of weak stable curves is that here
one only needs to make the a,ssertions for the closed and generic fibres, not
simultaneously for all fibres. Making the assertion simultaneously for all
fibres is not elementary a priori. However we finally conclude that one only
needs to make the assertions for the closed a,nd generic fibres, for together
with the result on the existence and uniqueness of stable curves over 0
it follows aposteriori that the unique projective weak stable model of C
over O is actually the stable C7 -curve. Hence one obtains the result stated
above and a characterisation of such stable curves as C?-curves associated
to a finite set of constant reductions.
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8. On the Galois Theory of function fields

In the final section of this survey we mention the results of Florian Pop
[P2] and [P3] on the Galois Theory of function fields over number fields.
The results of Pop complete a program of Neukirch, Iwasawa and Urchida
and also provide the first step towards a fundamental conjecture of the
birational "anabelia.n" geometry of Grothendieck which, roughly speaking,
asserts that any isomorphism of absolute Galois groups of finitely generated
infinite fields is actually uniquely defined by an isomorphism of the fields
in discussion.

Notation: For an arbitrary field h let ~1’ denote an algebraic clo-
sure and the absolute Galois group of A. The first
results conjectured by Neukirch and proved by Neukirch, Ikeda, Iwasawa
and Uchida assert that:

8.1. If Il and L are number fields and GL, then L.

The next step was made by Iwasawa (unpublished) and Uchida [U],
who showed that the corresponding assertion for global function fields in
the following form is true:

8.2. Let K and L be global function fields of one variable and -1): GK 2013~
GL an isomorphism of tlleir absolute Galois groups. Then there exists
a unique isomorphism --~ the separable closures, such that
O(g) = for E GK- In particula.r ~ maps L isomorphically
onto AB

The result of Pop in [P2] extends this to function fields of one variable
over number fields.

Theorem 8.3 [P2]. Let FIQ, EIQ be two function fields of one variable
( ~ not necessarily the exact constant field of F or E )..If GF and GE
are isomorphic, then F a.nd E are isomorphic.

More precisely, for ea.ch group isomorphism ~: GF ---~ GE there exists
a unique field isomorphism 0: -k ---y P with the property that ~(g) _
O-lgo for all 9 E GK. As a, consequence 0 maps E isomorphically onto
F.

The main new result used in the proof of this theorem is a Galois
characterisation of the constant reductions of the function fields of one
variable over number fields. In this study, methods involving the model
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theory of constant reductions were used, particularly the idea of drawing
conclusions about Galois extensions of function fields of one variable from

the corresponding properties of their constant reductions. The way this is
done is by "interpolating" local information using ultraproducts of function
fields of one variable.

In [P3], theorem 8.3 above has been generalised to the case FIK,
with K a finitely generated field GE compatible

with the augmentation G’F # GK # GE . This result essentially gives
a Galois characterisation of the finitely generated fields, if the Galois group
is endowed with some "stra.tification" .
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