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, 275-3

Recent results in the theory
of constant reductions

by Barry GREEN

The aim of this paper is to give a survey of recent results in the theory
of constant reductions and in particular to examine the way in which the
approaches via rigid analytic geometry or alternatively function field theory
have been used to prove these results. From both these areas there has been
an interaction of ideas and approaches to solving problems and in this paper
we have attempted to illustrate this by the results we discuss. These results
are all of algebraic or geometric nature and in some cases special forms were
already known from function field theory, rigid analytic geometry, algebraic
geometry and valuation theory. We also illustrate how the model theory of
valued function fields is used to provide the framework in which unknown
cases or more general forms of these results ca.n be proved. Examples of
this phenomenon which are discussed in this paper are:

- a theorem on the existence of regular functions for valued function
fields;

- a stable reduction theorem for curves over an arbitrary valuation ring
with algebraically closed quotient field and a characterisation of such
stable curves by a finite set of constant reductions of its function field;

- a Galois characterisation theorem for function fields of one variable
over finitely generated fields.

1. Situation and notations

Let be a function field in 1 variable with K’ the exact field of
constants. Suppose IF is equipped with a valuation v~~ and that u is any
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prolongation of v~~ to F . We let Fv and Ilv (suppressing the subscript K
when this does not lead to confusion) denote the residue fields and assume
throughout that Fv is a function field in 1 variable over I(v. In the

literature such valuations are also called constant reductions of FIK. We
shall often refer to such function fields equipped with a constant reduction
as valued function fields and write When we refer to the genus
of a function field we shall mean the genus over the exact constant field

as in Chevalley [C]. The expression gF), where 
[1(1 : K] and gF is the genus, will be denoted by We shall

assume throughout the paper that Il is the exa.ct consta,nt field and so it

is only for the reduction that r(FvII(v) may be greater than one.

Suppose V is a finite set of constant reductions of F, coinciding on
AT with a given valuation vj . Let f E F be residua,lly transcendental for
each v E V. Recall that this is equivalent with the assertion that for each
v E V, is the functional valuation that is for a polynomial of
degree n

its valuation is given by

Let Vf denote the set of all prolongations of to F, noting that
V C Vf. Then:

(i) f E F is defined to be an element with the uniqueness property for
V if V = Vf;

(ii) f E F is defined to be V-regular for if

Remark 1.1. In general

where Fz (respectively denotes taking a henselisation of F (re-
spectively the corresponding henselisation of A"(/)), 6v the henselian de-
fect and ev is the ramification index with respect to v . We shall discuss
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the defect of a valued function field in some detail in §5 but
remark now that 6, is independent of the choice of the residually tran-
scendental element f (this is a non-trivial theorem - see for example [K]
or [G-M-P 1~, proposition 2.12). Note that if f E F is V-regular for 
then V = Vf and for each v E V, 6,=e, = 1.

When the constant field Il is algebraically closed, for each valuation v
the value group is divisible and so there is no ramification, that is ev = 1 .
An important theorem of Grauert-Remmert asserts that in this situation
the defect bv = 1 aswell. Precisely:

The Grauert-Remmert stability theorem [Gr-Re]. Let and

1/j be as above and suppose that Ii is algebraica,lly closed. Then for each

In the paper of Grauert-Remmert this theorem is only proved for rank
1 valued function fields and the methods used are from rigid analytic ge-
ometry. Proofs of this result for arbitrarily valued function fields have been
given independently by Ohm in [03] and Kuhlmann in [K]. The methods
of proof found in [03] and ~K~ are similar in that both authors deduce the
general case by realizing it as a particular constant extension of the rank
1 case. For the rank 1 case Ohm relies on the proof of Grauert-Remmert,
while Kuhlmann has given a new proof which replaces the analytic methods
by valuation theoretical arguments. In [G-1vI-P 1] and [G-M-P 2] different
proofs of this theorem can be found where it appears as a corollary in a
study of the vector space defect of a valued function field and as a conse-
quence of a theorem on the existence of regular functions. However here
also the proofs can be traced back to a rank 1 form of the result; in the
first case by means of a valuation decomposition and in the second case by
means of a model theoretic argument (using the model completeness of the
theory of valued fields [.Rob]). The proof using model theory is perhaps the
most interesting since here in the rank 1 case one only needs to know the
result for Il the algebraic closure of a local field and this can be deduced
directly from the work of Epp [E].

This theorem is important because it assures us that if ~1 is alge-
braically closed then each function f E F B Il is a 1/j-regular function. It

also means that for the given set of constant reductions V if we are able
to find an element with the uniqueness property for V then it will be a
V-regular function. In the next paragraph we shall discuss the existence of
elements with the uniqueness property for V.
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2. Elements with the uniqueness property

The problem:
Given a function field and a set o~’ constant reductions

V, coinciding on the constant field under what conditions
on K do there exist elements with the uniqueness property for
V,

marked a starting point for the recent study of valued function fields. A
positive answer to this problem was first obtained by Matignon, ~M2J, the-
orem 3, p. 197, when the constant reductions are rank 1 valuations and
K is complete with respect to their common restriction. Matignon proved
this result in a paper in which he gave a new genus inequality relating
the genus of the function field to the genera of the residual function fields.
This genus inequality improved the previously known genus inequalites of
Mathieu [Ma] and Lamprecht [L] in several respects:

- firstly the inequality was proved for any rank 1 valuation on the
constant field, whereas previously a weaker inequality was only known
for a discrete valuation on the constant field;
- for each constant reduction v E V it included a factor corresponding
to a vector space defect associated to (FIK, v) ;
- it contained a term corresponding to the number of constant reduc-
tions in V . Because of this term it followed there is at most one v E V
such that with respect to this has good reduction.

In §5 we shall describe the genus inequality precisely, but now we
return to the problem on the existence of elements with the uniqueness
property. In Matignon’s paper this result follows from a structure theorem
for affinoid domains, Fresnel-Matignon [F-M], theorem 1, p. 160. It can

also be deduced directly from a general contraction lemma of Bosch and
Lütkebohmert [B-L].

In valuation theory there is a general philosophy that if an algebraic
property holds for complete rank 1 valuations then it probably holds more
generally for henselian valuations of arbitrary rank. This is the case with
the above problem. The first result in this direction was proved by Polzin
in [Po], when the constant reductions are rank 1 valuations and Il is
henselian with respect to their common restriction. This result of Polzin

depended on that of Matignon and appeared as a corollary of his study
of the Local Skolem problem and its relationship to the existence of ele-
ments with the uniqueness property for valued function fields over a rank
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1 henselian constant field. He used methods from rigid analytic geometry.
The case of a valued rational function field 1 ) having henselian field of con-
stants (arbitrary rank) has been treated in [M-0 2], where a direct proof
of the existence of elements with the uniqueness property for this case is
given. In the general case the following theorem gives sufhcient conditions
for the solution of the problem:

Theorem 2.1 [G-M-P 2]. Let (K, VK) be a henselian valued field, a

function field and V a finite set of constant reductions of F with VIK 
for each v E V. Then there exist elements t E F with the uniqueness
property for V. In particular if 1( is algebraica,lly closed then t is a V-

regular function.

We shall briefly discuss the methods used to prove this theorem and
point out that it is proved without appealing to rigid analytic geometry, but
did involve model theory. As a first step we proved a general theorem giving
a criterion for the existence of V-regular functions of degree bounded by
something depending only on gF and s = card(V) provided there exists
a V-regular function to begin with.

Theorem 2.2. Let (1(, vK) be an algebraically closed valued field and
(FIK, valued function fields with VIK = V¡( for each v E V (V
is assumed finite). Suppose there exists a V-regular function. Then there
exist V-reguiar functions of degree bounded by 4gF - 4 + 5s.

This theorem is a tool to be used in the proof of 2.1. However one

sees from the statement that it only gives information once one knows the
existence of a V-regular function and so it is not evident how it can be

used to prove 2.1. The way we proceed is by first giving a direct proof of
the following very special case of 2.1, namely:

Theorem 2.3. Let be a valued function field and suppose that
is the algebraic closure of a local field Then there is a

v-regular function t for FIK.

As a corollary we conclude from the previous theorem that if v)
is as above with the algebraic closure of a local field (Ko, V¡(o)

1 ) Problems concerned with the constant reductions of a rational function field
have been studied recently by Ohm and Matignon in [01], [02] and 1]
and by Alexandru, Popescu and Zaharescu in [A-P-Z].
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then there is a v-regular function t for with degree bounded by
4gF + 1.

The next step is to show that a certain statement concerning the ex-
istence of regular functions in a valued function field is elementary. More
precisely, let p be a positive real-valued function of N 2 and a

valued field. We say that (K, VK) belongs to the class C, if: for each

unramified valued function field (FIK, v), with v prolonging a functional
valuation v/(,j for some f E F, there exist v-regular functions for 
of degree bounded by deg f). The result is:

The class C~ is either empty or an elementary class. In par-

ticular, if (K, vl,,) and (L, vL) are elementary equivalent and
(K, v/() belongs to the class Clf) then so does (L, vL).

For the benefit of the reader not familiar with model theory or its appli-
cations to algebra we digress briefly in order to explain how this result can
be used to conclude that each algebraically closed valued field belongs to
Clf) for p = 49F + 1- In this connection we also draw the reader’s attention
to the survey article of Roquette [R3], Some Tendencies in Contemporary
Algebra, which appeared in the 1984 a,nniversary of Oberwolfach edition
of Perspectives in Mathematics. In this article Roquette discusses the in-
trusion of model theoretic notions (in the sense of mathematical logic) and
arguments into algebra.

Let C be an elementary language (i.e. first order which means that
the variables in ,C denote individuals only; there are no set variables or
function variables) and T any theory of ~C (set of sentences of ,C ). A
model of the theory is an £-structure Il such that all the sentences of T
hold in K. If 0 is an arbitrary sentence in ,C then 0 may hold in some
models but perhaps not in all models of the theory. If 0 holds in Il we

say that 0 defines an algebraic property Two models K and L
are said to be elementary equivalent if every algebraic property of I( is
shared by L and vice versa. If this is so we write Il m L. A class C of
£-structures is said to be an elementary class if there exists a theory T
such that C is the class of all models Clearly if ~i E C and L is

any £-structure with L - Ii then also L E C .

In our situation the language is the language of valued fields. There
is a classical theorem of A. Robinson [Rob], saying that the theory of al-
gebraically closed valued fields is model complete. We will not discuss the
general notion of model completeness for a theory here; for our purpose it
sufhces to record that here this means that all algebraically closed valued



281

fields having the same characteristic and residue characteristic (character-
istic of the residue field) are elementary equivalent.

By the preceeding discussion, if is the algebraic closure of a
local field then it belongs to the class Ccp for p = 4gF + 1. Since C~ is

an elementary class we conclude that each algebraically closed valued field
belongs to C~. In summary we have:

Theorem 2.4. Let be a valued function field uith i alge-
braically closed. Then there exist v-regular functions t E F for FIK.
Moreover, t can be chosen with deg t  4gF + 1.

Using this result we are able to deduce the existence of an element
with the uniqueness property for when the constant field IF is

henselian. This is done by extending the field of constants to an algebraic
closure k and then showing that a regular function t for (F~i ~ Ii , v) can
be chosen in F ( v is a prolongation of v from F to As Il is

henselian vl;,t has a unique prolongation from h’(t) to and so this
function is an element with the uniqueness property for v.

The final step in the proof of 2.1 is quite general and consists of showing
that if is equipped with a finite set of constant reductions V having
common restriction to Il and for each -v E V there is an element with the

uniqueness property then there is an element with the uniqueness property
for V. Indeed, once one has an element with the uniqueness property for
a given v E V, it is an easy exercise to construct an element tv with the
uniqueness property for v so that for all other v’ E V, v’(tv ) &#x3E; 0. Let

t = ~ tv , then by skillfully using the fundamental inequality of valuation
vEV

theory one shows that t is an element with the uniqueness property for V
and that

..

Remark 2.5. If each of the tv are v-regular functions then by the identity
above and remark 1.1, t is a V-regular function.

3. The Local Skolem property

We have already mentioned that in the rank 1 situation theorem 2.1
appeared as a corollary of Polzin’s study of the Local Skolem property and
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its relationship to the existence of elements with the uniqueness property
for valued function fields over a rank 1 constant field. In the general case
the problem of finding such a relationship is still an open question. In this
section we shall describe more precisely what this relationship is in the rank
1 situation and formulate what one could expect in general.

Let v) be a rank 1 valued field, .~~ the completion and K its
algebraic closure. Suppose C7v is the valuation ring of v, 8: the cor-

respondinring in the complete field and 8: its integral closure in K.
Likewise Cw denotes the integral closure of in I(. Suppose W is any
geometrically irreducible variety defined over K, let F = F(W ) denote
the field of rational functions of W and to each closed point P E W set
I( (P) = where is the local ring associated to P and
M p its maximal ideal. Let f = f fl, ..., C F and set

where denotes the set of h-rationa,l points of W. Similarly for
each prolongation v of v to Il set

3.1. The Local Skolem Property for (K, v) asserts that for each geo-
metrically irreducible variety W defined over h’ and set f as above, if

then v) ~ 0.
i) I v

Suppose W is a geometrically irreducible affine variety defined over
K, embedded into affine r-space for some natural number r and denote

by the set of v-integral points of ~W in ~~’’. Let f be the set
of coordinate functions. Then the Local Skolem Property implies that if

=1= 0 then 0.

The result of Polzin giving the relationship between the Local Skolem
property and the existence of elements with the uniqueness is:

Theorem 3.2. Let be a valued field. Then the following
are equivalent:

(i) The va,lued field (Ii , vI; ) satisfies the Local Skolem property;
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(ii) If is a function field with constant field 1(1 purely inseparable
over ~~’ and V a, finite set of constant reductions of F with 

v~~ for each v E 11, then there exist elements t E F B Ili with the

uniqueness property for V .

Notice that by the previous section it follows that if (K, is a rank

1 henselian valued field it satisfies the Local Skolem property.

It is possible to formulate the Local Skolem property more generally
and to ask whether a relationship similar to that above holds. Let v) be
any valued field and Il its algebraic closure. Suppose C7v is the valuation

ring of v, a henselisa.tion and ovh its integral closure in Ov
denotes the integral closure of in The Local Skolem Property for

asserts that for each geometrucaliy irreducible variety W defined
over K and set f as above, then 

vlv

Once again if TV is a geometrically irreducible affine variety over K ,
embedded into affine r-space for some natural number r and f is the

set of coordinate functions, then the Local Skolem Property implies that if

W (wh) ~ ~ then 0.

Question: Given a valued field (1(, VK) are the following equivalent?

(i) The valued field satisfies the Loca,l Skolem property;

If a function field with constant held purely inseparable
over Ii and V a finite set of constant reductions of F with 

vI~ for each v E V, then there exist elements t E F B 1(1 with the

uniq ueness property for V .

4. The Local-Global-Principle of Rumely

The Skolem problem is closely related to the Local-Global-Principle of
Rumely for integer points on varieties. In a recent paper Roquette [R6] has
given a proof of this result by constant reduction theory. The situation is
the following:

C7o a Dedekind domain with quotient field 1(0, and residue fields at
the non zero prime ideals of positive characteristic and absolutely
algebraic, ie each algebraic over a finite field.
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~ = 1(0 an algebraic closure of 1(0.
o = tso the integral closure of Oo in 1(, which is assumed to be a

Bezout domain. By [vdD-McT], proposition 5.2, this implies that
the ideal class group of any Dedekind domain lying between C~o
and 0 is torsion. Examples of this situation are given by Oo = Z
or Fplxl.

V = the space of all non-archimedean valuations (primes) v
of 1(; each valuation v is written additively.

W an irreducible affine variety defined over embedded into affine
r -space for some natural number r.

the set of Il -rational points of 14L

W(O) the set of integral points in TV.

Let v E V with valuation ring Ov. Suppose z = (Zl"’.’ zr) , a
typical point of and set v(z) = the v -norm

of z . If v(z) &#x3E; 0 then the point z is an element of and is called

v -integral, or locally integral at v . If this is so for all v E V then z is said

to be an integral point, or globally integral; this means that z E 

i.e. all coordinates zi are contained in C~ (1  i  r) .

Theorem 4.1 (Local-Global-Principle for integer points). Suppose
that locally everywhere, the variety W admits a v -integral point zv E

W(1(). Then W has a globaJl.y integral point z E W(K).

This theorem is proved by first considering the case when W is a curve,
i.e. dim W = 1. After that, an induction procedure with respect to the
dimension of W leads to the general case. In a previous paper, [C-R], the
Local-Global-Principle had been proved for llnirational varieties W defined
over Q, which admit a parameterization by means of rational functions.
R. Rumely then discovered the validity of the Local-Global-Principle in
full generality for arbitrary irreducible varieties defined over lj . His proof,
which has appeared in [Rul], is based on his deep and elaborate capacity
theory on algebraic curves of higher genus over number fields. In view of

the importance of theorem 4.1 there arises the question whether it is more
directly accessible. The purpose of Roquette’s article is to exhibit such a
direct approach. The proofs are very much along the same lines as in the
paper [C-R] for rational varieties. As in [C-R] the situation is reduced
to the case where the variety W is a curve; but now one has to deal not
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only with the rational curves but also with the curves of higher genus. It

is not clear a. priori whether curves of higher genus can be treated in the
same way, with respect to the above theorem, as was done with the curves
of genus zero in [C-R]. The generalization to curves of higher genus rests
essentially on two results:

(i~ The Reciprocity Lelnma for function fields of arbitrary genus which
has been presented in [R4]. Here use is made of a divisor reduction map
for a valued function field which has good reduction. We discuss this map
in § 6.

(ii) The Jacobi Existence Theorem for functions on curves whose zeros
are situated near prescribed points on the curve. This theorem, in the
non-archimedean case, is entirely due to Run1ely [Ru2]. By extending the
proof of this result in [R2], F. Pop has established a more general theorem
taking rationality conditions into consideration in [P4]. In [R2] both the
Jacobi Existence Theorem aswell as the Unit Density Lemma are presented
as applications of a more general density theorem. Both these results are
needed in the proof of the Local-Global-Principle.

The Local-Global-Principle derives its importance from the fact that
the solvability of local diophantine equa,tions is decidable. This has been

proved by A. Robinson [Rob]. More precisely, for a given prime v E V there
exists an effective algorithm which permits to decide whether is

non-empty. It is however not necessary to check this for all primes v E V -
There are finitely many primes v1, ... , vs, computable from the defining
equations of W , such that the are "critical" for W in the

following sense:

If ~ 0 for ea.ch of those critical primes vi then 

0 for all and hence, by the Local-Global-Principle,
0.

The testing of these finitely many critical primes then leads to an effective
algorithm to decide whether ~~~((~) ~ 0. If one wishes to include arbitrary
varieties, not necessarily irreducible, then one has to observe that there is an
effective algorithm for decomposing an arbitrary variety into its irreducible
components over This yields:

The solvability of a.rbitrary diophantine equations over C7 is
decidable. So the 10~ problem of Hilbert over C7 has a positive
answer.


