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Séminaire de Théorie des Nombres,

Bordeaux 3 (1991), 337-350

On products of singular elements

by RAcHED MNEIMNE anD FrEDERIC TESTARD

Some rings, like the ring M (n, K) of square matrices, do not contain
irreducible elements: any singular element z can be written as the product
z = yz of two singular elements y and z. We shall call these rings S-rings.
Our first purpose in this paper is to exhibit some examples of S-rings. For
instance, we give a necessary and sufficient condition ensuring that Z/nZ
is an S-ring.

More generally, let us denote by S;(R) (or just S; if no confusion is
possible) the set of elements of a ring R, which can be written as the product
of i singular elements; the sequence (.5;) is decreasing (we only consider rings
where left invertibility is equivalent to right invertibility) and moreover the
ring R is an S-ring if and only if §; = S3. We denote by S, the intersection
of all the S;; when the sequence (S;) is stationnary (S; = S whenever
i > k), we have S, = Sy if k is the first index 7 such that S; = S;41. There
is a natural operation of the group GL(R) of all invertible elements of the
ring R on the set S; defined by: (g9,z) — gz for ¢ € GL(R) and z € S,
where gz is the product in R of the two elements g and z. This defines
clearly an operation of GL(R) on S;, hence also on S; \ Si4+1 (elements of
Si which do not belong to S;41). Other natural operations could have been
considered: (g,z) — zg~" or (g,z) — gzg~' or the following operation of
GL(R) x GL(R) on S; given by ((g1,92),z) — g1zg; '. When the ring R
is commutative, these operations bring nothing new. This is the case of
the ring K[A] of polynomial expansions of the matrix A € M(n, K) for
which we dispose of a particularly nice description of the orbits of GL(A)
(= GL(K[A]))-(Part 3).

In part 2, we study in an elementary way the ring K[A] by giving a
necessary and sufficient condition in order that the matrix A could be
written as P(A)Q(A), where P and @ are polynomials, with P(A) and
Q(A) two singular matrices (i.e. A € Sy(K[A])).

Part 4 is devoted to the solution of the following non trivial problem:
given any matrix A, what is the maximal number n(A) of singular and
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338 R. MNEIMNE & F. TESTARD

permutable matrices A; such that A = A,..-A,,? A simple observation
allows us to answer the same problem, for A and A; bistochastic.

1. Examples of S-rings
We begin with an easy criterion

LEMMA 1. Let E and F be two rings and E x F be their product ring;
then E x F is an S-ring if and only E and F are S-rings. In particular,
any finite product of fields is an S-ring.

Proof Consider a singular element (z,y) in £ x F. For instance, z
is not invertible. We can find z; and z, two singular elements in £ so
that z = zqz2; then (z,y) = (z1,y):(z2,1) is the product of two singular
elements of £ x F. Conversely, suppose that £ x F' is an S-ring and take
z, any singular element in E. There exist two singular couples (z1,y;) and
(z2,y2) so that (z,1) = (z1,y1)(z2,¥2). Since y1-yo = 1, z1 and z, are
not invertible, and E is an S-ring; the same argument works for F'.

LEMMA 2. Let p be a prime and « be a positive integer. The ring R =
Z/p°Z is an S-ring if and only if &« = 1.

Proof If o = 1, the ring R is a field and there is no problem; otherwise
the class of p cannot be the product of two singular classes since it would
imply p — p?k = cp® where k and c are integers, which is impossible if
a > 2.

ProprosiTiON 1. Let R = Z/nZ; the ring R is an S-ring if and only if
n = py - - - pr where the p; are distinct primes.

Proof If n = p{" ---pp*, the rings R and [[(Z/p{*Z) are isomorphic.
=1
The conclusion follows easily from lemmas 1 and 2.

ProposiTION 2. Let X be a topological space and R = C(X,RR) be the
ring of all continuous mappings from X to R. Then R is an S-ring.

Proof The function f is singular in R if and only if it vanishes at some
point of X. When it happens, the same is true for the two continuous

mappings fi = f'/* and f, = f*/* and f = f1 /2.

ProprosITION 3. Let R be the ring of all germs of C™ real functions on a
neighbourhood of zero. Then f € S; & f(0) = f'(0) = -.- = f¢=D(0) = 0.
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Proof Let us recall that a germ is an equivalence class with respect to
the relation: f R g <& f = g on a neighbourhood of zero. An element f
of R is singular if and only if f(0) = 0 and a straightforward application
of Leibniz’s derivation rule shows that if f = f; ... f; is the product of 7
singular elements, the function f and its 7 — 1 first derivatives vanish at 0.
Conversely, if this is true, Taylor’s formula gives, for z small enough:

i 1
f(z) = (z_z_l_)'/ (1 — )" f®(tz)dt and the conclusion follows.
- J,

Remark 1: This result provides an exemple of a ring where the sequence
S; is not stationnary and does not “converge” to 0. Indeed the well known
C>-function f(z) = exp(—1/z?) whenever z # 0, clearly belongs to all
the S; without being 0. The explanation lies in the fact that the ring R of
germs of C* functions which is a local ring (54 is an ideal, hence the unique
maximal ideal) is not noetherian: indeed, in a local noetherian ring, the
intersection (] S; is equal to {0} as it results trivially from Krull’s theorem
(see e.g. Atiyah-Macdonald: Introduction to Commutative Algebra p.110 -
Addison-Wesley 1969).

PROPOSITION 4. Let K be a field and R = M(n, K) be the ring of square
matrices n x n with coefficients in K. Then R is an S-ring.

Proof Let A € R be a singular matrix and » < n be the rank of A. We
I, 0
0 0
the identity matrix of order r, i.e. there exist two invertible matrices P and
Q such that A = PJ,Q. Since J? = J,, we get A = XY where X = PJ,
and Y = J,Q are singular matrices.

know that A is equivalent to the matrix J, = [ where I, denotes

COROLLARY 1. The ring of bistochastic matrices of order n is an S-ring.

Proof Recall that a matrix M = (a; ;) is bistochastic if there exists d
in K such that Vi, Zj aij = d and Vj,) . a;; = d. It is easy to prove
that M is bistochastic if and only if M(H) C H and M(D) C D where H
denotes the hyperplane of K™ equipped with its canonical basis {e1 ... ,e,},
of equation ), z; = 0 and D is the one dimensional subspace generated
by ), ei. Hence, there exists an invertible matrix P, independent of M,
satisfying M = P [61 g P~'; where A is an element of M(n — 1, K).
This defines an isomorphism between the ring of bistochastic matrices and
M(n —1,K) x K and the conclusion follows from lemma 1.
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2. Singular polynomial decompositions of matrices

From now on, A will denote a square matrix, P and @ will be polyno-
mials.

PRroPosITION 5. The singular matrix A can be written as P(A)Q(A),
where P(A) and Q(A) are singular if and only if 0 is a simple root of
the minimal polynomial of A.

Proof Let us recall that the minimal polynomial of A is the unitary
generator 7 of the ideal of all polynomials which vanish at A. The roots of
m in the field K are the eigenvalues of A in K. In particular, 0 is a root of
m since A is singular.

The sufficient condition is easy to prove: one can write, 0 = w(A4) =
AA + AQ(A) with X # 0, @ being a polynomial vanishing at 0; so that
A = (—A/X)Q(A) and the conclusion follows, since Q(A) is singular (Q(A4)
admits @Q(0) = 0 as an eigenvalue). Conversely, if A = P(A)Q(A), the
minimal polynomial of A divides the polynomial X — P(X)Q(X): it is
enough to prove that 0 is a simple root of X — P(X)Q(X). Let us first
remark that the equality A = P(A)Q(A) remains true for any matrix B
similar to A, so that, considering an upper triangular matrix B similar to
A, (we could need to extend the ground field) we get A; = P(A;)Q(A;) for
any eigenvalue A; of A this implies that if A; # 0, P(X;) # 0 and Q(X;) # 0,
so necessarily, since P(A4) and Q(A) are singular, P(0) = Q(0) = 0 and the

required conclusion follows easily.

Remark 2: An equivalent way to characterize such matrices is the fol-
lowing: 0 is a simple root of the minimal polynomial if and only if ker(A) =
ker(A?).

Remark 3: Let R be the ring K[A]; it results from the proof of proposition
5 that if A € S, then A € S;,Vi (once we have written 4 = (—A/2)Q(A),
we obtain A = (A4/A?)Q(A)Q(A), and so on). We will understand the

situation much better in the following section (see Remark 8).

COROLLARY 2. For A = B¥*, there exist polynomials P and Q so that
A = P(A)Q(A) with P(A) and Q(A) singular matrices if and only if 0 is a
root of the minimal polynomial of B of order < k.

Proof This is an easy consequence of the fact already noticed in remark
2, that the order of 0 in the minimal polynomial of a matrix M is the first
step where the increasing sequence ker(M*) becomes stationnary: we have

ker(B¥) = ker(A) C ker(B**') C ... C ker(B?¥) = ker(A4?).
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3. The ring K[A] for itself

In this section it will be assumed that the field K is algebraically closed,
although most results can be stated in a more general context; let us recall
that the ring R = K[A] = {P(A), P € K[X]} is isomorphic to the quotient
ring K[X]/(w), where (7) denotes the principal ideal generated by the
minimal polynomial of A. Writing 7 in the form 7(X) = [[,(X-X,)* (A; €
K,a; € N*) it follows from the chinese remainder theorem (or from an
adequate computation of the dimension of the underlying vector spaces)
that K[A] is isomorphic to the product ring [[, K[X]/(X — X;)*¢, so that
we obtain, as for the ring Z/nZ, a first result:

ProposITION 6. The ring K[A] is an S-ring if and only if A is diagona-
lisable.

Proof This is again a straightforward consequence of lemma-1, once we
know that a matrix A can be reduced to the diagonal form if and only if
the minimal polynomial of A has simple roots.

Remark 4: If K is no more algebraically closed, we can replace the state-
ment of proposition 6 by the more general one: the ring K[A] is an S-ring
if and only if A is semisimple (i.e. diagonalisable over an extension K’ of

Remark 5: It is not worthless to note that an element M = P(A) of
the ring R = K[A] is invertible if and only if det(M) # 0 or still, if and
only if P(X) and w(X) are coprime: the first criterion results for instance,
from a direct application of Cayley-Hamilton theorem; as for the second it
is, in view of the isomorphism K[A] = K[X]/(r), a consequence of Bezout
theorem.

Before we start the study of the sets S; for the ring K[A], together with
their GL(A)-action, we give a general lemma which can be more easily
stated if the underlying set of the group GL(R) of a ring R is denoted by
So(R) :

LEMMA 3. Let E and F be two rings and E x F be their product ring.
Then, forn > 1

Sn(E x F)= U Si(E) x S;(F) the union being taken over i + j > n.

Proof Let £ = zy---z; be an element of S;(£) and y = y;---y; an
element of S;(F') where all the (z,yx) are singular unless i = 0 or j =
0. We write (z,y) = (z1,1)---(2:;,1)(1, 1) -+ (1,y;); the element (z,y)
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belongs to Si4;(E x F) C Sn), since i +j > n > 1. Conversely, let (z,y) =
(z1,91) - - (zn, Yn) be an element of S,,(E x F') where all the couples (z;, y;)
are singular. We write (z,y) = (21 Zn, Y1 - - - Yn) and we denote by i the
number (possibly equal to 0) of z; which are singular in E, so there are
(n—1) elements z; which are invertible; the corresponding y, are necessarily
singular, so that at least j > n — i elements among the y; are singular and
y € Sj(F); the result then follows from the hypothesis z € S;(E).

Remark 6: The lemma can be easily extended by induction to the case
of a finite product of rings E,,... , E;.

Remark 7: For n > 2, the indexation in lemma 3 could be replaced by
i+ 7 = n. (For n = 1, this is no more true because the factor S; x S
cannot be taken into account). In the case of k rings, we get the same for
n>k.

ProprosITION 7. Let R = K[A] and n(X) = [[(X = X)*,i=1,...,r
the minimal polynomial of A, then Soo = S, where p =3 (a; — 1) + 1.

Proof Since the sets S; behave well under ring isomorphisms, we look
at the problem in the ring R = []; R., where R, denotes the quotient ring
K[X]/(X = X;)*. Let z = (z4,...,z,) belong to S,(R); we shall prove
that one of the components of z is zero, this will imply clearly that £ € S.
From lemma 3, we have z; € S, (R;), where Zj B; = p, so that one of the
Bi, say Bi is > oy (otherwise, we would have }°.8; < 37 (a; — 1) < p)
which ensures z; € S,,(Rx) = {0}. To end the proof, we notice that the
element z = ((X =X )™~',... (X =2X,)*"")isin S,y but not in S, (no
component of z is equal to zero !)

Again Lemma 3 will be of use to establish the following criterion:

ProPOSITION 8. An element P(A) in the ring R = K[A] belongs to Sy if
and only if P vanishes at at least two eigenvalues not necessary distinct of
A or at an eigenvalue of order one in the minimal polynomial of A.

Proof We keep the notation introduced in the precedent proof; the iso-
morphism between the ring R = K[A] and the ring [][ R; is given by
P(A) — P; where P; denotes the class of the polynomial P(X) in the
quotient R,;. Hence, the element P(A) belongs to S, if and only if one
among the P; belongs to S3(R;) or at least two among the P;, say P; and
P, belong to S1(R;) and S1(R,) respectively, the second alternative implies
clearly that the polynomial P is divisible by (X — A;) and by (X — },), the
first alternative means that P is divisible by (X —X;)? if ¢; > 2 0or P, =0
if a; = 1.
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Remark 8: We understand now better the proposition 5 and the remark
3: to say that A belongs to S; means that the polynomial X (which cannot
vanish at two eigenvalues of A !) vanishes at an eigenvalue of order 1 in
mw4; since 0 is its only root, this means that 0 is a simple root of m4. The
image in the product [] R; has one of its components 0 so, belongs to S.

Remark 9: A necessary and sufficient condition in order that an element
P(A) belongs to S; could be stated: the polynomial must vanish at at least
three roots, or must be divisible by (X — X)? where ) is a root of order 2
of w4, or vanish at a simple root of w4 The proof is left to the reader.

Our purpose until the end of this section will be the study of the orbits of
GL(A) on the S;. We begin with the case 7(X) = (X-1)* (i.e. A= AI+N,
N nilpotent). In this case S, = {0} C So—1 C --- C Sy (strict inclusions).
Fori=1,...,a—1, an element of R = K[X]/(X —A)” belongs to S;\ Si4+1
if and only if it can be written as (X — 1)*Q(X), @ and 7 being mutually
prime, which means in view of remark 5, that it belongs to the orbit of
(X — X)'. This proves that the S, \ S;4; along with S, are the orbits of
GL(R) acting on Sy; in particular, there are o orbits.

The following lemma will permit us to compute the number of orbits in
the general case:

LEMMA 4. Let G; denotes the group of invertible elements of the ring
E;, i=1,... k and let E be the product ring. Then GL(E) is isomorphic
to the product HGL(E,'). Moreover, if «; is the number of orbits of G;
acting on Sy(E;), then the number of orbits of GL(E) on S1(E) is given
by (a1 + 1) (a2 +1) - (ar +1) = 1.

Proof The assertion concerning GL(E) is trivial. As for the second, we
begin with the case n = 2. Considering the action of G; x G2 on the set
of singular elements of RB; x R,, we can divide the orbits in three kinds:
orbits of elements (z, y) where z and y are singular, orbits of elements (z, y)
where z is singular and y is invertible and finally, orbits of those elements
(z,y) where z is invertible and y singular. There are clearly ajas orbits
of the first kind, ay of the second type and as of the third, which gives
ajag+ag4ag = (a1 +1)(a+1)—1, first and last. An induction argument
will do with the general case.

PropPosITION 9. The action of GL(A) on the set of singular elements of
K[A] determines [],(a; + 1) — 1 orbits, i = 1,... ,r if the minimal polyno-
mial is given by [[,(X — X;)*.

Proof it is an immediate consequence of lemma 4 and the discussion
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before.

CoROLLARY 3. The non empty sets S; \ Si+1, along with Sy, are exactly
the orbits of GL(A) acting on K[A] if and only if the matrix A can be
written A = Al + N, where A € K and N nilpotent.

Proof We have already established the sufficient condition. Conversely,
our hypothesis implies that, in view of proposition 7 and 8,

Z(a,;—l)+1=H(a,<+1)—l

which is possible only if » = 1, that is A = AT + N.

COROLLARY 4. Let A have r distinct eigenvalues, then A is diagonalisable
if and only if the number of orbits on the set of singular elements is 2" — 1.

Proof This is clear since the condition is equivalent to a; = 1, V1.

ProposiTION 10. Let So = S, in the ring R = K[A] and suppose that
K[A] is not an S-ring (i.e. p > 2), then the number of orbits of GL(A)
acting on the non-empty set Sy \ S, is exactly the number of multiple roots
of the minimal polynomial w4. Moreover, the non-empty set S,_; \ S, is
exactly an orbit in the singular set.

Proof We keep use of the isomorphism R 2 []; R; with its GL(A) =
[1, GL(R:) action; an element (z1,...,z,) belongs to Sy \ S2 if and only if
all the z; but one, say z; are invertible and z, belongs to S;(Rx)\ S2(Rk);
this set is hence non empty and a GL(R}y)-orbit. We get so a correspondence
between the orbit of the element (z1,...,z,) and the necessary multiple
eigenvalue a. As for the second assertion, we first make use of lemma 3: the
element (z4,... ,z,) belongs to S,_1\S, if z; € Sgi(Rp:) and 3,8 > p—1
and no z; is zero (cf. proof of proposition 7), thatis #; < a;—1; since p—1 =
>o;(ai — 1), we get B; = a; — 1, for every i. But each So;—1(R:)\ Sa,(R:)
is an orbit (even if a; = 1; see our convention of notation preceding lemma
3), the conclusion follows.

Remark 10: More generally, it is not difficult to establish that there is a
one-to-one correspondence between the orbits in Sy \ Sx—¢ and the r-uples
(a1,...,a,) for which a1 + -+ a, = k and 0 < a; < a; — 1 for every .
This gives for example in the case of a matrix A with minimal polynomial
TA(X) = X3 (X +1)*(X —1)? (here p = (2+3+2)+1 = 8 and the number
of orbits is 79) exactly 3 orbits in Sy \ Sz, 6 orbits in S3 \ S3, 8 orbits in
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S3\ S4, 8 orbits in S4 \ S5, 6 orbits in S5 \ Sg, 3 orbits in Sg \ S7, one orbit
in S7\ Ss and 44 orbits in Sg.

Computing all the orbits in S\ S,, we need to know all the (a1,...,a,)
such thatVi0 < a; < a;—1and 1 < ay;+---4a, < p—1. This last inequality
is a consequence of the first r inequalities, so there are (ay - - - a, — 1) orbits
in S7\ So and by substraction [J(a; +1) — (a - - - a;) orbits in S, (result
which is valid even if p = 1). It is now easy to solve the following:

Exercise 1: Prove that if A has exactly k distinct roots with k¥ > 2, then
A is diagonalisable if and only if there are 2% — 1 orbits of GL(A) on S.
(Compare with corollary 4).

4. Permutable decompositions of singular matrices

If A is a singular matrix, we define n(A4) as the upper bound of the
numbers m of singular permutative matrices A; such that A = A4, -.- A,,.
In order to compute the number n(A) for a given matrix A, we need to
introduce a special class of operators characterized by the following:

ProrosiTiON 11. For a given matrix acting on the finite dimensional vec-
tor space E = K™, it is equivalent to say:

a) dimker(A?) = 2dimker(A)
b) the Jordan cells of A associated with the eigenvalue 0 are of order > 2
c) ker(A) C im(A)

8 i,( written with respect to
a direct decomposition of E = ker(A) @ G where the linear operators

d) the matrix A is similar to a matrix

X:GLHEMker(4) Y:GHELG
satisfy (o) ker(X) @ ker(Y) = G and (B) X is onto.

Proof The equivalence between a) and b) results from the classical Jor-
dan decomposition; the one between a) and c) is a direct consequence of the
Frobenius injection ¢ : ker(A?)/ ker(A) — ker(A) given by T — A(z); thus
a) is equivalent to say that ¢ is surjective, which is exactly c). We prove
now a) = d): let C; be a complementary subspace of ker(A) in ker(4%) and
C, be a complementary subspace of ker(A?) in E and write G = C; & C»
-we have already noticed that the restriction of A to C; is an isomorphism
between C; and ker(A); the same is true for the restriction of X to Cj,
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since these restrictions are equal. It follows that X is onto and that Cy and
ker(X') are complementary in G. We need only to prove that Cy = ker(Y);
it is clear that C; C ker(Y), moreover, if At denotes the restriction of

A to G, AT is one-to-one so dim(Cy) + dim(Cy) = rk(A*) = rk [if] =

rk([X Y])=rk(X)+rk(Y)=dim(Cy) + rk(Y) and we are done.
Finally let us prove d) = a): the matrix A? is similar to [8 );’,}2,] and
with respect to the direct decomposition £ = ker(A) & G, to say that the

vector column [z] is in ker(A?) means that v € ker(Y2)Nker(XY) and u is
arbitrary in ker(A); but ker(Y') = ker(Y?) Nker(XY) if ker(X)Nker(Y) =

{0} (easy) so that v € ker(Y). We end the proof by noting that since X is
onto and G = ker(X ) @ ker(Y'), we have in fact dimker(Y) = dimker(A).

We are able to state the main result of this section:

ProposITION 12. The number n(A) is finite if and only if A satisfies

the equivalent properties given in proposition 11. In which case n(A) =
dimker(A).

Proof The matrix A is similar to a matrix B of the form:

Bo
B 0
B = 01 . , the matrix B, being invertible and each of the
s
matrices B; being a Jordan cell associated to the eigenvalue 0 (obviously,
k = dimker(A) and moreover B is absent if A is nilpotent). If one of

!
the B, is of order 0, the matrix A is similar to B = [g 8] and B =
. I,., 0 .
B]XBQX'--XBI,,WlthB1:B, B2:“':Bp: 0 0 (Wlth

evident notation), all these matrices are singular and permutative, and
we can choose p as large as we want: n(4) = co. When dimker(A?) =
B
0 B1 0
2dimker(A), we have B = B} x --- x B} where B} = d
0
Td

(the blocks By and B; kept unchanged and the others replaced by Id) and
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Id

fori=2,...,k B.= . B; (we replace all the blocks B; by
0 B
Id

Id, except B; which remains unchanged); again these matrices are singular
and permutative so n(A) > k = dimker(A).

We proceed to prove the opposite inequality (in due course we shall need
0
0
written as a product Ny --- Nyyq, where the N; are permutable matrices;
we shall show that one of the N; must be invertible.

two lemmas). Suppose that M = ‘;,(] given by proposition 11 can be

Let us write N; = [1521 g'] according to the decomposition of M. The
first remark is R; = 0. Indeed, since N; and M commute, N;(ker(M)) C
ker(M), that is R, = 0. It follows that the S; are permutative and that

51 XSQ"‘XS];+1 =0.

LEMMA 5. Let Sy,...,Sky+1 be permutative matrices of order k satisfying
S1x Sg X +++ x Sg41 = 0, then after reindexation Sy X Sy x -+ x S = 0.

Proof By induction. The result is trivial for k£ = 1; if Si4; is invertible,
the conclusion is clear since we may multiply on the right by its inverse.
We may then suppose that the dimension d of the image subspace im(Sk+1)
is strictly smaller than n. If S!, i = 1,... ,n, denotes the restriction (ev-
erything commute with Si4q) of S; to the subspace im(Sk4+1), we have
Sy x S5 x .-+ x S} = 0. This last expression can be thought (by grouping
if necessary some operators toghether) as the null product of d + 1 com-
muting operators in a d—dimensional space. By induction hypothesis, we
get (after possible reindexation, and reinserting of some possible operators)
Sy xSy x -+ x S,_; =0, and conclude that at the level of the hole space
S1 xSy x X Sg—1 X Sg41 =0.

Accordingly, we may suppose that Sy x --- x Sy = 0 and that, denoting

the product N = Ny --- Ny by [8 g] and Niy4q by [10% YS“] =0,

X=HF=RH+SU (i)
Y = UT: TU (ll), since M = NNk.H = Nk.HN.

The last step of the proof will consist of proving that R and T are
invertible.
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(i) and (ii) imply that ker(T) C ker(X) and ker(T') C ker(Y) so that
ker(T') = {0} : T is invertible. Now since T is invertible, again (ii) shows
that ker(U) = ker(Y') and (i) shows that rk(H) = rk(X).

Keeping the notations of proposition 11, we assert that G = ker(X) &
ker(U) and G = ker(H) @ ker(U); the first equality is now clear, the second
will be established if ker( H) Nker(U) = {0}, but this is easy since ker(H)N
ker(U) C ker(U) = ker(Y') and by (i) ker(H) Nker(U) C ker(X). We get
now the invertibility of R from the following lemma:

LeEMMA 6. Consider the diagram:

G———G
F LA F

and suppose that ¢ = roh + sou together with ker(h) and ker(z) in direct
summand with ker(u) in G, then r induces an isomorphism between the
images of h and z.

Proof This is immediate as soon as we consider the restrictions to ker(u)
of the mappings given on G.

COROLLARY 5. If n(AF) is finite then n(A¥) = k-n(A).

Proof Write {0} C ker(A) C ker(A?) C --- C ker(AF) C ker(4¥*") C

. C ker(A%). Since dimker(A?*) = 2dimker(A*), the Frobenius
inequalities:

dim ker(A**") — dim ker(A*¥) < dimker(A¥) — dimker(A*~") are in fact
equalities so dimker(A*) = k-dim ker(A).

Remark 11: The preceding corollary shows in particular that if n(A) is
odd, the matrix A has no square root.

ProprosITION 13. Suppose n(A) < oo, and let A = X, ---X,, a permuta-
tive singular maximal decomposition-of A (m = n(A)), then Vi, n(X;) < oo
and is = 1.

Proof We have ker(X;) C ker(A) C im(A) C im(X;), since the X;
commute. So n(X;) is finite. We proceed, for proving n(X;) = 1, by
induction on m = dimker(A); the case m = 1 is trivial. Write A = X;-B
where B = Xy .-+ X,,; as for X;, we prove that n(B) is finite, but B is
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already written as m—1 permutative singular matrices, hence n(B) > m—1.
Remember now that ker(B) C ker(A) so either dimker(B) = m — 1 or m;
we prove that it is not m: otherwise, the inclusion im(A) C im(B) would in
fact be an equality. Write now: im(B) = im(A) = X;(im(B)). This means
that X; leaves im(B) invariant, and its restriction to im(B) is surjective,
and hence ker(X)Nim(B) = {0}. But ker(X;) C ker(A) C im(4) = im(B),
so X, is bijective which is false. We have in fact dimker(B) = m — 1, and
n(X;) = 1Vj > 2 by induction hypothesis. Since we could have chosen
B = X4+ Xn-1, the fact n(X;) =1 is clear.

The next result is a simple application of proposition 12 to permutative
decomposition of singular bistochastic matrices: if A is such a matrix we
define n,(A) as the upper bound of the number m of singular permutative
bistochastic matrices A; such that A = A, ... A4,,.

PRroPoSITION 14. For a bistochastic matrix, n,(A) = n(A).

Proof We make again use of the isomorphism between the ring of bis-
tochastic matrices and the product ring M,_1(K) x K, and may suppose

A= [’%‘ g] (see the proof of corollary 1); if A = 0, n,(A4) = n(A) = oo;

and if n(A) < oo the scalar A is different from 0 (proposition 11 b)) and
n(A) = n(A,) the conclusion follows easily.

We look in this final paragraph to the upper bound m(A) of numbers k&
such that A = A, ... Ay where the A; are singular and quasi-commutative
(ie. A;Aj; — AjA; is nilpotent).

PRrRoPOSITION 15. m(A) = oo, VA.

Proof The problem behaves well under base change, and a simple argu-
ment similar to the one given at the beginning of the proof of proposition
12, shows that we only need to consider the case when A is a Jordan cell

1

Jn associated to the zero eigenvalue. But if B = N , we have

1

0
for every m, B™J, = BJ, = J,; we get the result by noting that two

triangular matrices are quasi-commutative.

Exercises: 2 - Given an arbitrary matrix A, prove that there exists an
invertible matrix P, such that n(PA) < oc.

3 - Prove that if n(A ® B) < oo, where A ® B is the tensor
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product of A and B, then either A or B is invertible.

4 - Prove that if p > 2, then n(A?A) = oco. (We have denoted
by A” A the p** exterior power of A).

5 - Prove that the ring of upper triangular matrices is an S-ring.
Use this fact to give another proof of proposition 15.
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