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A polynomial reduction algorithm.

PAR HENRI COHEN AND FRANCISCO DIAZ Y DIAZ

Résumé 2014 L’algorithme que nous décrivons dans ce papier est une ap-
proche pratique de la représentation d’un corps de nombre K par la racine
d’un polynôme aussi canonique que possible. Nous utilisons l’algorithme
LLL pour trouver une base de petits vecteurs pour le réseau de Rn image
des entiers de K par le plongement canonique.

Abstract 2014 The algorithm described in this paper is a practical approach
to the problem of giving, for each number field K a polynomial, as canonical
as possible, a root of which is a primitive element of the extension K/Q.
Our algorithm uses the LLL algorithm to find a basis of minimal vectors
for the lattice of Rn determined by the integers of K under the canonical
map.

Very often, number fields arise as 7~ = Q[0], where 0 is an algebraic
integer of degree n root of a minimal monic polynomial P E Z[X]. There
of course exist an infinite number of such polynomials P, one for every
algebraic integer of degree exactly equal to n belonging to 7~.

Given a number field 7~, it would be nice be able to find a unique P
defining K if we add a few extra properties. For example, this would

immediately solve the problem of deciding whether two number fields are
isomorphic or not.

In this note, we give an algorithm which is a first approach to answering
this problem, and which has proved to be very useful. After explaining the
basic algorithm, we give four examples for which we thank our colleague
M. Olivier, and we conclude by giving a variation on the basic algorithm
which gives a polynomial which is as canonical as possible.

1. Description of the algorithm
A natural idea is to define a notion of "simplicity" of a polynomial. For

example, we could say that a polynomial is simple if the largest absolute
value of its coefficients is as small as possible (i.e. the LOCJ norm on the
coefficients), or such that the sum of the squares of the coefficients is as
small as possible (the L2 norm). Unfortunately, we know of no really
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efficient way of finding "simple" polynomials in this sense, even if we do
not ask for the simplest, but a simple polynomial defining K.

What we will in fact consider is the following "norm" on polynomials.

DEFINITION. Let P E C[X], and let ai be the complex roots of P repeated
with multiplicity. We define the size of P by the formula

"

This is not a norm on in the usual mathematical sense, but it seems

reasonable to say that if the size (in this sense) of a polynomial is not large,
then the polynomial is simple, and its coefficients should not be too large.

More precisely, one can show that if P = L:=o a k X k is a monic poly-
nomial and if ,S = size(P), then 

’

hence the size of P is related to the size of

The reason for which we take this definition instead of an L~’ definition on
the coefficients is that we can apply the LLL algorithm to find a polynomial
of small size which defines the same number field 1~ as the one defined by
a given polynomial P, while we do not know how to achieve this for the
norms on the coefficients.

The method is as follows. Let K be defined by a monic irreducible
polynomial P E Z[X]. We first compute an integral basis (.¿)1, ... of the

ring of integers of Ii , by using for example the Pohst-Zassenhaus round 2
or round 4 algorithms.

Denote by Uj the n isomorphisms of Ii into C. If we set

where the Xi are in Z, then x is an arbitrary algebraic integer in 7~ hence
its characteristic polynomial M~ will be of the form where Pd is
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the minimal polynomial of x and d is the degree of x . Now Pd defines a
subfield of K, and in particular when n = d, it defines an equation for K.
Futhermore it is clear that all equations for K or its subfields are obtained
in this way.

Now we have by definition

hence

This is clearly a positive definite quadratic form in the x,’s, and more
precisely 

I 

Note that in the case where 7~ is totally real, that is when all the ak are
real embeddings, then this simplifies to

which is now a quadratic form with integer coefficients which can easily be
computed from the knowledge of the w; .

In any case, whether 7~ is totally real or not, we can apply the LLL
algorithm to the lattice ~" and the quadratic form size(M~). The result
will be a set of n vectors x corresponding to reasonably small values of the

, quadratic form (see (LLL] for quantitative statements), hence to polyno-
mials M, of small size, which is what we want. Note that we will often
obtain in this way algebraic integers x of degree d  n, hence this will give
us for free some subfields of K. In particular, x = 1 is always obtained as
a short vector, and this defines the subfield Q of K. Practical experiments
with this method show however that, at least for small values of n, there is
always at least one element x of degree exactly n, hence defining K. On the
other hand, it is definitely possible that no polynomial of degree n occurs,
although it is a very rare occurence. That this is possible in principle has
been shown by H. W. Lenstra (private communication), but in practice, on
more than 10000 polynomials of various degree we have never encountered
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a failure. In this unfavorable case, we can of course try to look for elements
of small norm other than those given by LLL, but it will be much slower.

Although the minimal polynomials of the elements of degree n that we
obtain have usually smaller coefficients than the polynomial P from which
we started, it is also often the case that they have much greater coefficients
than those of P, and this is because the "size" of P does not directly reflect
the size of the coefficients (see above).

Note that it is absolutely not true that our algorithm will give all the
subfields of 7~. In fact, the LLL algorithm gives us exactly n vectors, but
a number field of degree n may have much more than n distinct subfields.

The algorithm, which we name POLRED for polynomial reduction, is
as follows.

Algorithm. Q[O] be a number field defined by a monic irre-
ducible polynomial P E Z[X]. This algorithm gives a list of polynomials
defining certain subfields of Ii (including Q), and which are often simpler
than the polynomial P so can be used to define the field Ii if they are of
degree equal to the degree of AB

1. [Compute the maximal order] Using for example the round 2 algo-
rithm (see e.g. [Ford]), compute an integral basis ... , ,Wn, as polynomials
in 0.

2. [Compute matrix] If the field h’ is totally real (which can be easily
checked using Sturm’s algorithm), set ~-- for 1  i, j  n,
which will be an element of Z.

Otherwise, compute a reasonably accurate approximation of 0 and its
conjugates as the roots of P in C, then the numerical values of Uj(Wk),
and finally compute

(note that this will be a real number).
3. [Apply LLL] Using the LLL algorithm applied to the inner product

defined by the matrix M = (mi,j) and to the standard basis of the lattice
Z’~, compute an LLL-reduced basis bi , ... , bn.

4. [Compute characteristic polynomials] For 1  i  n, compute the
characteristic polynomial Ci of the element corresponding to bi on
the basis 1, 0, ... , 0"~.
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5. [Compute minimal polynomials] For 1  i  n, set

where the gcd is always normalized so as to be monic, output the polyno-
mials P~ and terminate the algorithm.

Since we will have Ci it is clear that the computation of step 5
gives us Pi in terms of C~ .

2. Examples
We now give examples of the use of the POLRED algorithm.
In ~Kwon-Mart~, the smallest discriminant of a quintic number field with

one real place and having the metacyclic group as the Galois group of
its Galois closure, is shown to be generated by a root of the polynomial

of discriminant 24 ~ 13‘~ ~ (2~ . 10429)~. Using POLRED on this polynomial
we find that our quintic number field can also be generated by a root of the
simpler polynomial

whose discriminant is 24 ~ 133 equal to the discriminant of the field.

The next example is taken from work of M. Olivier. Consider the poly-
nomial

This polynomial is irreducible over Q, hence defines a number field K of
degree 6. Furthermore, one computes that the complex roots of P are
approximately equal to

Now one computes that
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hence the Galois group G of the Galois closure of K, considered as a per-
mutation group on the roots of P, is a subgroup of the alternating group
At,. Furthermore, direct computations on the roots show that Ii does not
have any non-trivial subfields. The classification of transitive permutation
groups of degree 6 then shows that G is isomorphic either to A,5 or to A~ .

To distinguish between the two, we use a resolvent function given by
[Stau] and the resolvent polynomial thus obtained is

A computation of the roots of this polynomial shows that it has an integer
root x = -673, and this shows that G is isomorphic to A5. In addition,
Q(X) = R(X)/(X + 673) is an irreducible fifth degree polynomial which
defines a number field with the same discriminant as K. We have

and the discriminant of Q (which must be a square) has 63 decimal digits.
Now if we apply the POLRED algorithm, we obtain five polynomials, four
of which defining the same field as Q, and the polynomial with smallest
discriminant is

, ,  _ _ - I

a much more appealing polynomial than Q.
Note that we also have disc(S) = 116992.
There was a small amount of cheating in the above example: since

disc(Q) is a 63 digit number, the POLRED algorithm, which in partic-
ular computes an integral basis of K hence needs to factor disc(Q), may
need quite a lot of time to factor this discriminant. However, we can in
this case help the POLRED algorithm by telling it that disc(Q) is a square,
which we know a priori, but which is not usually tested for in a factoring
algorithm since it is quite rare an occurence. This is how the above exam-
ple was computed in practice, and the whole computation, including typing
the commands, took a few minutes on a workstation.

A similar example is obtained by starting with the polynomial
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We also find that its Galois group is isomorphic to A5, and the fifth degree
polynomial Q(X) obtained as above is

The use of POLRED gives us as polynomial of the fifth degree with smallest
discriminant the polynomial

Now as remarked in [Oliv], the polynomial P is interesting because it gives a
primitive sextic number field with A‘5 as Galois group of the Galois closure,
and of discriminant d = 287296 = (2‘~ ~ 67)2 , and it is the one with smallest
discriminant in absolute value. Curiously enough, this discriminant is also
the smallest for primitive sextic number fields with A6 as Galois group of
the Galois closure (defined for example by + 2X5 - X~ + 2X 2 - 1).

Another interesting property of the polynomial P becomes again appar-
ent with the use of POLRED. If we apply POLRED to the polynomial P
itself (which is already simple enough, but no matter), we obtain five other
sixth degree polynomials, one of which is

Now A. Brumer has noticed that the plus part J+(67) of the Jacobian
of the modular curve Xo(67) is isogenous to the Jacobian of the curve
y2 = T(-x), and the minus part J-(67) is isogenous to the product of the
Jacobian of y2 = P(-x) by the elliptic curve 67a of [Ant IV].

As a last example, we give examples of the use of POLRED in showing
that different polynomials generate isomorphic fields. For this, we use to-
tally real octic polynomials of discriminant 282300416 and 309593125 given
in [PMD].
A totally real octic field 7~ of discriminant d = 282300416 is generated

by a root of the polynomial
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Applying POLRED to P(X) we obtain

thus showing that the fields generated by the roots of the polynomials given
in [PMD] are isomorphic, and also that is a subfield. The fact that

the same polynomial is obtained several times gives also some information
on the Galois group of the Galois closure of the number field I, since it
shows that the automorphism group of K is non-trivial.

For discriminant d = 309593125, applying POLRED to the polynomial

we obtain

where four of the polynomials given for this field in [PMD] occur, and in
addition a polynomial for Q( v’5), and two quartic polynomials. Another
application of POLRED shows that both generate the unique (up to iso-
morphism) quartic number field of discriminant 725.
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If we apply POLRED to the other polynomials given in [PMD] for dis-
criminant d = 309593125, i.e. for

and for

we obtain the same polynomials (up to the trivial change X into -X),
showing that the fields generated by all these polynomials are isomorphic.

3. A pseudo-canonical defining polynomial
As mentioned in the introduction, we can use the basic POLRED al-

gorithm to obtain a polynomial defining a number field Ii which is as

canonical as possible.
We first need a notation. If Q(X) = is a polynomial of

degree n, we set 
- -

Algorithm. Given a number field li defined by a monic irreducible
polynomial P E of degree n, this algorithm outputs another polyno-
mial defining 7~ which is as canonical as possible.

1. [Apply POLRED] Apply the POLRED algorithm to P, and let P;
(for i = 1, ... , n) be the n polynomials which are output by the POLRED
algorithm. If none of the Pi are of degree n, output a message saying that
the algorithm has failed, and terminate the algorithm. Otherwise let ,C be
the set of i such that Pi is of degree n.

2. [Minimize v(Pi)~ If ,C has a single element, let Q be this element.
Otherwise for each i E ,C compute v- I ~ V(Pi) and let v be the smallest vi
for the lexicographic ordering of the components. Let Q be any Pi such
that v(Pi) = v.

3. [Possible sign change] Search for the non-zero monomial of largest
degree d such that d 0 n (mod 2). If such a monomial exists, make if nec-
essary the change Q(X) 2013 so that the sign of this monomial
is negative.
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4. [Terminate] Output Q and terminate the algorithm.

Remarks.

(1) As already mentioned the POLRED algorithm may give only poly-
nomials of degree less than n, hence the above algorithm will fail
in that case. This is a very rare occurence.

(2) At the end of step 2 there may be several i such that v. In

that case, it may be useful to output all the possibilities (after
executing step 3 on each of them) instead of only one. In practice,
this is also rare.
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