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Transcendental numbers having explicit
g-adic and Jacobi-Perron expansions.

par JUN-ICHI TAMURA

1. Introduction.

Davison proved in [8] that

and that the number V) is transcendental. Here, Lx J denotes the integer
part of a real number x and the right-hand side denotes a simple contin-
ued fraction, where the power of 2 appearing in the partial quotients are
Fibonacci numbers.

The binary expansion of V) can be described by the fixed point of a substi-
tution.* For this purpose, we introduce some definitions.

denotes the set of all finite words over an alphabet Ii = {a, b, c, ... , d},
i.e. is the free monoid generated by h with the operation of concate-
nation and the empty word A as its unit. Ii ‘’’° denotes the set of all infinite
words (wn. E h’).
A substitution o- (over Ii) is a monoid endomorphism u on Ii * extended to
h’"°, defined by u( w) = ... for w = ... E ~~~.

A fixed point of a is a word w E such that u( w) = w. Any substitution
a over Ii of the form

has the unique fixed point w prefixed by a, namely, w = au u( u) u2 (u) ....
Here, the product 7 o- denotes the composition of T and cr, and un indicates
the n-fold iteration (n &#x3E; 1) with (70(u) = u (u E h* U h"°).

Manuscrit reçu le 20 D6cembre 1990, version revisee regue le 17 Octobre 1991.
*Cf. Bohmer [4], Mahler [13], Danilov [7], Adams-Davison (1, Bundschuh [5], Nishioka-

Shiokawa-Tamura [15], see also Allouche [2], Stolarsky [21].
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The base-2 expansion of the number 0 is given by

where the word w = E 10, is the unique fixed point of the
substitution 0- over {0,1} defined by ~(1) = 10, 0-(0) = 1.

The main purpose of this paper is to give a higher dimensional version
of (1), where the Fibonacci sequence is replaced by a linear recurrence
sequence of order 3, the so-called "Tribonacci" sequence**; the continued
fraction expansion is replaced by its dimension 2 analogue, the simplest of
the Jacobi-Perron algorithms; and the fixed point of a different substitution

In what follows, w = abacabaabacababa ... denotes the fixed point of the.
substitution over K := {c~6,c} defined by (2)*** We shall prove that

where the left-hand side denotes the vector of two real numbers O.r(w) and
having the sequences and v(w) as their digits in the binary

expansion respectively with the coding

and the right-hand side denotes the Jacobi-Perron algorithm, and In. (n &#x3E;
-2) denotes the sequence with the recurrence relation

We shall also show the linear independence, and transcendence of the num-
bers 0.r(w), 0.v(oe) in Theorem 1. We give a more general transcendence
result in Theorem 3, for instance, the number

**Cf. Sloane [20], p. 60, it 406; Carlitz, Hoggatt and Scoville [6].
***Cf. Rauzy [18]. He set up a link between the distribution of the sequence

~(8rt, r~rt~~,~~1,2,3,... modulo Z~ (0, n belong to a cubic field) and the sequence w.
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which is considered as an expression in base g (&#x3E; 4), is transcentental,
where g is the morphism defined by ~(a) = 3, fl(b) = 2, ~(c) = 203.
For certain functions connected with the values O.T(w) and O.v(w), we can
show results similar to those in Theorem 1 using an algorithm defined
by Parusnikov, which is the counterpart of Jacobi-Perron algorithm for
functions. The Jacobi-Perron algorithms used in Theorem 1 and Theorem
2 will be introduced in § 2. Theorem 1-3 will be stated in § 3. In this version,
we use the theory of representation of numbers by Tribonacci sequence****
for the proof of the transcendence results in § 4.

Instead of the fixed point w, we can state theorems similar to Theorem
1-3 for the fixed point of the substitution T over tal, a2, ... , a,~.~ } (s f; 1)
given by ’

with k, &#x3E;_ ~-.1 ~ ’" ~ 1 (kj 6 N), where the Jacobi-Perron al-

gorithms turn out to be of dimension s. We will give such results in a
forthcoming paper.

2. Jacobi-Perron Algorithm.

In this section, we define two kinds of continued fraction expansions of
higher dimension due to Jacobi, and Parusnikov.***** We use the following
notation:

IL = C ((~"~))) the field of formal Laurent series with complex coeffi-
cients.

IL is a metric space with the distance function (0 , q E IL), where
is the usual non-archimedian norm defined by 11 0 = e- kfor 0 =

[0] := the polynomial part of 0 E IL, i.e.

****This is a generalization of the Fibonacci representation due to Zeckendorf [22].
A large and interesting class of representations is introduced by Shallit [19], see also
Fraenkel [10], Knuth [12].

*****Cf. Bernstein [3], Parusnikov [16], Niki0161in-Sorokin [14].
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where l(O , q) denotes the transpose of (0 , 1]).

T : L~ - ]L2 denotes the map defined by ,1]»:= ~(1/~ , 0/q). To
be accurate, T is not a map on IL2. For brevity, in what follows, we shall
simply write f : A -. B for a "map" f with some exceptional elements
x E A for which f is not defined. We also write T((0 , 1]» by

Now we define, following Parusnikov [16], the Jacobi-Perron algorithm for

noting that T-1 (flo) = 1/0o), we can write

Let If 8~ ~ 0, then

Continuing the process, we get

provided that 0 for all 0  n __ m - 1, where

and

and S’ is the n-fold iteration of
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If = 0, then the algorithm terminates. If 0 for all n &#x3E; 0, then

which will be denoted by ~;!!1’ b2, ~ ~ ~ , converges componentwise to
0 as n - oo with respect to the metric induced by the norm 11 11, cf.
Parusnikov [16].

Hence we can write

In what follows, we also write

for Q.n = t(bn, cn). The algorithm given by (5) will be called the Jacobi-
Perron-Parusnikov (abbr. JPP) algorithm (of dimension 2). Apart from
the algorithm (5), we can consider the expression (6) for a given sequence

E [,2 provided that its nth convergent ?rn is well-defined (except for
a finite number of them) and converges to some element in IL2. The JPP
expression (6) will be called admissible if it is derived from the algorithm
(5). The admissible expressions satisfy

If we take the field R, and the integral part of instead of 1L,
and the polynomial part [0] of 0 E IL, respectively, we have an algorithm
which is the simplest one among the Jacobi-Perron algorithms, cf. [3], p.
49. This algorithm will be simply referred to as the Jacobi-Perron (abbr.
JP) algorithm. When (6) is admissible in the JP algorithm, we have
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3. Main Results

THEOREM 1. Let g be a positive integer, and let 0(g), 77(g) be the real
numbers defined by the expression in the JP algorithm

where fn (n ~ -2) is the Tribonacci sequence defined by (3). Then the

following assertions are valid: 
’

(i) If g &#x3E;_ 2, the g-adic erpansions of 0(g) and are given by

where w is the fixed point of a defined by (2), r and v are codings defined

(it) then and 11(9) are transcendental numbers.

(iii) 1, B(g), are linearly independent over Q for all g &#x3E;_ 1.

Remark 1: (9) is admissible in the JP algorithm.
Remark 2: 0 (1), T/ (1) are algebraic numbers of degree 3.

THEOREM 2. Let (x E {a, b, c}) be analytic functions on Izl &#x3E; 1

defined by

is the fixed point in Theorem l. Then we have the following statements:

(i) The functions 1/;n.(z), 1/;h(Z), 1/;r,(z) are transcendental over C(z).

(ii) The functions ~c/y(z), 1/;h(Z), 1/;r,(z) are linearly independent over (C(z).

(iii) The admissible expression in the JPP algorithm for t((z), ~(z)) :=

is gi ven by

Remark 3: If in the expression (9) g is replaced by a variable z, then (9)
changes into a JPP expression, but this is not admissible in JPP algorithm.
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THEOREM 3. Let g &#x3E; 2 be an integer, and let T be a morphism

such that rank i

where a, (resp. a2, a3) is the symbol a (resp. b, c), and denotes the
number of times the symbol j appears in the word u. Then the number
defined by the g-adic expansion O.r(w) is transcendental.

4. The proofs of the main results.

We first prove Theorem 1, (i), and Theorem 2, (iii) except for the ad-
missibility of (10), which will be shown in the last paragraph.

Let us denote by B" and P~, the 3 x 3 matrices given by

where E is the 3 x 3 unit matrix. We can set

Then, we have the following well-known formula: (for completeness, we give
a short proof of Lemma 1 following Nikisin and Sorokin [14], cf. Bernstein
[3], Chap. 1, §3.)

LEMMA 1. Let 2 E IL2 have the expression (4) (not necessarily admissible)
with

Then

in particular,
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Proof. Let P2(IL) := (IL3 B 1.~})/ , be the 2-dimensional projective space
over L, i.e. the set of all equivalence classes of the elements of IL3with the
relation - defined by

if and only

We denote by Q~ the element of P2(IL) which contains Q. By v : 1L2 -a
P2(IL), and ~r : we denote the inclusion map, and the projec-
tion map given by

respectively. A : 1L:B -+- L3 indicates the linear map over L for a given
matrix A E GL(3; IL) as usual. Then we can define the maps and 1r A,
which make the following diagram commutative:

where

stands for

Then we get

Therefore, by the commutativity of the diagram, it follows from (4) that

which implies
the lemma. ·

Throughout this section, h denotes the set {~1)~2~3} as in
Theorem 3, u is the substitution (2), w = E Ii) is the fixed
point of cr, and fn, (n &#x3E; -2) is the sequence (3).
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Since ~~(a) = abacaba = Q2(a) a(a) a,

and so

where Iwl denotes the length of a word w.

LEMMA 2. Let vn (n &#x3E;_ 1) be the sequence of words in K* defined by the
recurrence relation

with initial conditions vi = A , , V2 = a, V3 = aba. Then Vn, is a prefix of w
with 

Proof

Then abac, which together
with (13) and (14) implies the lemma. 1

Let (n &#x3E;_ -2) be the sequence in ~~~z~~‘~ defined by

and the same recurrences with q*, r:. in place of pn with initial conditions

For a given polynomial p = p(z), we denote by ord p, and deg p the highest
power of z that divides p, and the degree of p in z, respectively. Then we
have the following
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LEMMA 3.

Proof. By induction on n, we get

These equalities imply the lemma. ·

In what follows, x(w ; x) (w E h’* U /(00, x E Ii ) denotes the set
and Ii D stands

for the sequence for a sequence .

LEMMA 4. Let ri (1 ~ i ~ 3) be the coding defined by
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Then x (w ; a=) = for each 1  i  3.

Proof. It is clear that w = T(~i)cr(~2)’"cr(~n)"’ ~ here, a, appears

precisely once in the word a(wn) as its prefix. Hence, noting =

(1 ~ j ~ 3), we have the assertion when i = 1.
Let i = 2 or 3. It is clear that w = o-2 (wl )~~(w2) ~ ~ ~ ~~(w,~) ~ ~ ~ , and =

(ai )a~~~ (aj+i ) ( j = 1, 2), ~s(a~) _ ~~‘1 (a~ ), here, ai occurs precisely
once in the word (a~ ) as its suffix, and does not occur in the words
O’i-l(aj+’) (j = 1, 2). Thus, noticing = (1  j _ 3), we get
the assertion when i = 2, 3..

We denote by z^D the power series (resp. polynomial) E z’~ for a given
nE n

subset (resp. finite subset) of N.

LEMMA 5. We have, for 1,

Proof. We can write by Lemma 3 together with (15)

for suitable subsets 5n., Tn , Un of N such that

and the same recurrences with ITnl, I in place of hold. Here IDI
denotes the number of elements of a finite set D. Checking their initial
terms, we get IS.1 = = /~-2, JU.1 = (n &#x3E; 1). In view of
Lemma 3 together with Lemma 2 and (15), we obtain Lemma 5 by Lemma
4..

Proof of Theorem 1, (i), and the identity (10) in Theorem 2.

We set
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Then we get by (15)

and the same recurrences with and rn in place of p~. Let Pn (n ~ 0)
be matrices defined by (12). Then, in view of (16) and (17), we see that
P,~ (n &#x3E; 0) satisfy the relations in (11) with

In what follows, bri = indicates the vector t(bn, cn) of polynomials
given by (18), and x(w; x, y, ~ ~ ~ ) (w E h’* U 7~ , x, y, - - - E K) denotes
the set X(w; x) U x(w; y) U ~ ~ ~ .

Noting that {n 6 N; 1  n _ by (14), we obtain
the following identity by Lemma 1 together with Lemma 5:

which converges to inLasn-

Therefore, setting z = g (2 _ g E ~1~, we obtain Theorem 1, (i). By taking
T-1, and then subtracting Ql _ (1,1) from both sides of (19), we get the
identity (10). N

Since [[ I (z - 1) ~((z ~ )"X(w ; a) 11= 1, A2, b~ ~ ... ~ is not ad-

missible in the JPP algorithm, see Remark 3.

Proof of Theorem 1, (ii. As a special case of Fraenkel [10], any nonneg-
ative integer has precisely one representation as a sum of distinct numbers
in F :_ ~ f ~, ; n &#x3E;_ 1 } such that the sum contains no three consecutive terms.
If

contains no three consecutive terms of F in the sum, then (20) will be called
the canonical representation of n (in base F).
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LEMMA 6. Let n _&#x3E; 1 have canonical representation (20). Then Wn = W fi1 .

Proof. The canonical representation (20) of n &#x3E; 1 is given by the greedy
algorithm, namely,

... + f~; + f _ n}, see Shallit [19], Fraenkel ~10~, Knuth [12]. Then, noting
(13) and (14), we have

LEMMA 7. We have

Proof. In view of (2) and (14), we have

Lemma 6 implies

and so

It follows from Lemma 6 and (21) that w f~_,+f,~_~ = ú) fn+1 , which together
with (22) implies

We have
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and hence, we get

and so

Noticing fn+i + fn-3 = 2fT’" we obtain (i).

Let n &#x3E;_ 7. By the same argument as above, we have

and w f~_~+f~_~ = Ú,)fn+1+fn-2. Hence we get

and together with
8) and = = we obtain (ii). 0

By Lemma 7, we can show the following lemma, which together with
Roth’s theorem (see, for example, [14], pp. 40-45) leads to the statement
Theorem 1, (ii).

LEMMA 8. Let 0(g) and g(g) (g &#x3E; 2) be the numbers defined in Theorem
1, and let - be an arbitrarily fixed positive number. Then the simultaneous
rational approximations

are valid for infinitely many rational numbers p/r, q/r (p, q, r E Z), where
- ft - -..... 1"11.

Proof. We denote by ~1 r~2 ~ ~ ~ c~~; the infinite periodic word

Let T and v be codings as in Theorem 1. Then we have by (19)
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Thus we get by Lemma 7 that

hold for all sufficiently large n. It follows from the proof of Lemma 5 that

which implies that úJ is not an ultimately periodic word, since a is an

irrational number of degree 3. Hence, 0(g) and q(g) are irrational, and so
the inequalities

hold for infinitely many rational numbers

Proof of Theorem 3. Using Lemma 7 and the following lemma, we get
Theorem 3 in the same manner as the proof of Theorem 1, (ii). ·

LEMMA 9. Let r be as in Theorem 3. Then r(w) is not an ultimately
periodic word.

Proof. Put and

Then we have

Hence we get

which is irrational for some 0 _ j __ when rank I

2. Thus the lemma foUows. N

Proof of Theorem 2, (i). Since (x E ~a, 6, c}) are not rational
functions, the assertion follows from the following
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LEMMA 10. (Fatou)
If a power series with integral coefficients represents an algebraic function

that is not a rational function, then its radius of convergence is smaller than
one. (Cf. Fatou (9), p. p. 368-371, or Polya and Szeg6 (17J, p.139, ~167.)

Proof of Theorem 2, (ii).

LEMMA 11. Let 0 = ’(B, ~) E IL2 and let 0 = [0.; b~ , b2, ~ ~ ~ ~ be the JPP
expression with bn E (C[Z])2 (n &#x3E;_ 1) not necessarily admissible. Let

be its nth convergent given in Lemma 1. Assume that

the inequalities II rn0 - Pn ll= 0(1), and II qn ll= 0(1) hold. Then

1, 0 andq are linearly independent over 

Proof. Suppose that s0 + u = 0 with 0 ~ (s, t, u) E ~C(z~. Then we get
11 spn + tqn + urn 11= by the assumption. Hence, spy, + tqn + urn =
0 (Vn » 1), so that det P", = 0 (Vn ~ 1). This contradicts the fact

Hence, it follows from (19) and Lemma 7 that 1, and 

are linearly independent over C(z), which implies Theorem 2, (ii). ·
Proof of Theorem 1, (iii).

LEMMA 12. Let 0 = ’(0, tl) E Iae 2 and let 0 = ~; b~ , b2 , ~ ~ ~ ~ =

1 (bn, cn,) EZ2 (n &#x3E;__ 1) not necessarily admissible in the JP algorithm. Let
its nth convergent determined by (8), (9). Assume that

the inequalities = 0(1), and qn = 0(1) hold. Then 1, 0, and
q are linearly in depen den t over Q.

Proof. The lemma is shown in a manner parallel to that of the proof of
Lemma 11. N

In view of the proof of Lemma 8 and Lemma 12, we get Theorem 1, (iii)
when g &#x3E;_ 2. The assertion is clear when g = 1. N

It remains to prove only the admissibility results. We use the following
lemma for showing the admissibility result in the JPP algorithm.

LEMMA 13. (Parusnikov (~~~~ Let P" E SL(3;C[z]) be the matrix (12)
defined by (~I~ under conditions (7) with b1 ~ 0. Then, for n &#x3E;_ 1,

Proof. It is easily seen by induction on n. 0
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Proof of Theorem 2, (iii). We have already shown the identity (10).
We put

Then we get 11 ~,~,,"’’~ 11 e-~, ~~ g17~ 11 e-’ (2 ~ m ~ n) by Lemma 13 and
Lemma 1, since 0 _ deg bj  deg cj holds for all j &#x3E; 2. Letting n -&#x3E; oo,

we obtain 11 Ç"’’) ll 1 and 11 ~~"’’~ 11 1 for all m &#x3E; 2, from which the
admissibility of (10) in the JPP algorithm follows. 0

The admissibility of (9) in the JP algorithm can be shown by using the
following lemma, which corresponds to Lemma 13.

LEMMA 14. Let P". E SL(3; Z) be the matrix (12) defined by (11) under
the conditions (8) with b", &#x3E;_ 1. Then the following 12 inequalities hold:

Proof. By induction on n. N

Proof of Remark 1. We use the same notation as in the proof of Theorem
2, (iii). It follows from Lemma 14 that 0 _ ~’~~’~(g)  1 and 0 ~ ~~"~(g) __ 1
for all m &#x3E; 1. We suppose that ((-)(g) = 0 or 1; or ~~"’~ (g) = 0 or 1 for
some m &#x3E;__ 1. Then the admissible expression of t(~~"’~(g), ~~r"~(g)) in the JP
algorithm terminates, which contradicts the fact that 1, ~t"’~ (g), ~~~’’~ (g)
are linearly independent over ~. 1

5. Automata and The Fixed Point w.

The g-adic expansions 0(g) a.nd il(g) given in Theorem 1, (i) can be
considered as explicit ones, since their digits are described in terms of finite
automata in the unified framework of Shallit [19] on automata, CDOL-
systems, representations of numbers, and locally catenative formulae.

Let E := ~0,1}, and let L be the set defined by
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We write L = 1~ , ~ ~ ~ 1,,, - - - I in increasing order A = 10 « 11 -"’-
l~ ~ ... , where by - we mean the lexicographic order with 0 « 1 preceded
by the length order. In can be considered as the canonical representation
of n in base F in the sense that )t In = n, where (w E E* ) denotes the

k

number defined by E wjfi for w = wkwk-1 ... W1 (wj E E), and In is the
m

sequence (3).

Let M = MH := (7~, E, 6, a, H) be the finite automaton with set of
states K = ~a, b, c~, input alphabet E = {O, 11, initial state a, set of final
states H C K, and transition function 6 defined by

(For precise definitions, see, for example, Hopcroft and Ullman [11]).

Then we have L = n (lE* U {A}) C E*, where L(MH) denotes the
language consisting of the words accepted by MH, and

We have also

where hn is the binary expression of n, p is the morphism defined by

and 6+ is the transition function of a deterministic finite automaton M+ :=
H+ defined

by
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6. Conjectures.

Let be as in Theorem 2. We can show that the irrationality mea-
sure p(tPx(g» of (2  g E Z) is not less than 2 + 1 /(cr" - 1), where
a &#x3E; 1 is the number satisfying a3 - a2 - a - 1 = 0, cf. Lemma 8.

(ii) 0. (fl) (:c ~ {a, 6,c}) is transcendental for all (3E Q with &#x3E; 1.

(iii) 1/;(1 (g) and 1/;h (g) are algebraically independent for all 2 _ g E Z.

(iv) (1 _ j _ n) are algebraically independent for each x E
{a,6,c} when 1, /j~ , ~ ~ ~ , are linearly independent over Q with I &#x3E;

1(1jSn).
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