Transcendental numbers having explicit g-adic and Jacobi-Perron expansions
Journal de théorie des nombres de Bordeaux, Volume 4 (1992) no. 1, p. 75-95
@article{JTNB_1992__4_1_75_0,
     author = {Tamura, Jun-Ichi},
     title = {Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {4},
     number = {1},
     year = {1992},
     pages = {75-95},
     zbl = {0763.11029},
     mrnumber = {1183919},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1992__4_1_75_0}
}
Tamura, Jun-Ichi. Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions. Journal de théorie des nombres de Bordeaux, Volume 4 (1992) no. 1, pp. 75-95. http://www.numdam.org/item/JTNB_1992__4_1_75_0/

[1] Adams, W.W. and Davison, J.L., A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. | MR 441879 | Zbl 0366.10027

[2] Allouche, J.-P., Automates finis en théorie des nombres, Expo. Math. 5 (1987), 239-266. | MR 898507 | Zbl 0641.10041

[3] Berstein L., The Jacobi-Perron Algorithm, its Theory and Application, Lect. Notes in Math. 207, Springer-Verlag, (1971). | MR 285478 | Zbl 0213.05201

[4] Böhmer, P.E., Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367-377. | JFM 52.0188.02 | MR 1512324

[5] Bundschuh, P.E., Über eine Klasse reeler transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. reine angew. Math 318 (1980), 110-119. | MR 579386 | Zbl 0425.10038

[6] Carlitz, L., Hoggatt, V.E., and Scoville R., Some functions related to Fibonacci and Lucas representations,, The Theory of Arithmetic FunctionsLect. Notes in Math. 251 Springer-Verlag, 1972, 71-102. | MR 340167 | Zbl 0229.05012

[7] Danilov, L.V., O nekotorykh klassakh transcendentnykh cisel, Mat. Zametki, Tom 12, No 2 (1972), 149-154 = Some classes of transcentental numbers, Math. Notes 12 (1972), 524-527. | MR 316391 | Zbl 0253.10026

[8] Davison, J.L., A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32. | MR 429778 | Zbl 0326.10030

[9] Fatou, P., Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. | JFM 37.0283.01

[10] Fraenkel, A.S., Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114. | MR 777556 | Zbl 0568.10005

[11] Hopcroft, E. and Ullman, J.D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 198. | Zbl 0426.68001

[12] Knuth D.E., The Art of Computer Programming, Vol. III (Sorting and Searching), Addison Wesley, 1973, pp. 269-270, pp. 286-287, and pp. 647-648. | MR 378456 | Zbl 0302.68010

[13] Mahler, K., Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. | JFM 55.0115.01 | MR 1512537

[14] Nikišin, E.M. and Sorokin V.N., Racional'nye approksimacii i ortogonal'nost' (in Russian), Nauka, 1988, 168-175.

[15] Nishioka, K., Shiokawa, I. and Tamura, J., Arithmetical properties of certain power series, (1990), to appear in J. Number Theory. | Zbl 0770.11039

[16] Parusnikov, V.I., Algoritm Jacobi-Perrona i sovmestnoe priblizenie funkcij (in Russian), Mat. Sbornik 114 (156) no. 2 (1982), 322-333. | MR 609293 | Zbl 0461.30003

[17] Polya G. and Szegö G., Problems and Theorems in Analysis II, Springer-Verlag, 1976. | Zbl 0359.00003

[18] Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178. | Numdam | MR 667748 | Zbl 0522.10032

[19] Shallit, J.O., A generalization of automatic sequences, Theor. Comput. Sci. 61 (1988), 1-16. | MR 974766 | Zbl 0662.68052

[20] Sloane, N.J.A., A Handbook of Integer Sequences, Academic Press, 1973. | Zbl 0286.10001

[21] Stolarsky, K.B., Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR 444558 | Zbl 0359.10028

[22] Zeckendorf, E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182. | MR 308032 | Zbl 0252.10011