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On 2-class field towers of

imaginary quadratic number fields

par FRANZ LEMMERMEYER

ABSTRACT. For a number field k, let k1 denote its Hilbert 2-class field, and
put k2 = (k1)1. We will determine all imaginary quadratic number fields
k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in
terms of generators and relations.

1. Introduction

Let k = be an imaginary quadratic number field with discrimi-
nant d  0. It is well known that the structure of the 2-class group Cl2(k)
depends on the factorization of d into prime discriminants: these are dis-
criminants which are prime powers, i.e. -4, ~8, -q, (q - 3 mod 4), and
p (p - 1 mod 4). We say that d has t factors if d is the product of exac-
tly t prime discriminants. Here we will study the question how far these
factorizations determine the 2-class field tower of k.

To this end let k1 denote the Hilbert 2-class field of k, i.e. the maximal
unramified normal extension of k whose Galois group is an abelian 2-group.
Moreover, let k2 = (kl ) 1 _ We will classify the discriminants d of imagi-
nary quadratic number fields according to the structure of G = Gal(k2/k),
and we will determine all d such that k = has abelian or meta-

cyclic Gal(k 2 Ik). Partial classifications have been obtained in [1] and [10];
whereas Benjamin and Snyder used Koch’s Satz 1 of [9], we will employ
his Satz 2 instead. The formulation of this theorem contains some errors;
its correction reads (see [10]; a G-extension of k is an extension K/k with
Gal(K/k) - G, the notation of the groups is the one used in [2]):
THEOREM 1. Let k be a quadratic nurrtber field; there exists a G-extension
K/k which is unramified at the finite places and such that K/Q is normal
if and only if there is a factorization d = disc k = dld2d3 into relatively
prise discriminants such that the Kronecker symbols (dil Pj) in (*) below
equal +1 (here p; runs through all primes dividing dj):

Manuscrit regu le 20 Juin 1994.
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If (di/pj) = 1 for all i ~ j, there also exists an unramified extension
L/k such that 32.18 and 64.144.

The following two propositions will help us in deciding if the p-class
field tower of a quadratic number field terminates at some stage; the basic
observation is due to Iwasawa [5]:
PROPOSITION 1. Let k be a number field and suppose that its p-class field
tower terminates with K. Then EkINKIkEK, where
9R(G) denotes the Schur multiplier of a group G and Ek denotes the unit
group of the ring of integers SJk of k.

If, for example, K/k is an unramified and normal 2-extension of an
imaginary quadratic number field k with 4, then K’ 0
K. For showing that a certain class field tower terminates we use the
following result (cf. [10]):
PROPOSITION 2. Let k be a number field and let Kl be a normal unramified
extensions containing the p-class field kl of k; if 9R(Gal(Klk)) = 1, then
the p-class field tower of k terminates with K.

Proof. Suppose otherwise; then there exists an unramified extension L/K,
which is central with respect to K/k. i.e. which satisfies Gal (L/K) C
Z(Gal(L/k)). Moreover, Gal(L/K) C Gal(Llk)’ because K contains kl.
Recalling the most elementary properties of Schur multipliers (cf. [13] or
[7]), this gives the contradiction 9X(Gal(Klk)) =,4 1.

In particular, the p-class field tower of a field with cyclic p-class group
terminates with kl, because cyclic groups have trivial multiplier.

2. Abelian groups as Gal(k2/k)
The fields d  0, such that G = Gal(k2/k) is abelian, have

been determined in [10]; for fields with G/G’ - (2, 2’"’~) this result has been
obtained independently by Benjamin and Snyder [1].
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THEOREM 2. Let ~(~) be an imaginary quadratic number field with dis-
crirrtinant d. Then Gal(k2/k) is abelian if and only if d has at most three
factors and if at most one of them is positive. Actually, we have (p and
q, q’ etc. denote primes =- 1 3 mod 4, respectively):

The "only-If"-part of the theorem can be proved quite simply: suppose
that G = Gal(k2/k) is abelian. Then the 2-class field tower of k termi-
nates with K = kl. Since k is imaginary quadratic and -3, -4
(recall that we have assumed d to have three prime factors), we find Ek =
{-1, +1}, so has order  2. This implies that the abelian
2-groups possibly occuring as Gal (k 2Ik) must have Schur multiplier of or-
der  2. The only such 2-groups are the cyclic groups and those of type
(2, 2"’), m &#x3E; 1 (see [7]).

If Gal (k2Ik) is cyclic, then so is Cl2(k), and by genus theory this is
equivalent to disc k being the product of exactly two prime discriminants.
The theory of R6dei, Reichardt and Scholz allows us to find all d such
that Cl2 (k) - (2, 2"’~), m &#x3E; 1; we will outline the method used to compute

in case d = -4p ~ q is the corresponding factorization of the
second kind. Here we have (-q/p) = 1 and q =- 7 mod 8; the ideal classes
of z = (2,1 + and p = (p, -pq ) have order 2 in Cl(k) and differ
from each other. Genus theory shows that the ideal class of p is no square
in Cl(k); class field theory implies that the quadratic unramified extension
K, = &#x26;(B/~9) belongs to a subgroup of index 2 in C12(k), and since p splits
in this subgroup is not cyclic. Therefore, the fields K = k( A) and

belong to the cyclic subgroups of index 2 in Cl2(k), i.e. NK/kCl2(K)
is a cyclic group of order 2m.
Now we notice that the quadratic field has odd class number,

and that K = k(A) has unit group EK =  &#x3E;, where epq is
the fundamental unit of (for a proof, see [8]). The class number
formula now gives h2(K) = 2m, and since the norm of Cl2 (K) to k is

cyclic of order 2m, so is Cl2(K). In particular, the 2-class field tower of k
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terminates with KI, and the equality (K1 : k) = 2’‘~+1 = (kl : k) shows
that in fact K1 = k.

Remark. The knowledge of k2/k allows us to compute the structure of
Cl2(L) for the subfields L of kl/k; we are also able to compute the sub-
groups of those Cl2 (L) which capitulate in any given extension L/K con-
tained in k1/k. For fields with kl = k2, however, this is hardly interesting:
in this case, exactly the ideal classes of order  (L : K) capitulate in any
extension L/K such that k c K c L C kl (this fact was already known
to Scholz and can be proved immediately by computing the kernel of the
corresponding transfer maps).

3. Metacyclic groups as Gal(k2/k)
Our primary aim is to show:

THEOREM 3. Let k = be an imaginary quadratic number field with
discriminant d. Then Gal(k 2Ik) is metacyclic if and only if

i) G is abelian and k is one of the fields described in Section 2, or
ii) G/G’ - (2,2); then G is dihedral, semidihedral or quaterniontc,

and k is one of the fields listed in [8] and [10], or
iii) d = -4pq, where p and q are primes - 5 mod 8.

For groups G = Gal(k2/k) such that GIG’ -- (2, 2’’n) this has been
obtained by Benjamin and Snyder [1]; the proof of theorem 3 that we will
offer depends partly on their results. We begin our proof with the well
known observation that factor groups of metacyclic groups are metacyclic.
If, therefore, G = Gal (k 2 Ik) is metacyclic, then so is GIG’ - Cl2(k).
Genus theory now implies that d = dld2d3 for prime discriminants If

Cl2(k) has a subgroup of type (4,4), then theorem 1 shows that G has a
factor group - 32.18. Since 32.18 is not metacyclic, neither is G.

So far we have seen: if G = Gal (k 2Ik) is metacyclic, then (2, 2"’~)
for some dihedral, semidihedral or quaternionic, and
this case has already been settled by Kisilevsky [8] (see also (10)). The case
m &#x3E; 1 has been studied by Benjamin and Snyder [1]: they have shown that
metacyclic groups G with (2, 2m) occur as G = Gal(k2/k) if and
only if d = -4pq, where p and q are primes - 5 mod 8. Using theorem 1, we
can prove this as follows: since Cl(k) is assumed to have a cyclic subgroup
of order 4, we must have d = dld2d3 for prime discriminants d~, such that
d, - d2d3 is a factorization of the second kind (in the terminology of R6dei
and Reichardt): this is to say that (d2d3/pi) = (di/P2) = (di /p3) = +1,
where p; is the unique prime dividing 6~.
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Now we observe the following: if dl and d2 are prime discriminants such
that (dl/p2) _ +1, then we also have (d2/pi) = +1 except when both di
and d2 are negative or when dl = -4, d2 = p - 5 mod 8 (or vice versa).

Returning to the situation discussed above we see that there are three
cases to consider:

1. All three dj are negative: then G = Gal (k 2Ik) is abelian, as we
have seen in Section 2.

2. Exactly one dj is negative, and d is not of the form -4pq, where
p and q are primes - 5 mod 8: then (d,/P2) = (di /p3) = +1 im-
plies, from what we have seen, that (d2/Pl) = (d3/pl) = 1. By
theorem 1, these relations imply the existence of an unramified
16.09-extensions of k. Since 16.09 is not metacyclic, neither is
G = 

3. disc k = -4pq, p - q - 5 mod 8.

We will now use the techniques sketched in [10] to compute the structure
of Gal(k2/k) for the fields k in 3. To this end, suppose that p - q - 5 mod 8
are primes such that (lro/q) = 1; suppose moreover that the fundamental
unit epq of F = Q(Vp-q) has norm -1. The theory of R6dei, Reichardt and
Scholz now gives (p/q)4 = (q/P)4 and Cl2(F) - Z/2"Z for some n &#x3E; 2.

The prime ideal p in F above p is not principal: for if p = (7r) for some
7r E SJF, then 7r2 I P would be a unit with positive norm; this would imply
that ±7r 2lp and therefore ~p are squares in F. This contradiction shows
that the ideal class [p] has order 2; since Cl2(F) is cyclic, it is generated by
an ideal class [a] such that p. In fact we may choose a as one of
the two prime ideals above 2Z, because genus theory shows that their ideal
classes are not squares in Cl(F).

Similarly, the prime ideals 2 = (2, 1 + -pq ) and p = (p, in k
are not principal (the prime ideals p in F and in k coincide in kF), and
from genus theory we infer that the ideal class [p] is a square in Cl(k).
Kaplan ([6]) has shown that the condition (p/q)4 = (q/P)4 deduced above
implies that CL2(k) - (2, 4). Therefore, 2, b &#x3E; (we will write
 z, b &#x3E; for the rather clumsy  ~2~, [b] &#x3E;), where b2 I’V p.
Now let K = pq ); this quadratic extension of k and F is

contained in the 2-class field kl of k. It is an easy exercise to show that
the unit group EK =  &#x3E; and that h2 (K) = 2’~+2. Since Nepq = -1,
there exists exactly one non-trivial ideal class which capitulates in K/k;
in fact, =  2 &#x3E; (here xK/k denotes the subgroup of ideal classes
in Cl(k) becoming principal in K), because 2DK = (1 + i). From this
we deduce that is not principal, and that the ideal class of bDK
generates a subgroup of order 4 in Cl(K). The same argument yields that
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the class of aOK generates a subgroup of order 2’~ in Cl(K). We claim
that the subgroup  a, b &#x3E; of Cl(K) has index 2 in Cl2(K). This index
is certainly &#x3E; 2 because ~2. Now suppose that a’ - b in K;
taking the norm to k gives 1 N b2 as a relation in which is clearly a
contradiction.

The prime ideal 2 splits in Let = 2l2l’; then NK/k  a, ~ &#x3E; =

 p &#x3E;, because NK~ka and ~2 N p, and therefore the subgroup of Cl2(K)
generated by the classes of a and b does not contain the ideal class of 2~
because not contained in  p &#x3E;. Since  a, b &#x3E;

has index 2 in Cl2 (K), we must have Cl2 (I~) _  &#x3E;.

Let p denote the automorphism of K/Q which fixes F; then is a

prime ideal in F above 2Z, and without loss of generality we may assume
that it equals a. Similarly, let u denote the automorphism fixing I; then
2(1+u = 2. We therefore get the following relations between ideal classes in
K, keeping in mind that 1-f- ~ acts on Cl(K), whereas NK~k maps Cl(K)
to Cl(k):

the least relation holds because pQ fixes Q(I) which has class number one.
Now we see that

which shows that the ideal class of 2l has order 2n+1 in Cl(K), and that
Cl2 (K) _  2t, b &#x3E;. The relation = p reveals that 

(2, 2n+I). .
The fact that we know the structure of C12(K) as a Gal(K/k)-module

allows us to compute Gal(Kl/k). To this end, let (L/k, a) denote the
Artin symbol of a normal extension L/K (for properties of Artin symbols
see Hasse’s Zahlbericht [3]), and let Q = (Kllk, b) be an extension of the
automorphism (k1/k, b); then U2 = b) has order 4, and Q2 and
T = (KIIK, 2t) generate Gal(KIIK). Therefore, Gal(Kl/k) = Q,T &#x3E;,
and we have the relations

Now it is easy to see that = 1 (there is actually a formula for the
order of flR(G) for metacyclic groups G; cf. [7]); this implies that K’ = k2
(we also could have deduced this from [1, prop. 2]). Since G’ is cyclic,
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the 2-class field tower of k terminates with k2. We note that the group
G = Gal(k 2Ik) in theorem 4 is the group of type 2 in [1, prop. 2], with
a = n - 1. We have proved:
THEOREM 4. Let p - q - 5 mod 8 be primes such that (plq) = 1, and
suppose that the fundamental unit êpq of has norm -1. Then

Examples:

Now we will examine the case where Nepq = +1. In F = Q(,rp-q-), the
prime ideals 21 and 22 above 2Z are not principal because the equation x2 -
pqy2 = ±8 has no solutions mod p. Moreover, genus theory shows that [21]
is no square in Cl(F); since Cl2(F) is cyclic, the ideal class [zi] generates
Cl2(F). We will need the fact that there is no non-trivial capitulation in
K/F, where K = This will follow from the slightly more general

PROPOSITION 3. Let F be a real quadratic number field and K = F(i).
There is non-trivial capitulation in KIF if and only if 25JF = Z2, i. e. 2 is

ramified in F/Q; in this case, the ideal class of 2 capitulates.

Proof. Let a be a non-principal ideal in i7F which capitulates in K. Then
there is an a E JK such that aD K = (a). Let a denote the non-trivial

automorphism of KIF; then = c is a unit in and since K/Q is
abelian, we have 16 1 = 1. Now E2 is a root of unity times a unit in D F
(this comes from the identity 62 = keeping in mind that
the units of the two complex quadratic fields are roots of unity); the only
units in 5JF with absolute value equal to 1 are tl. Therefore, must

be a root of unity. There are the following possibilities:
1. a’-’ = +1: then a E F, and this contradicts the assumption that
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a be non-principal in DF;
2. a’-’ = 20131: then ia ~ F, and again a = (ia) would be principal in

D F ; i
3. a~"~ = +i: then (1 - i)a ~ F; since a and are ideals in DF,

it follows that Z = ( 1- .0 F must be an ideal but

this implies z2 = 2JDF;
4. a~-1= -i: then E F, and again we must have 22 = 2.oF.

Now assume that 22 = 2DF and that 2 is a non-principal ideal in DF; then
2DK = (1 + i) is principal in K, i.e. 2 capitulates.

Let 2’~ be the order of [21] in Cl2(F); since there is no capitulation in
K/F, the prime ideal 2Hn K above 21 generates an ideal class of order 2n+1,
because = 2IDK. In k = we have C12(k) _ 2, b &#x3E;, where

b2m-l rv 1’. Since Nêpq = +1, the ideal classes [2] and [1’] both capitulate in
K/k, and so b generates a subgroup of order 2’~-1 in Cl(K). The computa-
tion of the 2-class number of K yields h2(K) = = 2m+n;
we claim that the ideal classes of 6 and 2t generate C12 (K) - For sup-
pose that bS rv then b2, = N K/kbs rv = 2t shows that t
is even and that s - 0 mod 2’~-1 (recall that 2 and b generate different
subgroups of Cl2(l~)). But the order of [b] in C12(K) equals 2m-1, and
therefore the relation bs N 2(t is necessarily trivial. This proves that in-

1 &#x3E; is an abelian subgroup of index 2 in G = Gal(Kllk). Let a E (K1lk, b)
be an extension of (kl/k, b) E Gal(kl/k); then we have G =  p, a, T &#x3E;,
and we find the relations a 2 = (KIIK, b) = r,a-Ipa = (KIIK, 2to) =
p  ; to prove the last relation we use the fact that 2{0"+1 = z - (1 ~-i) ~ 1
lies in the kernel of the Artin symbol of KI I K. We finally remark that it
follows from [6] that we either have n = 1 or m = 2, and that 
Z/2Z. This is in agreement with prop. 1, because -1 E Ek B 
The fact that k2 = K’ follows from [1]: they proved that Gal(k2/k) has
an abelian subgroup of order 2, which necessarily must be Gal (k 2 IK) - We
also observe that G is their metacyclic group of type 1. We have shown:

THEOREM 5. Let p - q - 5 mod 8 be primes such that (plq) = 1, and
assume that the fondamental unlit Epq ofQ(ý’PQ) has norm +1. Then
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The only case left to consider is d = -4pq, p - q - 5 mod 8, (p/~) = 20131.
Then we have Nepq = -1 and h2(F) = 2 for F = we leave it as

an exercise to the reader to prove the following theorem, using the methods
described in this paper. Theorem 6 has already been announced in [10],
and a proof using Koch’s Satz 1 can be found in [1].

Examples:

THEOREM 6. Let p - q - 5 mod 8 be primes such that

Obviously, theorems 4, 5 and 6 prove the part of theorem 3. (iii~ that was
still open.

4. Hasse’s rank formula

On p. 52 of his book "Uber die Klassenzahl abelscher Zahlk6rper" [4],
Hasse gave a formula for computing the 2-rank of class groups in CM-fields
KIKO which reduces to the well known ambiguous class number formula
in case .Ko has odd class number. If Ko has even class number, however,
Hasse’s formula does not always give the correct rank: the cyclic quartic
field ~ -10 + 3 10 has cyclic 2-class group of order 4, and it is easily
seen that this contradicts Hasse’s formula. In fact, the fields listed in
theorem 5, for example, provide infinitely many counterexamples. The
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formula stated in [4] reads

where

~y where t is the number of (finite)
prime ideals ramifying in K/Ko

r* denotes the 2-rank of Cl(Ko)j,
j : is the transfer of ideal classes,
so = rank Cl(Ko)j ICl(Ko)j n Cl(K)2 denotes the rank of the group

of ideal classes becoming squares in Cl(K). It follows from our

proof below, that we also have s* = rank H/H n Cl(K)2, where
H = 

x = I ker j is the order of the capitulation kernel.

To see that the formula is incorrect, we let Ko = as in theorem

5, i.e. we assume that p - q = 5 mod 8 are primes such that (p/q) = 1 and
Nepq = -1; if we assume moreover that m = 2, then we find

 1, to verify this claim, it is sufficient to show
that Epq is norm from K. This can be done as follows: since epq
has norm +1, the prime ideal p above p is principal, i.e. p = (7r).
Obviously, 77 = 1r0"-1 is a unit in DK; if were a square, so were
p = ~r°+1. Now it is easily seen that we can choose 7r in such

a way that 1r0"-1 = Epq. This implies and since

p = a2 + b2 = NK~k (a + bi), we find that epq = NK~k ( a+bi ) is

indeed a norm.

q = t -1 + 1= 2, because only the two prime ideals above 2 ramify;
r* =1 a
H = = 1: we have 1 and 2l1-0" rv 1. In

particular, we have s* = 0;
x = 0, because there is only trivial capitulation in K/F.

Hasse’s formula gives r = 3, although rank Cl2(K) = 2.
The correct rank formula can be deduced as follows: let a denote complex

conjugation (hence is the non-trivial automorphism of K/Ko), and put
C = Cl2 (K), r = rank C, Co = Cl2 (Ko), and H = Cl2 (K) 1-°. Then the
formula 2 = 1 + 7 + 1- u shows that C2C1+0" = = C03H (the
fact that also C2CI-0" = proves our previous claim that Sô = rank
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, and now we find

Now, (C : H) equals the number of ideal classes in C fixed by a, because

is a short exact sequence (CG is the subgroup of C fixed by G =  Q &#x3E; ) .
Moreover,

where 2 G denotes the subgroup of elements of order  2 of an abelian group
G. Let c E Co n H; then a fixes c, and applying u to the equation c = 
yields c = c-1, i.e. c E 2~. Hasse claimed that in fact C-01 f1 H = 
but an ideal class of order 2 is not necessarily of the form dl-O" for some
d E C. Actually, in the counterexamples presented above, 1- ~ annihilates
the whole 2-class group of K.

Using the ambiguous class number formula (C : H) = 21’h2(Ko), where
q was defined above, we find that

with 2X = (2Coj : Co rl H).
The main problem with this rank formula is the fact that A usually is

quite hard to compute. The trivial bounds 0  A  rõ yield

It should be noted that Hasse applied his formula only to fields Ko with
odd class number; we have already observed that in this case it coincides
with the ambiguous class number formula, because then obviously r* =
Sõ = x = 0, and the formula simplifies to rank Cl2 (I~) _ q.
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