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Polynomials whose Galois groups
are Frobenius groups with prime order complement

by LEONARDO CANGELMI

RÉSUME - On donne une caractérisation effective des polynômes irréduc-
tibles de degré n à coefficients entiers dont les groupes de Galois sur Q
sont des groupes de Frobenius avec noyau d’ordre n et complément d’ordre
premier.

ABSTRACT - We give an effective characterization theorem for integral
monic irreducible polynomials f of degree n whose Galois groups over Q are
Frobenius groups with kernel of order n and complement of prime order.

0. Introduction

Recently, there has been some interest in the problem of giving effec-
tive characterizations of polynomials of given degree whose Galois groups
over Q are Frobenius groups of some particular kind. Recall that a Frobe-
nius group can always be described as a semi-direct product N x H and
that N and H are respectively called the (Frobenius) kernel and (Frobe-
nius) complement of the group; moreover, the action by conjugation of H
over N has to be fixed-point-free, ~H) has to divide IN 1- 1 and the group
can always be represented as a transitive permutation group on ~N~ ele-
ments, so that it is of degree Bruen, Jensen and Yui [BJY] proved
a characterization theorem for polynomials of prime degree p whose Ga-
lois groups are Frobenius groups of degree p (in this case, the Frobenius
complements necessarily are cyclic of order dividing p - 1). They posed
the problem of finding analogous characterizations for polynomials whose
Galois groups are Frobenius of prime power degree or Frobenius in general.

In this paper, we give a characterization theorem for polynomials of
arbitrary degree n whose Galois groups are Frobenius groups of degree n
and with complements of prime order p, where p is forced to divide n - 1.
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It is worth noticing that in the present case the kernels are as general as it
is permitted by the properties of a Frobenius group, that is, they have just
to be nilpotent; while the complements are restricted to be cyclic of prime
degree. The method we use is derived from one by Williamson [Will], who
characterized odd degree polynomials whose Galois groups are generalized
dihedral groups. Indeed, these groups are Frobenius with complements
of order 2 and abelian kernels; the fundamental observation is that his
method does not require the kernel to be abelian, but just the group to be
Frobenius. Moreover, we make the characterization completely effective,
we discuss the practical problems arising and we justify theoretically its
effectiveness referring to "the least prime" in Chebotarev density theorem.

In Section I, we recall the definition of Frobenius group and we show
some interesting properties of Frobenius groups with complement of prime
order: these can be described as semi-direct products N x Zp satisfying
some simple conditions.

In Section II, we characterize monic irreducible polynomials, with ra-
tional integer coefficients, of degree n, whose Galois groups over Q are
Frobenius groups with kernel of order n and complement of prime order p;
that is, groups of the form N x Zp, with INI = n, which are Frobenius.

In Section III, we point out some effective conditions which are useful
in testing whether a polynomial has Galois group as above or not; such
conditions involve the computation of several resultant polynomials and
their factorization. Then, we apply the characterization theorem to some
explicit polynomials, showing that their Galois groups are Frobenius groups
with prime order complement.

The author is grateful to Prof. R. Dvornicich (University of Pisa, Italy)
for some suggestions and for several fruitful discussions.

Our notations are as follows.

If S is a set, S) denotes its cardinality.
If g is an element of a group which acts on a set S, Fix g denotes the set of
the elements of S fixed by g.
For a group G, Aut (G) denotes the groups of automorphisms of G. If A
and B are two groups, A x B denotes any possible semi-direct product of
them.

If n is a positive integer, Zn, ~’n and Cn denote respectively the cyclic group
of order n, a primitive n-th root of unity and the field if n is a prime
power, Fn denotes the field of n elements.
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For a polynomial f E 7G~X~, spl ( f ), Gal ( f ), and D f denote the splitting
field of f , the Galois group of the splitting field and the discriminant of f .
For any number field L, DL denotes the discriminant of L over Q and OL
denotes the ring of integral elements of L.

For any finite extension of number fields K (also written as L/K) and
any f E L(X~, NL~K ( f ) denotes the norm of f over K. For any finite normal
extension of number fields L/K, Gal (L/K) denotes its Galois group.
If k is a field or a polynomial ring, and f (X) and g(X) are two polynomials
in k [X], denotes the resultant of f and g with respect
to the indeterminate X.

Other notations will be recalled and adopted in the course of the paper.

I. Frobenius groups

1.0. General results

DEFINITION I.0.1. A permutation group G on a set S2 with In = n is said
to be a group of degree n.

DEFINITION I.0.2. A transitive group G of degree n is said to be a regular
group if, and only if, IFix91 = 0, for all g E GB{1}.

DEFINITION I.0.3. A transitive group G of degree n is said to be a Frobe-
nius group if, and only if, 1, for all g E and IFix91 = 1, for
some 9 E GB{1}.

It is trivial to see that a transitive group G of degree n is regular if, and
only if, ~G~ = n. On the other hand, a transitive group G of degree n is a
Frobenius group if, and only if, it has a non trivial subgroup H, of index n,
such that H n H9 = {1}, for all g E GBH (anyone of the stabilizers can be
taken as H). This property allows to deduce a very strong theorem about
the structure of Frobenius groups.

THEOREM 1.0.4 ~FROBENIUS~. Let G be a Frobenius group of degree n and
H be a subgroup (of index n) such that H fl H9 = 111, for all g E GBH.
Then the subset

is a normal subgroup (of order n), such that G = NH and N n H = {1}.

Proof. See, e.g., [Rob].
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Since the conjugates of H are exactly the stabilizers of the points of 52,
the elements of NB{1} are precisely those in G with no fixed points. N
is called the (Frobenius) kernel of G, while H is said to be a (Frobenius)
complement of G. Note that N turns out to be a regular group of degree n
and that G can be written as a semi-direct product, namely G = N x H.
Furthermore, G satisfies some other strong necessary conditions, as it is

stated in the following proposition.

PROPOSITION 1.0.5. Let G = N x H be a Frobenius group of degree n,
= n and IHI = h. Then the following conditions hold:
a) CG (H) = CH (H)
b) H is core-free (i. e., it does not contain non-trivial normal subgroups

of G).
c) h I n - 1.
d) (Thompson) N is nilpotent.

Proof. See, e.g., [Rob].

1.1. Frobenius groups with prime-order complement

Let N be a group of order n having an automorphism 0 of prime order p
and let Zp denote the cyclic group of order p. We can construct the semi-
direct product G = N xo Zp: if Zp = (T), then we set Tx = 8(x)r, for
all x E N. Then, we may verify whether G is Frobenius by means of
several different conditions.

PROPOSITION I.1.1. Let G = N Zp, n = and p f n. Then the

following conditions are equivalent:
a) G is a Frobenius group of degree n.
b) = Zp.
c) 
d) For any x E N, there exists exactly one element y E N such that
O

e) e(p-l)i(x) = 1, for all x E N and for all i = 1, ... , p - 1.
f) Any element in GBN has order p.
g) G has exactly n Sylow p-subgroups.

Proof.
a)~b): see Proposition 1.0.5 (a).
b)=&#x3E;c): by the very definition of G, we have that Fix 0 = CN(T) = 

hence, F1x 0 = (1) , because the only elements commuting with r
are in Zp.
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C)==&#x3E;d): if x-19(x) = y-1B(y), with x and y in N, then yx-1 = 0(yx-1)
and therefore = 1.

d)~e): let y = z0 (z) ... then 0(y) = = y x
We may write x in the form z-’O(z) and hence we get 
zyz-i; by the uniqueness of such expression, we get zyz-1 = 1,
hence y = 1. This proves the implication in the case i = 1. For the
general case, note that condition (e) for i = 1 implies condition (c);
on the other hand, by the primeness of p, we have Fix 0 = Fix 0’.
So 0’ is an automorphism of N with the same properties as 0 and
therefore the assertion holds for all i.

e)#f): any element in GBN can be written in the form xTi, for some
x E N and some i E {1, ... , p-1}: then (xTi)P = 1, since (xTi)P =

... 

f)~g): G contains exactly IGBNI = n(p -1) elements of order p and they
give rise to exactly n subgroups of order p.

g)==&#x3E;a): Zp has exactly n conjugates and anyone of them can be written
as Z~, for some x E N; if g E GBZp, then Zj = Zp for some
x E hence Z~ , and therefore Zp f1 ZP = { 1 } .

Condition (c) of the previous proposition says that the automorphism 0
is fixed-point-free.
A Frobenius group with kernel N and complement Zp will be denoted

by Fr (N, p). It is plain that such a group satisfies the following properties,
besides the ones claimed in Proposition I.1.1 (cf. Proposition 1.0.5):

- ord (B) = p.
- 

- N is nilpotent.
- p I IAut 

In particular, N is the direct product of its Sylow subgroups: if q n and
Nq is the Sylow q-subgroup of N, then 81Nq is a fixed-point-free automor-
phism of NQ of order p. Conversely, given a fixed-point-free automorphism
of order p for each of the Sylow subgroups of N, it is determined a fixed-
point-free automorphism of order p of N. Therefore, the study of groups as
Fr (N, p) is reduced to that of Frobenius groups with Zp as complement and
a q-group as kernel; and this is equivalent to the study of fixed-point-free
automorphisms of order p of q-groups, with q ~ p.
I.2. Cycle structure of elements of Fr (N, p)

In general, given a permutation group G of degree n and assigned a
representation of G as a subgroup S of Sn, any element g E G gives rise to
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a partition 7r(g) of n: in fact, g can be written as a permutation of degree n
(via the given representation of G), and as such it induces a partition of n
given by the lengths of the cycles in the expression of g as product of disjoint
cycles. Note that for any permutation of f 1.... , n~, the new identification
of G with a subgroup of Sn is given by a conjugate of ,S’; hence the partition

remains unchanged.

We say that an element g in a group G of degree n is of type 7r, where 7r
is a given partition of n, if, and only if, = 7r, for a given representation
of G as a permutation group of degree n. We will write "partitions" in
multiplicative form; that is, nil - n22 - - - will denote the partition of E ein2
given by el times nl, e2 times n2, ....

PROPOSITION I.2.1. Let G = and represent G as a permutation
group of degree n. Then the partition types induced by G are the following:

- for the identity of G.
- 1 - for each element in GBN.
- n1 - - - nr, with some 2 such that p ~’ nj and I n, for each

element in 

Proof. Each element g in GBN has order p and so it is product of disjoint
cycles of length p or 1; moreover, since G is Frobenius of degree n, any
element can fix at most one point. Hence the only possibility for is to

be equal to 1 - For the elements in note that they fix no
points and that p t n .

II. Characterization of polynomials of degree n

with as Galois groups

ILO. Factorization types of polynomials

Let f E Z[X] be a monic polynomial of degree n and let 7r be a partition
of n. We say that f is of type 7r if, and only if, the partition of n given by
the degrees of the irreducible factors of f is 7r. We say that f mod q is of
type 7r, where q is a rational prime, if, and only if, the partition of n given
by the degrees of the irreducible factors mod q of f is 7r. Again, if E is any
number field, we say that f over E is of type 7r if, and only if, the partition
of n given by the degrees of the irreducible factors over E of f is 7r.
We have the following deep relations between the factorization types of f

and the cycle structure of the elements of Gal ( f ) (this can be faithfully
represented as a permutation group of degree n, on the set of roots of f ,
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and any permutation of the roots reflects on taking a conjugate of the given
group representing Gal ( f ) in Sn).

LEMMA II.0.1. Let f E Z[X] be a monic polynomial of degree n and let 7r
be a partition of n. Let q denote any rational prime such that q f D f and
Let G = Gal ( f ) . Put L = spl( f ) .

a) (Dedekind) If f mod q is of type then G contains an elements of
type 7r.

b) (Frobenius) If G contains elerraents of types then the density of
q’s such that f mod q is of type 7r is positive.

c) (Chebotarev) The density of q’s such that f mod q is of type 7r is

equal to the proportion of elements in G of type 7r.
d) (Lagarias, Odlyzko et al.) If G contains elements of type then

there exists q such that f mod q is of type 7r and q  (DL)C, where
C is an effectively computable absolute constant; assuming the Gen-
eralized Riemann Hypothesis for L, one has q  70(log DL) 2.

Proof.
a) See, e.g., [Jac, pp. 302-304].
b) See [Frob].
c) See, e.g., [Lang, pp. 168-170].
d) See [LMO] and [Oes].

11.1. Characterization theorem

Let L/Q be a normal extension and let K be a subfield of L such that
L/K has degree n, K/Q is a cyclic extension of prime degree p and 
Put G = Gal (L/Q) and N = Gal (L/K); then, since (p, n) = 1, L/Q splits
at K and G = ZP. Moreover, K is the unique subfield of L of degree p
over Q, because N is the unique subgroup of G of order n. The product
N x 0 Zp is direct if, and only if, Fix 0 = N; if this is not the case, then Zp
is not normal and therefore is core-free.

PROPOSITION II.1.0. Let L/Q be a normal extensions of degree pn, with
Gal (L/Q) = N Zp and p t n. Then the product is not direct if, and only
if, there monic irreducible polynomial f , with integer coefficients
and of degree n, such that L = spl ( f ) .

Proof. If the product is not direct, Zp is core-free and the minimal polyno-
mial of an integer primitive element of satisfies the required proper-
ties. If the product is direct, L contains a unique field of degree n over Q,
hence Q(a) = Q(a’), for all roots a and a’ of f ; so, spl ( f ) = Q(a) 0 L.
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In general, a normal extension L/Q whose Galois group is a non-direct
product as above might also be given as the splitting field of an irreducible
polynomial of degree not equal to n; anyway, the previous proposition says
that we can always think of it as the splitting field of a polynomial of
degree n.

For the rest of this subsection, f E Z[X] will denote a rraonic irreducible
polynomial of degree n and we will put G = Gal ( f ) and L = spl ( f ).

If G = Fr (N, p), f is irreducible and normal over LN, since N is regular;
moreover, from Proposition 1.2.1 and Lemma 11.0.1, we know that there
exists a rational prime q such that f mod q is of type 1 - Such
conditions turn out to be also sufficient, as we are now going to show in
two steps.

PROPOSITION II.1.1. Let p be a rational prime such that p { n. Then the

following conditions are equivalent:
- G = N ~ae Zp, IN = n and f is irreducible over L~.
- p ~ I [L : Q] and there exists a cyclic extension k of Q of degree p,

such that f is irreducible and normal over k.

Proof. The first condition trivially implies the other one, by taking k = L~’.
Conversely, since deg f ~ ~L : Q] and (p, n) = 1, we have pn ~ I [L : Q]. Let
E be the splitting field of f over k; by the hypothesis, [E : k~ = n and
therefore [E : Q] = pn. Since L C E, we get L = E; hence, k C L and
G = N xe Zp, where N = Gal (L/k).

PROPOSITION 11.1.2. Let pin - 1 and let the equivalent conditions of
Proposition 11.1.1 hold. Put K = LN. If there exists a rational prime q,
unramified in L, such that f mod q is of type then G = Fr (N, p);
rraoreover, q is inert in K and qOK splits completely in L.

Proof.
Since [K : Q] = p, for any rational prime q, unramified in L, there

are just two possibilities: either q is inert in K or it splits completely
in K. If the latter is the case, then qOK = C~1 ~ .. C~~ and = 1;
hence, reducing f mod Qi is equivalent to reducing f mod q. In the case
of the hypothesis, we would have that f mod Qi is of type 1 - 
and therefore (see Lemma 11.0.1 (a), which applies also to number fields-
cf. [vdW, pp. 190-191]) Gal (L/K) would contain an element, not equal
to the identity, which fixes a root of f ; but this is impossible, since N =
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Gal (L/K) is regular on the roots of f . This shows that q is necessarily
inert in K.

So, deg(qOK/q) = p and therefore lF9p. Since the factor-
ization of f over IFq is of type 1 . the factorization of f over Fgp,
and hence over is of type 1’~. Being f irreducible and normal
over K, L = K(a) for any root a of f ; then, splits completely in L,

Being = p and q unramified in L, the decomposition group
of Qi, GQ,, is cyclic of order p, i.e. GQ, cr Zp. Putting F = Q(a),
where a is any fixed root of f , from the factorization of f mod q we get

Bi .. B, with deg(Bh/q) = p and = 1, for
h = 1, ... , (n - 1)/p. Comparing the factorizations of qOF and of qOL,
we see that there are exactly p primes of L above Bh , while there is exactly
one prime above ,Ci, say Q. Therefore F D LGQ and F 1J LGQ’, for 6’ ! 
This implies F = LGQ and L GQ 0 LGQ’, and so GQ , 0 G Q, - Therefore, G
contains n distinct cyclic subgroups of order p, the highest possible number,
hence G has n Sylow p-subgroups and it is Frobenius by Proposition I.1.1.

By the same technique used in the proof of the previous proposition, we
can show also the following fact, concerning the kind of primes q which give
rise to factorizations of f mod q of type 1 . 

PROPOSITION II.1.3. Let G = Fr (N, p), with INI = n and p I n - 1. Then,
for any rational prime q, unramified in L, f mod q is of type 1. 
and only if, q is inert in K and qOK splits completely irc L.

Proof. Omitted.

We are now in a position to give the announced characterization, just
putting together all the above results.

THEOREM II.1.4. Let p be a rational prime dividing n - 1. Then G =

Fr (N, p) if, and only if, the following conditions hold:
1. p I [L : Q].
2. There exists an extension k/Q, cyclic of degree p, such that f is

irreducible and normal over k.
3. There exists a rational prime q, unramified in L, such that f mod q

is of type 1 - p(n - 1) /p.
We will see in the next section how this characterization can be made

effective.
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III. Effectiveness of the characterization

111.0. Resultants and factorization of polynomials
over number fields

Let K = k((3) be a number field, where k is a subfield of K and Q
is a fixed root of a given a monic irreducible polynomial g E k(X~, of
degree m; let (31,... ,13m denote the roots of g. Let f E K~X~ be a monic
square-free polynomial of degree n and al, ... , a~, be the roots of f ; we
may write f as a polynomial in k[X, (3], f = f (X, (3). We want to consider
the factorization type of f over K; suppose that such a factorization is

/i’ " ft. For any polynomial E K[X] and any rational integer s, let
N(s, h, g) stand for the norm over k of the shifted polynomial h(X - s (3, {3) ,
that is for (3)). Referring to the factorization algorithm
of polynomials over number fields due to Trager (see, also, [vdW],
pp. 136-137), we can affirme the following:

i) there are only finitely many rational integers s such that N(s, f, g)
is not square-free;

ii) for any rational integer s such that N(s, f,g) is square-free, the
factorization over k of N(s, f, g) is N(s, fl, g) ... N(s, ft, g).

Thus, each irreducible factor of f over of degree d maps to an irre-
ducible factor of N(s, f, g) over k of degree nd, and vice versa.

Moreover, we are able to calculate the norms above by means of the
function resultant, which is available on any computer algebra system; in
fact, the following equalities hold (the last one up to a sign):

In particular, when f E k[X] is irreducible over k, we may study the
factorization type of f over the field k(a), where a is a fixed root of f . In
such a case, one of the factors of f is X - a and, since we are obviously
interested in the other factors, we define the following polynomial

which is a monic polynomial in k[X] of degree n(n - 1) and it is a linear
resolvent of f when s 0 0,1. Then, we claim that f is normal over k,
i.e. spl ( f ) = k(a) for any root a of f , if, and only if, R(s, f ) over k is of



401

type In fact, f is normal over k if, and only if, f factors over k(a) as
the product of n linear polynomials, which is equivalent to N(s, f ) being
of type nn over k, hence to R(s, f ) being of type over k.

III.1. Factorizations of R(s, f )

For this subsection and for the next one, assume f E Z[X] to be a monic
irreducible polynornial of degree n, such that Gal ( f ) = Fr (N, p), with IN I
n, and Put spl ( f ) = L and K = L~’.

Fix a root a of f and let a’ be any other root of f . How does f factor
over Q(a)? Firstly, note that [L : Q(a)] = p and therefore any irreducible
factor of f over Q(a) may be of degree either 1 or p. Then, since Gal ( f ) =
Fr (N, p), we know that there exists a rational prime q, unramified in L,
such that f mod q is of type 1 by Proposition II.1.3, q is inert in
K and qO K splits completely in L. If qOL = 61 " ’ then, proceeding as
in the proof of Proposition 11.1.2, we find that the n Sylow p-subgroups of
G = Gal ( f ) are the decomposition groups of the primes of L over q, 
and that the respective decomposition fields are precisely the extensions
of Q by the roots of f , i.e. L GQi = Q(ai) (i = 1, ... , n). This implies
Q(a) # Q(a’) and so a:’ ft Q(a). Hence, the minimal polynomial of a’ over
Q(a) has degree equal to p. Thus, we have proved the following fact.

PROPOSITION III.1.1. Let f be as above and let a be a root of f. Then f
over Q(a) is of type 1 - and, for any rational integer s such that
R(s, f ) is square-free, R(s, f ) over Q is of type 

Since f is irreducible and normal over K, from the last remark in the
previous subsection, we have also the following result, involving the factor-
ization of R(s, f ) over K.

PROPOSITION III.1.2. Let f be as above. Then, for any rational integer s
such that R(s, f ) is square-free, R(s, f) over K is of type 

Since we are just interested in the factorization type of R(s, f ) over K
and not in the actual irreducible factors, we can apply again the method
described in the previous subsection, getting the following.

PROPOSITION III.1.3. Let f as above and g E Z[X] be a monic irreducible
polynomial such that K = Q(Q), where Q is a root of g. Then, for any
rational integer t such that N(t, f, g) is square-free, N(t, f, g) is irreducible
over Q . If s is a rational integer such that R = R(s, f) is square-free, then,
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for any rational integer t such that N(t, R, g) is square-free, N(t, R, g) over
Q is of type (np)n-1.

III.2. Determination of K

Recall that K is cyclic of prime degree p over Q. Thus, being abelian over
the rationals, by Kronecker-Weber theorem, I~’ is included in a cyclotomic
field Cl (where Cl = Q((), with C a primitive 1-th root of unity), for some
positive integer such that q f DK implies q { DCl’ for any rational prime q.
Assuming l to be minimal with respect to this property, its factorization
is to be of the kind p2aql ... qs, where a E 10, 1} and qj == 1 mod p, for
j = 1, ... , s. Moreover, since DK ~ I DCl’ we have

Now observe that f is irreducible and normal over K; hence, L = K(a),
for any root a of f . From this, it follows that and therefore,
if q l, then q I Df. Seeing the factorization of l, we deduce that l pD f.
Thus, if the factorization of D f is

with eo 2: 0, ei 2: 1, f~ &#x3E; 1, 1 mod p 1 mod p, for i = 1, ... , r
and j = 1, ... , t, putting

we have l m.

Therefore, K C Cl C Cm and K can be determined as one of the cyclic
subfields of degree p over Q of Cm. These are finitely many, since they
correspond to the subgroups of index p of Gal (7~/m7~) *; indeed,
their number is precisely 1) I (p - 1).
111.3. Effective version of the characterization theorem

We are now able to give an effective version of Theorem 11.1.4. For

simplicity, we assume GRH; so, we can use the strongest bound given in
Lemma II.0.1. This is not so restrictive, as it is shown by all tested exam-
ples, where the least prime q is much smaller than the one given theoreti-
cally, even under such assumption.
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THEOREM III.3.1. Let f E Z[X] be a monic irreducible polynomial of de-
gree n and Put G = Gal ( f ) and L = spl ( f ). Let p be a rational prime such
that pin - 1. Assume GRH. If G = Fr (N, p), with )N) = n, then, putting
K = L~’ and R = R(s, f ), for sorrte rational integer s such that R(s, f ) is

square-free, we have:
i. R is of type (np)(n-l)/p.

ii. K is one of the cyclic subfields of degree p over Q of cm, where m
is given in Section 111.2; moreover, f is irreducible over K and R
over K is of type nn-1.

iii. There exists a rational prime q, not dividing D f, such that q 
and f mod q is of type 1. 

That such conditions are sufficient for G = Fr (N, p) was already proved
in Theorem 11.1.4; the point is that now we have an effective way to verify
the conditions given in that theorem.

III.4. Examples

Although the given characterization determines if the Galois group of a
polynomial of degree n is Frobenius with kernel of order n and complement
of prime order p dividing n - 1, a general method for constructing such
polynomials is not known, apart from few cases. Moreover, in some cases a
theoretical method may be outlined, but the computations involved exceed
the capacity of the computer machines available to the author, so that we
are not able to exhibit many polynomials of the required degree and with
the required Frobenius Galois group. Therefore, to give some examples
of how our method applies, we must refer to polynomials found in the
literature, and somehow manipulate them.

Example 1. The simplest example of a polynomial considered by our
method is a polynomial of degree 4 whose Galois group is the alternating
group of degree 4, x Z2, 3). Such polynomials are easy to
construct. Take, for example, the following one:

We will prove that its Galois group is A4, verifying the conditions given in
Theorem 111.3.1 and using also Proposition III.1.3.

- The smallest prime q for which f, mod q factors as 1 - 32 is 3.
- The resolvent R = R(-1, fl) is square-free and it is irreducible

over Q.
- The discriminant of the polynomial is 21272132 so the possible cubic

field should be included in C7.13. We first try with the cubic field
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included in C7; a primitive element for such cubic field, which we
call .K, is a root of the polynomial

We compute fl,g) which turns out to be square-free and it is
irreducible. Then, we compute N(1, R, g) and we verify that it is
square-free and of type 123.

Hence, we claim that the Galois group of f, is A4 and that the unique
cubic field included in its splitting field is the unique cubic field included
in C7, that is K.

Example 2. Bruen, Jensen and Yui [BJY] constructed a family of ra-
tional integral polynomials of degree 7 whose Galois groups over Q are
Frobenius groups of order 21, that is groups as Fr (Z7, 3). From this family,
we have taken the following polynomial

We apply our characterization theorem to this polynomial.
- We factor f2 mod q for some rational primes q, in order to find a

factorization of type 1 ~ 32 - should we find a factorization type not
equal to 17, 1.3 2 or 7, we would be sure that Gal (f2) 0 Fr (Z7, 3)
(see Proposition I.2.1). The prime 3 gives the required factorization.

- We compute the resolvent R = R(-1, f2), which turns out to be
square-free and factors over Q into 2 irreducible polynomials of
degree 21, Rl and R2, as we expected.

- The discriminant of f2 is equal to 224710. Therefore, the unique
possible cubic field to consider is K, the cubic field included in C7.
The norm N(1, f2, g) is square-free and it is irreducible. The norm

= N(1, Ri, g)N(1, R2, g) is square-free as well and it is
of type 216.

Hence, we have verified that the Galois group of f2 is Fr (Z7, 3) and we
have shown that the cubic field included in its splitting field is K.

Example 3. To find other explicit polynomials, we refer to a proposition
by Williamson. If gi and g2 are two monic polynomials in k[X], where k
is any number field, let S(gl, g2) denote the polynomial whose roots are all
the sums of one root of gi and one root of g2; we can easily compute such
polynomial by the following formula:
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PROPOSITION III.4.1. Let 91 and 92 be irreducible monic polynomials over
a number field k and let El and E2 be their respective splitting fields over k.
If E1 and E2 are linearly disjoint over k, then the polynomial S(gl, 92) is
irreducible over k and its splitting field over k is ElE2.

Proof. See [Will] -

We will apply such a result to the polynomials f, and f2, which are
irreducible over K. We compute the polynomial f3(X) = S(fl, f2)(X),
which is equal to

Since the splitting fields over K of f, and f2 have relatively prime degrees
over K, they are linearly disjoint over K, so that f3 is irreducible over K
and the Galois group of its splitting field over K is Z2 x Z2 x Z7: being
the degree of f3 equal to 28, we deduce that f3 is also normal over K. It is
also obvious that the degree of the splitting field of f over Q is a multiple
of 3, since such field includes K. So, conditions 1 and 2 of Theorem 11.1.4
are satisfied and the only left verification is about the factorization type of
f3 mod q: the smallest prime q which yields the type 1’ 39 is 11.

Hence, Gal (/3) = Fr(Z2 x Z2 x Z7, 3) and the cubic field included in
spl ( f3) is K.
Example 4. We proceed as in the previous case. From the mentioned
family of polynomials by Bruen, Jensen and Yui, we take another polyno-
mial,

whose splitting field again includes K as above. We construct the polyno-
mial fs(X) = S( f2, f4)(X) and we verify that it is irreducible over Q. This
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implies that the splitting field of f2 and /4 are different, hence that they are
disjoint over K and that the Galois group of f5 over K is Z7 x Z7. As in the
previous example, conditions 1 and 2 of Theorem 11.1.4 are plainly satisfied.
Then, we find that 11 is the smallest prime q such that the factorization
type of f5 mod q is 1 . 316.

Therefore, Gal(/5) = Fr(Z7 x Z7, 3) and the cubic field included in
spl ( f5) is K. We do not report f5, because its greatest coefficients are
48-digit numbers.
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