ALEKSANDAR IVIĆ

Some problems on mean values of the Riemann zeta-function

Journal de Théorie des Nombres de Bordeaux, tome 8, nº 1 (1996), p. 101-123

<http://www.numdam.org/item?id=JTNB_1996__8_1_101_0>

© Université Bordeaux 1, 1996, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journal de Théorie des Nombres de Bordeaux 8 (1996), 101–123

Some problems on mean values of the Riemann zeta-function

par Aleksandar IVIĆ*

RÉSUMÉ. On s'intéresse à des problèmes et des résultats relatifs aux valeurs moyennes de la fontion $\zeta(s)$. On étudie en particulier des valeurs moyennes de $|\zeta(\frac{1}{2}+it)|$, ainsi que le moment d'ordre 4 de $|\zeta(\sigma+it)|$ pour $1/2 < \sigma < 1$.

ABSTRACT. Several problems and results on mean values of $\zeta(s)$ are discussed. These include mean values of $|\zeta(\frac{1}{2}+it)|$ and the fourth moment of $|\zeta(\sigma+it)|$ for $1/2 < \sigma < 1$.

1. Introduction

One of the fundamental problems in the theory of the Riemann zetafunction $\zeta(s)$ is the evaluation of power moments, namely integrals of $|\zeta(\sigma + +it)|^k$, where k > 0 and σ are fixed real numbers. This topic is extensively discussed in [4], [5] and [16], where additional references to other works may be found. Of particular interest are the values of σ in the so-called "critical" strip $0 < \sigma < 1$, while the case $\sigma = 1$ is treated in [2] and [6]. In view of the functional equation $\zeta(s) = \chi(s)\zeta(1-s)$, where

$$\chi(s) = 2^{s} \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) = \left(\frac{2\pi}{t}\right)^{\sigma+it-1/2} e^{i(t+\pi/4)} \left(1+O\left(\frac{1}{t}\right)\right)$$

for $s = \sigma + it, t \ge t_0 > 0$, it transpires that the relevant range for σ in the evaluation of power moments of $\zeta(s)$ is $1/2 \le \sigma < 1$.

The aim of this paper is to discuss several problems and results involving power moments of $|\zeta(\sigma + it)|$. Some of the problems that I have in mind are quite deep, and even partial solutions would be significant. In section 2 problems concerning mean values on the "critical line" $\sigma = 1/2$ are discussed. Section 3 is devoted to problems connected with the evaluation of

¹⁹⁹¹ Mathematics Subject Classification. Primary 11 M 06.

Key words and phrases. Riemann zeta-function, mean values, asymptotic formulas. Manuscrit reçu le 28 avril 1993

^{*}Research financed by the Mathematical Institute of Belgrade

 $\int_{0}^{T} |\zeta(\sigma + it)|^{4} dt \text{ for } 1/2 < \sigma < 1 \text{ fixed. This topic is a natural one, since}$ problems involving the fourth moment on $\sigma = 1/2$ are extensively treated in several works of Y. Motohashi and the author (see Ch. 5 of [5] and [8], where additional references may be found). Motohashi found a way to apply the powerful methods of spectral theory to this problem, thereby opening the path to a thorough analysis of this topic. Thus it seems appropriate to complete the knowledge on the fourth moment of $\zeta(s)$ by considering the range $1/2 < \sigma < 1$ as well.

The notation used in the text is standard, whenever this is possible. ε denotes positive constants which may be arbitrarily small, but are not necessarily the same ones at each occurrence. $f(x) \ll g(x)$ and f(x) = O(g(x)) both mean that $|f(x)| \leq cg(x)$ for $x \geq x_0$, some c > 0 and g(x) > 0. f(x) = o(g(x)) as $x \to \infty$ means that $\lim_{x \to \infty} f(x)/g(x) = 0$, while the Perelli symbol $f(x) = \infty(g(x))$ means that $\lim_{x \to \infty} f(x)/g(x) = +\infty$. $f(x) = \Omega(g(x))$ means that $\limsup_{x \to \infty} f(x)/g(x) > 0$, $f(x) = \Omega_+(g(x))$ (resp. $f(x) = \Omega_-(g(x))$) that $\limsup_{x \to \infty} f(x)/g(x) > 0$ (resp. $\limsup_{x \to \infty} f(x)/g(x) < 0$), provided that g(x) > 0 for $x \geq x_0$. Finally $f(x) = \Omega_{\pm}(g(x))$ means that both $f(x) = \Omega_+(g(x))$ and $f(x) = \Omega_-(g(x))$ hold.

2. Problems on the critical line $\sigma = 1/2$

In this section we shall investigate some mean value problems on the critical line $\sigma = 1/2$. The first problem is as follows. Let $0 \le H \le T$, $0 \le \alpha < \beta$ and $T \to \infty$. For which values of α, β and H = o(T) does one have

(1)
$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\alpha} dt \leq \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt ?$$

Furthermore, can one find specific values of α and β (they may be constants or even fuctions of T) and H = H(T) such that (1) fails to hold?

It turns out that this is not an easy problem, and what I can prove is certainly not the complete solution. It is contained in

THEOREM 1. Let $\beta_0 > 0$ be any fixed constant. If $0 \le \alpha < \beta$, then (1) holds for $\beta \ge \beta_0$ and $\log \log T \ll H \le T$. If $0 \le \alpha < \beta < \beta_0$ and

$$H = \infty(\log T), \text{ then}$$
(2)
$$(1 + o(1)) \int_{T}^{T+H} |\zeta(\frac{1}{2} + it)|^{\alpha} dt \leq \int_{T}^{T+H} |\zeta(\frac{1}{2} + it)|^{\beta} dt.$$

Proof. What Theorem 1 roughly says is that (1) holds for β not too small, while for small β only the weaker asymptotic inequality (2) can be established.

Assume first that $0 \le \alpha < \beta$ and $\beta \ge \beta_0 > 0$. By Hölder's inequality for integrals we have

$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\alpha} dt \le (\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt)^{\alpha/\beta} H^{(\beta-\alpha)/\beta} \le \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt$$

provided that

(3)
$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt \geq H.$$

It is enough to prove (3) for $\beta = \beta_0$, since for $\beta > \beta_0$ the inequality again follows by Hölder's inequality. Now (3) follows from the results on mean values of K. Ramachandra (see his monograph [14] for an extensive account). For example, by Corollary 1 to Th. 1 of Ramachandra [13] we have

(4)
$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta_0} dt \gg H(\log H)^{\beta_0^2/4} \qquad (\log \log T \ll H \le T),$$

if we assume that β_0 is rational, which we may since β_0 is arbitrary (but fixed). Since

$$\lim_{T\to\infty} (\log H)^{\beta_0^2/4} = +\infty,$$

we obtain (3) with $\beta = \beta_0$ from (4).

We suppose now that $0 \le \alpha \le \beta \le \beta_0$ and $H = \infty(\log T)$. From Ivić-Perelli [7] (or (6.38) of [5]) one has

$$0 \leq \int_{\frac{1}{2}}^{1} (N(\sigma, T + H) - N(\sigma, T)) \, d\sigma = \int_{T}^{T+H} \log |\zeta(\frac{1}{2} + it)| \, dt + O(\log T),$$

which implies with a suitable C > 0 that

(5)
$$\int_{T}^{T+H} \log |\zeta(\frac{1}{2}+it)| dt \ge -C \log T.$$

We obtain

$$\int_{T}^{T+H} \log |\zeta(\frac{1}{2}+it)| dt = \frac{1}{\beta} \int_{T}^{T+H} \log |\zeta(\frac{1}{2}+it)|^{\beta} dt$$
$$\leq \frac{H}{\beta} \log(\frac{1}{H} \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt)$$

similarly as in [2]. By using (5) it follows that (6)

$$\frac{1}{H} \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt \ge e^{-\beta C H^{-1} \log T} \ge e^{-\beta_0 C H^{-1} \log T} \ge 1 - \frac{\beta_0 C \log T}{H}.$$

Thus we have from (6) (with $D = \beta_0 C$) and Hölder's inequality

$$\begin{split} \int_{T}^{T+H} &|\zeta(\frac{1}{2}+it)|^{\beta} dt = \Big(\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt\Big)^{\alpha/\beta} \Big(\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt\Big)^{1-\alpha/\beta} \\ &\geq \Big(\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\beta} dt\Big)^{\alpha/\beta} H^{1-\alpha/\beta} \Big(1 - \frac{D\log T}{H}\Big)^{1-\alpha/\beta} \\ &\geq \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\alpha} dt \Big(1 - \frac{D\log T}{H}\Big)^{1-\alpha/\beta} \\ &\geq (1 - \frac{D\log T}{H}) \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\alpha} dt = (1 + o(1)) \int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^{\alpha} dt \end{split}$$

since $H = \infty(\log T)$. This completes the proof of Theorem 1.

Concerning the values of α, β and H for which (1) fais to hold I wish to make the following remark: For many $0 \le \alpha < \beta$ there exists arbitrarily large values of T such that

(7)
$$\int_{T}^{T+T^{-1/6}} |\zeta(\frac{1}{2}+it)|^{\alpha} dt > \int_{T}^{T+T^{-1/6}} |\zeta(\frac{1}{2}+it)|^{\beta} dt.$$

For T we may simply take the points for which $\zeta(\frac{1}{2} + iT) = 0$, and there are $\gg \tau$ such points in $[0, \tau]$. If, as usual, for any real σ we define

$$\mu(\sigma) = \limsup_{t \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log t},$$

 \mathbf{then}

$$\zeta'(\frac{1}{2}+it)\ll_{\varepsilon}|t|^{\mu(\frac{1}{2})+\varepsilon},$$

which follows by applying Cauchy's theorem to a circle of radius $1/\log t$ with center at $\frac{1}{2}+it$. Since $\mu(\frac{1}{2}) < \frac{1}{6}$, it follows that for $T \leq t \leq T+H, H = T^{-1/6}$,

$$\zeta(\frac{1}{2} + it) \ll H \max_{T \le t \le T+H} |\zeta'(\frac{1}{2} + it)| \ll HT^{\mu(\frac{1}{2}) + \epsilon} \le \frac{1}{2}$$

for sufficiently small $\varepsilon > 0$ and $T \ge T_0(\varepsilon)$. Hence

$$\begin{split} |\zeta(\tfrac{1}{2}+it)|^{\beta-\alpha} &\leq 2^{\alpha-\beta} < 1, \\ |\zeta(\tfrac{1}{2}+it)|^{\alpha} > |\zeta(\tfrac{1}{2}+it)|^{\beta}, \end{split}$$

and (7) readily follows. Under the Riemann hypothesis one can in (7) replace $H = T^{-1/6}$ by $H = \exp(-\frac{A \log T}{\log \log T})$ with some A > 0. However, the largest such H is difficult to determine. Perhaps $H = \exp(-A\sqrt{\log \log T})$ can be taken unconditionally, or even larger H is permissible? This is certainly an open and difficult question.

The construction leading to (7) was basically simple: one finds and interval which is not too small, and where $|\zeta(\frac{1}{2}+it)| \leq \frac{1}{2}$ holds. Points arounds zeros of $\zeta(\frac{1}{2}+iT)$ are of course likely candidates for such intervals, only we can estimate (unconditionally) $\zeta(\frac{1}{2}+it)$ rather crudely near these zeros. This accounts for the rather poor value $H = T^{-1/6}$ in (7). The following problems then naturally may be posed: What is the measure $\mu(A_T)$ of the set

$$A_T = \left\{ t : T \le t \le 2T, \ |\zeta(\frac{1}{2} + it)| \le \frac{1}{2} \right\} ?$$

Clearly A_T consists of disjoint intervals $[T_1, T_1 + H_1], \dots, [T_R, T_R + H_R]$ where R = R(T) and $H_r > 0$ for $r = 1, \dots, R$. What is the order of magnitude of the function

$$H(T) := \max_{1 \leq j \leq R(T)} H_j ?$$

Many results are known on the problems involving *large* values of $|\zeta(\frac{1}{2}+it)|$, but here is a problem involving *small* values of $|\zeta(\frac{1}{2}+it)|$. The significance of H(T) is that obviously

$$\int_{T}^{T+H(T)} |\zeta(\frac{1}{2}+it)|^{\alpha} dt > \int_{T}^{T+H(T)} |\zeta(\frac{1}{2}+it)|^{\beta} dt \quad (0 \le \alpha < \beta).$$

I recall that, by results of A. Selberg (see D. Joyner [9]) and A. Laurinčikas [10], for a given real y one has $(\mu(\cdot)$ again denotes the measure of a set) (8)

$$\lim_{T \to \infty} \frac{1}{T} \, \mu(0 \le t \le T : |\zeta(\frac{1}{2} + it)| \le e^{y\sqrt{\frac{1}{2}\log\log T}}) = (2\pi)^{-1/2} \int_{-\infty}^{y} e^{-u^2/2} \, du,$$

but determining the true order of magnitude of $\mu(A_T)$ and H(T) is a different (and perhaps even harder) problem. Presumably $R(T) \ll T \log T$, so that in view of

$$\mu(A_T) \le R(T)H(T) \ll H(T)T\log T$$

we would need a lower bound for $\mu(A_T)$ in order to improve (7).

Let $\delta > 0$ be a given constant and define

$$K(T) = \{ \inf k : k = k(T) \text{ and } \int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2k} dt > T^{1+\delta} \text{ for } T \ge T_{0}(\delta) \}.$$

The problem is to bound, as accurately as possible, the function K(T). Certainly we have

(9)
$$K(T) \ll_{\delta} \frac{\log T}{\sqrt{\log \log T}},$$

which easily follows from the limit law (8). The significance of K(T) comes from the fact that from

$$T^{1+\delta} < \int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2k} dt \le T \max_{0 \le t \le T} |\zeta(\frac{1}{2} + it)|^{3K(T)}$$

one obtains

(10)
$$\max_{0 \le t \le T} |\zeta(\frac{1}{2} + it)| \ge \exp\left(\frac{\delta \log T}{3K(T)}\right).$$

One can substantially improve (9) by using R. Balasubramanian's bound [1]

(11)
$$\max_{0 \le t \le T} |\zeta(\frac{1}{2} + it)| \ge \exp\left(\frac{3}{4} \left(\frac{\log H}{\log \log H}\right)^{1/2}\right),$$

which is valid for $100 \log \log T \le H \le T, T \ge T_0$. Actually (11) is proved with $3/4 + \eta$ for some $\eta > 0$ as the constant in the exponential. Hence with H = T it follows that

$$|\zeta(\frac{1}{2} + iT')| = \max_{\frac{1}{4}T \le t \le \frac{1}{2}T} |\zeta(\frac{1}{2} + it)| \ge \exp\left(\left(\frac{3}{4} + \frac{\eta}{2}\right) \left(\frac{\log T}{\log \log T}\right)^{1/2}\right).$$

Thus if $|t - T'| \le T^{-1/6}$, then

$$|\zeta(\frac{1}{2}+it)| = |\zeta(\frac{1}{2}+iT')| + O(|T'-t|\max_{|v-T'| \le T^{-1/6}} |\zeta'(\frac{1}{2}+iv)|)$$

$$\geq \exp\Bigl(\Bigl(\frac{3}{4} + \frac{\eta}{3}\Bigr)\Bigl(\frac{\log T}{\log\log T}\Bigr)^{1/2}\Bigr).$$

This gives

$$\int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2k} dt \ge \int_{T' - T^{-1/6}}^{T' + T^{-1/6}} |\zeta(\frac{1}{2} + it)^{2k} dt$$
$$\ge 2T^{-1/6} \exp\left(\frac{3k\sqrt{\log T}}{2\sqrt{\log \log T}}\right) > T^{1+\delta}$$

certainly for

(12)
$$k = (2+\delta)\sqrt{\log T \log \log T}.$$

Hence (12) gives trivially

(13)
$$K(T) \le (2+\delta)\sqrt{\log T \log \log T}.$$

Naturally, any improvement of (13) would be of great interest, since in view of (10) it would mean, improvement of (11) in the most interesting case when H = T. Perhaps even

$$K(T) \ll_{\delta} \log \log T$$

holds. In the other direction

$$K(T) = o(\log \log T) \qquad (T \to \infty)$$

would, in view of (10), contradict the Riemann hypothesis which gives (see Ch. XIV of [16]), for some A > 0,

$$\zeta(\frac{1}{2}+it) \ll \exp\left(\frac{A\log t}{\log\log t}\right).$$

Hence it is reasonable to conjecture that

$$K(T) = \Omega(\log \log T)$$

holds unconditionally.

3. The fourth moment for $1/2 < \sigma < 1$

In this section problems involving the fourth moment of $|\zeta(\sigma+it)|$ $(1/2 < \sigma < 1)$ will be discussed. To this end we define, for fixed σ satisfying $1/2 < \sigma < 1$,

(14)
$$E_1(T,\sigma) = \int_0^T |\zeta(\sigma+it)|^2 dt - \zeta(2\sigma)T - (2\pi)^{2\sigma-1} \frac{\zeta(2-2\sigma)}{2-2\sigma} T^{2-2\sigma}$$

 and

$$E_2(T,\sigma) =$$

(15)
=
$$\int_{0}^{T} |\zeta(\sigma+it)|^4 dt - \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)}T - (A_1(\sigma)\log T + A_2(\sigma))T^{2-2\sigma} - A_3(\sigma)T^{3-4\sigma}$$

as the error terms for the second and fourth moment in the critical strip, respectively. The constants $A_j(\sigma)$ (j = 1, 2, 3) are such that both

$$\lim_{\sigma \to 1/2+0} E_1(T,\sigma) = E_1(T) \equiv E(T), \ \lim_{\sigma \to 1/2+0} E_2(T,\sigma) = E_2(T)$$

hold, where

$$E(T) = \int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt - T(\log \frac{T}{2\pi} + 2\gamma - 1).$$
$$E_{2}(T) = \int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{4} dt - TP_{4}(\log T).$$

Here γ is Euler's constant and $P_4(y)$ is a polynomial of degree four in y with suitable coefficients, of which the leading one equal $1/(2\pi^2)$. A detailed account on E(T) and $E_2(T)$ is to be found in [5].

Prof. Y. Motohashi kindly informed me in correspondence (Jan. 7, 1991) that he evaluated, for $0 < \Delta \leq T/\log T$ and $1/2 < \sigma < 1$,

(16)
$$I_4(T,\sigma;\Delta) := (\Delta\sqrt{\pi})^{-1} \int_{-\infty}^{\infty} |\zeta(\sigma+iT+it)|^4 e^{-(t/\Delta)^2} dt$$

by means of spectral theory of automorphic forms. The method of proof is similar to the one that he used for evaluating $I_4(T, \frac{1}{2}; \Delta)$ (see e.g. Ch. 5 of [5]). Motohashi notes that the expressions for $A_j(\sigma)$ in (15) turn out to be quite complicated, and in particular $A_1(\sigma) = 0$ cannot be ruled out. He also stated that he can obtain

(17)
$$E_2(T,\sigma) \ll T^{2/(1+4\sigma)} \log^C T \qquad (\frac{1}{2} < \sigma < 1).$$

It will be sketched a little later how by taking $\Delta = T^{2/(1+4\sigma)}$ in the integrated version of (16) one can obtain (17) for $1/2 < \sigma < 3/4$. This is because $\Delta > T^{1/2}$ has to be observed, and $2/(1+4\sigma) \ge 1/2$ for $\sigma \ge 3/4$. But for $\sigma \ge 3/4$ we have $2/(1+4\sigma) \ge 2-2\sigma$, so that the right-hand side of (17) is larger than the second main term in (15) for $\int_{0}^{T} |\zeta(\sigma+it)|^4 dt$. Therefore for $3/4 < \sigma < 1$ (17) is superseded by

THEOREM 2. For fixed σ satisfying $1/2 < \sigma < 1$ we have

(18)
$$\int_{0}^{T} |\zeta(\sigma+it)|^{4} dt = \frac{\zeta^{4}(2\sigma)}{\zeta(4\sigma)}T + O(T^{2-2\sigma}\log^{3}T).$$

Proof. Note first that the only published result heretofore on the integral in (18) is contained in Th. 8.5 of [4]. This is

(19)
$$\int_{0}^{T} |\zeta(\sigma+it)|^{4} dt = \frac{\zeta^{4}(2\sigma)}{\zeta(4\sigma)}T + O(T^{\frac{1}{2}(3-2\sigma)+\varepsilon}) \quad (1/2 < \sigma < 1),$$

so that (18) sharpens (19).

The proof of (18) follows the method of §4.3 of my book [5], with k = 2, and with some modifications that will be now indicated. All the notation will be as in Ch. 4 of [5]. From Theorem 4.2 with

$$\Sigma_1(t) = \sum_{n=1}^{\infty} d(n)\nu(\frac{t}{2\pi n})n^{-\sigma-it}, \quad \Sigma_2(t) = \sum_{n=1}^{\infty} d(n)\nu(\frac{t}{2\pi n})n^{\sigma-1+it},$$

where d(n) is the number of divisors of n and $\nu(\cdot)$ is the smoothing function, we have

$$\zeta^2(\sigma+it) = \Sigma_1(t) + \chi^2(\sigma+it)\Sigma_2(t) + O(R_2(t)),$$

hence

$$\zeta^{2}(\sigma - it) = \overline{\Sigma_{1}}(t) + \chi^{2}(\sigma - it)\overline{\Sigma_{2}}(t) + O(R_{2}(t)).$$

Here $R_2(t)$ is the error term in the smoothed approximate functional equation for $\zeta^2(s)$. By (4.39) and the bound at the bottom of p. 179 of [5] we have, for $T \ll t \ll T$,

(20)
$$R_2(t) = t^{\varepsilon - 1 - 2\sigma} \log t + t^{2\varepsilon - 1} \int_{-T^{\varepsilon}}^{T^{\varepsilon}} |\zeta(\sigma + it + \delta + iv)|^2 dv,$$

where δ is any constant such that $0 < \delta < 1$. If f(t) is the appropriate smoothing function that majorizes or minorizes the characteristic function

of [T, 2T], then from the expressions for $\zeta^2(\sigma \pm it)$ we obtain

$$\begin{split} &\int_{0}^{\infty} f(t) |\zeta(\sigma+it)|^{4} dt = \int_{0}^{\infty} f(t) |\Sigma_{1}(t)|^{2} dt \\ &+ 2 \operatorname{Re} \Big\{ \int_{0}^{\infty} f(t) \chi^{2}(\sigma-it) \Sigma_{1}(t) \overline{\Sigma_{2}}(t) \, dt \Big\} + \int_{0}^{\infty} f(t) |\chi^{2}(\sigma+it) \Sigma_{2}(t)|^{2} \, dt \\ &+ O \Big(\int_{T/2}^{5T/2} R_{2}(t) (|\Sigma_{1}(t)| + T^{1-2\sigma} |\Sigma_{2}(t)|) \, dt \Big) + O \Big(\int_{T/2}^{5T/2} R_{2}^{2}(t) \, dt \Big). \end{split}$$

By using (20) and taking δ sufficiently small it follows that

(21)
$$\int_{T/2}^{5T/2} R_2^2(t) dt \ll T^{\varepsilon - 1}.$$

The mean value theorem for Dirichlet polynomials (see Th. 5.2 of [4]) cannot be used directly for the evaluation of mean values of $\Sigma_1(t)$ and $\Sigma_2(t)$, because the sums in question contain the ν -function. However, this is not an essential difficulty, since this function is smooth. Thus we can square out the sums, perform integration by parts on non-diagonal terms, use inequality (5.5) of [4] and the first derivative test (Lemma 2.1 of [4]). In this way we obtain

$$\int_{0}^{\infty} f(t) |\Sigma_{1}(t)|^{2} dt \leq \int_{T/2}^{5T/2} |\Sigma_{1}(t)|^{2} dt \ll T$$

and

$$\int_{0}^{\infty} f(t) |\chi^{2}(\sigma + it)\Sigma_{2}(t)|^{2} dt \ll T^{2-4\sigma} \int_{T/2}^{5T/2} |\Sigma_{2}(t)|^{2} dt$$
$$\ll T^{2-4\sigma} \left(T \sum_{n \leq T} d^{2}(n)n^{2\sigma-2} + \sum_{n \leq T} d^{2}(n)n^{2\sigma-1} + \sum_{m \neq n \leq T} d(m)d(n)(mn)^{\sigma-1} \frac{1}{m \log^{2}(\frac{m}{n})} \right) \ll T^{2-2\sigma} \log^{3} T$$

Aleksandar IVIĆ

To estimate the last double sum above one sets |m - n| = r and uses the bound

(22)
$$\sum_{n \leq x} d(n)d(n+r) \ll \left(\sum_{d|r} \frac{1}{d}\right) x \log^2 x.$$

This is uniform for $1 \le r \le x$ and follows from the work of P. Shiu [16] on multiplicative functions. Hence from the above estimates we obtain

$$\int_{0}^{\infty} f(t)|\zeta(\sigma+it)|^{4} dt =$$
$$\int_{0}^{\infty} f(t)|\Sigma_{1}(t)|^{2} dt + 2\operatorname{Re}\left\{\int_{0}^{\infty} f(t)\chi^{2}(\sigma-it)\Sigma_{1}(t)\overline{\Sigma_{2}}(t) dt\right\} + O(T^{2-2\sigma}\log^{3}T).$$

Note that the argument in [5] that precedes (4.58) gives

$$\int_{0}^{\infty} f(t)\chi^{2}(\sigma - it)\Sigma_{1}(t)\overline{\Sigma_{2}}(t)dt \ll T_{0}^{-1}T^{1-2\sigma}\sum_{m \ll T} d(m)m^{-\sigma}\sum_{n \ll T} d(n)n^{\sigma-1}$$
$$\ll T_{0}^{-1}T^{1-2\sigma}T^{1-\sigma}\log T \cdot T^{\sigma}\log T = T^{2-2\sigma}T_{0}^{-1}\log^{2}T$$

for a parameter T_0 satisfying $T^{\epsilon} \ll T_0 \ll T^{\epsilon-1}$, so that we further have

(23)
$$\int_{0}^{\infty} f(t) |\zeta(\sigma+it)|^{4} dt = \sum_{n=1}^{\infty} d^{2}(n) n^{-2\sigma} \operatorname{Re} \left\{ \int_{0}^{\infty} f(t) \nu(\frac{t}{2\pi n}) dt \right\}$$
$$+ \sum_{m,n=1; m \neq n, 1-\delta \le m/n \le 1+\delta}^{\infty} d(m) d(n) (mn)^{-\sigma} \operatorname{Re} \left\{ \int_{0}^{\infty} f(t) \nu(\frac{t}{2\pi m}) (\frac{m}{n})^{it} dt \right\}$$
$$+ O(T^{2-2\sigma} \log^{3} T),$$

by the argument leading to Theorem 4.3 of [5]. In fact, (23) is a weak analogue of Th. 4.3, since the error term in (23) actually contributes to the second main term in the asymptotic formula for $\int_{0}^{T} |\zeta(\sigma + it)|^4 dt$, but for our purposes (23) is sufficient. By the first derivative test we have

$$\sum_{m,n=1;m\neq n,1-\delta\leq m/n\leq 1+\delta}^{\infty} d(m)d(n)(mn)^{-\sigma} \operatorname{Re}\left\{\int_{0}^{\infty} f(t)\nu(\frac{t}{2\pi m})(\frac{m}{n})^{it} dt\right\}$$

Some problems on mean values of the Riemann zeta-function

$$\ll \sum_{\substack{m \neq n \le 3T, 1-\delta \le m/n \le 1+\delta}} d(m)d(n)(mn)^{-\sigma} |\log \frac{m}{n}|^{-1} \qquad (\delta = 1/2)$$
$$\ll \sum_{\substack{n \le 3T}} d(n)n^{1-2\sigma} \sum_{\substack{n/2 \le m \le 3n/2, m \neq n}} d(m)|m-n|^{-1}$$
$$\ll \sum_{\substack{1 \le r \le 3T}} \frac{1}{r} \sum_{\substack{n \le 3T}} d(n)d(n+r)n^{1-2\sigma} \ll T^{2-2\sigma}\log^3 T,$$

where we used partial summation and (22). Finally with

$$\hat{f}(s) = \int_{0}^{\infty} f(x) x^{s-1} dx, \quad P(s) = \int_{0}^{\infty} \nu(x) x^{-s} dx$$

we have, similarly as in the proof of (4.62) in [5],

$$\begin{split} &\sum_{n=1}^{\infty} d^2(n) n^{-2\sigma} \operatorname{Re} \Big\{ \int_{0}^{\infty} f(t) \nu(\frac{t}{2\pi n}) \, dt \Big\} \\ &= \operatorname{Re} \Big\{ \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \widehat{f}(s) (2\pi)^{1-s} \frac{\zeta^4(2\sigma+s-1)}{\zeta(4\sigma+2s-2)} P(s) \, ds \Big\}, \end{split}$$

where c > 0. For $c > \frac{3}{2} - 2\sigma$ the poles of the integrand are s = 1 with residue

$$\hat{f}(1)\frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} = \Big(\int\limits_T^{2T} dx + O(T_0)\Big)\frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} = (T + O(T_0))\frac{\zeta^4(2\sigma)}{\zeta(4\sigma)},$$

and at $s = 2 - 2\sigma$ with residue

$$T^{2-2\sigma}(D_1(\sigma)\log^3 T + D_2(\sigma)\log^2 T + D_3(\sigma)\log T + D_4(\sigma)) + O(T_0T^{\epsilon}).$$

Hence shifting the line of integration to $\operatorname{Re} s = 2 - 2\sigma - \delta$ for small $\delta > 0$ we obtain, in view of

$$\hat{f}(s) \ll T^{\operatorname{Re} s}, \quad P(s) \ll_A |\operatorname{Im} s|^{-A} \quad (A > 0 \text{ fixed}),$$

that

$$\sum_{n=1}^{\infty} d^2(n) n^{-2\sigma} \operatorname{Re}\left\{\int_{0}^{\infty} f(t) \nu(\frac{t}{2\pi n}) dt\right\} = \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} T + O(T^{2-2\sigma} \log^3 T)$$

with a suitable choice of T_0 . This completes the proof of (18), with the remark that the above proof clearly shows that by further elaboration one could obtain a more exact estimation of $E_2(T,\sigma)$. However, any improvements of (18) that could be obtained in this way would not improve (17) for σ close to 1/2.

We note that (17) is analogous to

(24)
$$E_1(T,\sigma) \ll T^{1/(1+4\sigma)} \log^c T \qquad (c > 0, 1/2 < \sigma < 3/4),$$

proved by K. Matsumoto [11]. Bounds for $E_1(T, \sigma)$ when $3/4 \leq \sigma < 1$ are given in Ch. 2 of [5] by using the theory of exponent pairs. In particular, it is proved that $E_1(T, \sigma) \ll T^{1-\sigma}$ holds for $1/2 < \sigma < 1$, which supersedes (24) for $3/4 \leq \sigma < 1$, so that the analogy with (17) is complete.

The evaluation of (16) may be obtained by going carefully through Motohashi's evaluation of $I_4(T, \frac{1}{2}; \Delta)$ with the appropriate modifications. The latter is extensively expounded in Ch. 5 of [5]. In particular, in (5.90) of [5] the expressions over the discrete and continuous spectrum provide analytic continuation for $u = v = w = z = \sigma$. Hence eventually one obtains

$$I_4(T,\sigma;\Delta) = F_0(T,\sigma;\Delta) +$$

(25)
$$+ \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|\zeta(\frac{1}{2} + i\xi)|^4 |\zeta(2\sigma - \frac{1}{2} + i\xi)|^2}{|\zeta(1 + 2i\xi)|^2} \Theta(\xi; T, \sigma, \Delta) d\xi$$
$$+ \sum_{j=1}^{\infty} \alpha_j H_j^2 (1/2) H_j (2\sigma - \frac{1}{2}) \Theta(\varkappa_j; T, \sigma, \Delta) +$$
$$+ \sum_{k=6}^{\infty} \sum_{j=1}^{d_{2k}} \alpha_{j,2k} H_{j,2k}^2 (2\sigma - \frac{1}{2}) \Lambda(k; T, \sigma, \Delta) + O(\frac{\log^2 T}{T}),$$

where the functions F_0, Θ, Λ appearing in (25) are the appropriate modifications of the functions $F_0(T, \Delta), \Theta(\xi; T, \Delta), \Lambda(k; T, \Delta)$ appearing in (5.10) of [5], and the remaining notation from spectral theory is the same as in [5]. To see quickly what will be the shape of the asymptotic expression for $I_4(T, \sigma; \Delta)$ when $T^{1/2} \leq \Delta \leq T^{1-\epsilon}$, note first that the contribution of everything except the discrete spectrum over non-holomorphic cusp forms will be $O(\log^C T)$. This is the same as for the case $\sigma = 1/2$, and moreover the discrete spectrum may be truncated at $\varkappa_i = T\Delta^{-1}\log^2 T$ with

negligible error. This is essentially due to the presence of the exponential factor $\exp(-(t/\Delta)^2)$ in the definition of I_4 , which is in one way or another reproduced through all the transformations leading to (25). Further note that the function Θ in (25) will itself contain the function

$$M(s,w;\Delta) := \int_{0}^{\infty} y^{s-1} (1+y)^{-w} \exp(-\frac{\Delta^2}{4} \log^2(1+y)) \, dy \quad (\text{Res} > 0).$$

In the case of $I_4(T, \frac{1}{2}; \Delta)$ that above function essentially had to be evaluated at $s = 1/2 \pm i\varkappa_j$, $w = 1/2 \pm iT$, but in the case of the general $I_4(T, \sigma; \Delta)$ it has to be evaluated at $s = 2\sigma - 1/2 \pm i\varkappa_j$, $w = \sigma \pm iT$. In both cases this may be achieved by the saddle-point method (this is where the condition $\Delta > T^{1/2}$ becomes useful) and, for $1 \ll \varkappa_j \leq T\Delta^{-1}\log^2 T$, the functions

$$M(\frac{1}{2}-i\varkappa_j,\frac{1}{2}+iT;\Delta), \quad M(2\sigma-\frac{1}{2}-i\varkappa_j,\sigma+iT;\Delta)$$

have the same saddle point $y_0 \sim \varkappa_j/T$. Since

$$y_0^{2\sigma-1/2-1} \sim y_0^{-1/2} (\varkappa_j T^{-1})^{2\sigma-1} \qquad (T \to \infty),$$

one will obtain in $I_4(T,\sigma;\Delta)$ essentially the same expression as for $\sigma = 1/2$, only each term will be multiplied by a factor which is asymptotic to $(\varkappa_j/T)^{2\sigma-1}$, and $H_j(2\sigma-1/2)$ will appear instead of $H_j(1/2)$ at one place. Therefore one should obtain, for $T^{1/2} \leq \Delta \leq T^{1-\epsilon}$ and a suitable constant $C(\sigma)$,

(26)
$$\sum_{\varkappa_{j} \leq \Delta^{-1} \log^{2} T} \alpha_{j} \varkappa_{j}^{2\sigma-3/2} H_{j}^{2} (\frac{1}{2}) H_{j} (2\sigma - \frac{1}{2}) e^{-\left(\frac{\Delta \varkappa_{j}}{2T}\right)^{2}} \sin(\varkappa_{j} \log \frac{\varkappa_{j}}{4eT}) + O(\log^{C} T).$$

By the same principles the integrated version of (25) shoud read, for $V^{1/2} \leq \Delta \leq V^{1-\varepsilon}$, (27)

$$\int_{V}^{2V} I_4(T,\sigma;\Delta) dT \sim O(\Delta) + O(V^{1/2}\log V) + C(\sigma)V^{(3-4\sigma)/2} \times \\ \times \sum_{\varkappa_j \leq T\Delta^{-1}\log^2 T} \alpha_j \varkappa_j^{2\sigma-5/2} H_j^2(\frac{1}{2}) H_j(2\sigma-\frac{1}{2}) e^{-(\frac{\Delta\varkappa_j}{2V})^2} \cos(\varkappa_j\log\frac{\varkappa_j}{4eV}).$$

One can obtain without difficulty an analogue of Lemma 5.1 of [5] for $E_2(T,\sigma)$, which enables one to obtain upper bounds for $E_2(T,\sigma)$. In conjunction with (27) we shall therefore obtain, for $T^{1/2} \leq \Delta \leq T^{-\epsilon}$ and $1/2 < \sigma < 3/4$,

$$E_{2}(2T,\sigma) - E_{2}(T,\sigma) \ll \Delta \log T + T^{1/2} \log^{C} T + \frac{\max_{T/3 \le t \le 3T} t^{\frac{1}{2}(3-4\sigma)} \times}{\sum_{\varkappa_{j} \le T\Delta^{-1} \log^{2} T} \alpha_{j} \varkappa_{j}^{2\sigma-5/2} H^{2}(\frac{1}{2}) |H_{j}(2\sigma-\frac{1}{2})e^{-(\frac{\Delta\varkappa_{j}}{2t})^{2}} \cos(\varkappa_{j} \log\frac{\varkappa_{j}}{4et})| \\ \ll \Delta \log T + T^{1/2} \log^{C} T + T^{(3-4\sigma)/2} (T\Delta^{-1})^{2\sigma-1/2} \log^{C} T \\ \ll T^{2/(1+4\sigma)} \log^{C} T$$

for $\Delta = T^{2/(1+4\sigma)}$, thereby establishing Motohashi's result (17). Here we used the bound

$$\sum_{\varkappa_{j} \leq K} H_{j}^{2}(\frac{1}{2}) |H_{j}(2\sigma - \frac{1}{2})| \leq \left(\sum_{\varkappa_{j} \leq K} H_{j}^{4}(\frac{1}{2})\right)^{1/2} \left(\sum_{\varkappa_{j} \leq K} H_{j}^{2}(2\sigma - \frac{1}{2})\right)^{1/2} \\ \ll K^{2} \log^{C} K,$$

since $\sum_{\varkappa_j \leq K} H_j^4(\frac{1}{2}) \ll K^2 \log^C K$, and also

(28)
$$\sum_{\varkappa_j \le K} H_j^2 (2\sigma - \frac{1}{2}) \ll K^2 \log^C K \qquad (1/2 \le \sigma \le 1)$$

The bound in (28) is proved analogously as in the well-known case $\sigma = 1/2$, only it is less difficult since $2\sigma - 1/2 \ge 1/2$ for $\sigma \ge 1/2$, and in general $H_j(s)$ (like many other functions defined by analytic continuation of Dirichlet series) is less difficult to handle as Res increases.

The first open problem I have in mind concerning $E_2(T, \sigma)$ is the conjecture pertaining to its true order of magnitude, namely (29)

$$E_2(T,\sigma) = O(T^{\frac{1}{2}(3-4\sigma)+\epsilon}), E_2(T,\sigma) = \Omega_{\pm}(T^{1/2(3-4\sigma)}) \quad (1/2 < \sigma < 3/4).$$

Since $3/2 - 2\sigma > 0$ only for $\sigma < 3/4$, the line $\sigma = 3/4$ appears to be a sort of a boundary both for $E_2(T, \sigma)$ and $E_1(T, \sigma)$. For the latter function this

phenomenon was mentioned already by K. Matsumoto [11]. The O-bound in (29) is certainly very difficult, while the omega-results may be within reach. For $\sigma = 1/2$ it is known that $E_2(T) = E_2(T, \frac{1}{2}) = \Omega(T^{1/2})$ (see Ch. 5 of [5]), although I am certain that the sharper result

$$E_2(T) = \Omega_{\pm}(T^{1/2})$$

must hold. Another reason for the fact that very likely "something" happens with $E_2(T, \sigma)$ at $\sigma = 3/4$ is that, for $\sigma > 3/4$, we have (see (26) and (27))

$$H_j(2\sigma - \frac{1}{2}) = \sum_{n=1}^{\infty} t_j(n) n^{1/2 - 2\sigma} \ll_j \quad 1,$$

while for $\sigma \leq 3/4$ the above series representation is not valid.

For $1/2 \leq \sigma < 3/4$ fixed I also conjecture that

(30)
$$\int_{0}^{T} E_{2}^{2}(t,\sigma) dt \sim C_{2}(\sigma) T^{4-4\sigma} \qquad (T \to \infty)$$

holds with a suitable $C_2(\sigma) > 0$. However, I have no ideas what the explicit value of $C_2(\sigma)$ ought to be. For the less difficult problem of the mean square of $E_1(t,\sigma)$ the situation is different. Namely K. Matsumoto and T. Meurman [12] proved

(31)
$$\int_{0}^{T} E_{1}^{2}(t,\sigma) dt = C_{1}(\sigma)T^{(5-4\sigma)/2} + O(T) \qquad (1/2 < \sigma < 3/4)$$

with

$$C_1(\sigma) = \frac{2}{5 - 4\sigma} (2\pi)^{(4\sigma - 3)/2} \frac{\zeta^2(3/2)}{\zeta(3)} \zeta(\frac{5}{2} - 2\sigma) \zeta(\frac{1}{2} + 2\sigma)$$

and

(32)
$$\int_{0}^{T} E_{1}^{2}(t, \frac{3}{4}) dt = \frac{\zeta^{2}(3/2)\zeta(2)}{\zeta(3)}T\log T + O(T\log^{1/2}T).$$

Matsumoto and Meurman also proved

(33)
$$E_1(T,\sigma) = \Omega_+(T^{3/4-\sigma}(\log T)^{\sigma-1/4}) \quad (1/2 < \sigma < 3/4),$$

while (32) yields $E_1(T, \frac{3}{4}) = \Omega(\log^{1/2} T)$. Note that (33) is the (strong) analogue of the conjectural Ω_+ -result (29) for $E_2(T, \sigma)$. I am convinced that the technique used for proving the Ω_- -result for $E(T) = E_1(T, \frac{1}{2})$ (see Th. 3.4 of [5]) can be used to obtain $E_1(T, \sigma) = \Omega_-(T^{3/4-\sigma})$ for $1/2 < \sigma < 3/4$, and maybe even a slightly stronger result (i.e. $T^{3/4-\sigma}$ multiplied by a log log-factor, or even by a log-factor).

In view of (29), its analogue (unproved yet)

$$E_1(T,\sigma) = O(T^{3/4 - \sigma + \varepsilon})$$
 (1/2 < σ < 3/4),

and

$$|\zeta(\sigma+iT)|^{2k} \ll \log T\left(\int_{T-1}^{T+1} |\zeta(\sigma+it)|^{2k} dt + 1\right) \qquad (k \in \mathbb{N}),$$

an unsettling possibility comes to my mind. It involves the function

$$\mu(\sigma) = \limsup_{t \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log t},$$

for which one has trivially $\mu(\sigma) = \frac{1}{2} - \sigma$ for $\sigma \leq 0$ and $\mu(\sigma) = 0$ for $\sigma \geq 1$. If the Lindelöf hypothesis that $\zeta(\frac{1}{2} + it) \ll t^{\varepsilon}$ is true, then the graph of $\mu(\sigma)$ consists of the line segments $1/2 - \sigma$ for $\sigma \leq 1/2$ and 0 for $\sigma \geq 1/2$. But the above discussion prompts me to think that it is not unlikely that perhaps one has even

$$\mu(\sigma) = \begin{cases} 1/2 - \sigma & \sigma \le 1/4, \\ 3/8 - \sigma/2 & 1/4 \le \sigma \le 3/4, \\ 0 & \sigma \ge 3/4. \end{cases}$$

This is much weaker than the Lindelöf hypothesis, as it implies $\zeta(\frac{1}{2}+it) = \Omega(t^{1/8-\delta})$ for any given $\delta > 0$. Thus it would a fortiori contradict the Riemann hypothesis, since it is well-known that the Riemann hypothesis implies the Lindelöf hypothesis.

If the problem of establishing (30) is perhaps intractable, perhaps it is possible to prove

(34)
$$\int_{0}^{T} E_{2}^{2}(t,\sigma) dt \ll T^{4-4\sigma} \log^{C} T \qquad (C > 0, \ 1/2 < \sigma < 3/4),$$

since (34) for $E_2(T) = E_2(T, \frac{1}{2})$ was proved in [8]. By the method used there it follows that

(35)
$$\int_{t_r}^{t_r+\Delta} |\zeta(\sigma+it)|^4 dt \ll \Delta + \Delta^{-1} \int_{t_r-2\Delta}^{t_r+2\Delta} |E_2(t,\sigma)| dt,$$

and we are going to impose the spacing condition (36) $T < t_1 < \cdots < t_R \le 2T, t_{r+1} - t_r \ge \Delta(r = 1, \cdots, R - 1), T^{\varepsilon} \le \Delta \le T^{1-\varepsilon}.$

Then if (34) holds we obtain from (35) that

(37)
$$\sum_{r \leq R} \left(\int_{t_r}^{t_r + \Delta} |\zeta(\sigma + it)|^4 dt \right)^2 \ll R\Delta^2 + \Delta^{-1} \sum_{r \leq R} \int_{t_r - 2\Delta}^{t_r + 2\Delta} E_2^2(t, \sigma) dt$$
$$\ll R\Delta^2 + \Delta^{-1} \int_{T/3}^{3T} E_2^2(t, \sigma) dt \ll R\Delta^2 + T^{4 - 4\sigma} \Delta^{-1} \log^C T.$$

Hence by the Cauchy-Schwarz inequality one obtains from (37), for $1/2 < \sigma < 3/4$,

(38)
$$\sum_{r \le R} \int_{t_r}^{t_r + \Delta} |\zeta(\sigma + it)|^4 dt \ll R\Delta + R^{1/2} T^{2-2\sigma} \Delta^{-1/2} \log^C T$$

provided that (36) holds. I note that Motohashi and I proved in [8] that, for $1/2 < \sigma < 3/4$,

(39)
$$\sum_{r \leq R} \int_{t_r}^{t_r + \Delta} |\zeta(\sigma + it)|^4 dt \ll R\Delta + R^{\sigma} T^{2-2\sigma} \Delta^{\sigma-1} \log^C T$$

again if (36) holds. Since

$$R^{1/2}T^{2-2\sigma}\Delta^{-1/2} < R^{\sigma}T^{2-2\sigma}\Delta^{\sigma-1} \qquad (\sigma > 1/2),$$

it follows that (38) improves (39) for $1/2 < \sigma < 3/4$. This shows the importance of establishing (34).

The discussion leading to (26) indicates that, crudely speaking, the spectral part appearing in the expression for $I_4(T,\sigma;\Delta)$ is by a factor of $\Delta^{1-2\sigma}$ smaller than the corresponding sum in the expression for $I_4(T,\frac{1}{2};\Delta)$. If one follows the proof of

(40)
$$\sum_{r \leq R} \int_{t_r}^{t_r + \Delta} |\zeta(\frac{1}{2} + it)|^4 dt \ll (R\Delta + R^{1/2}T\Delta^{-1/2})\log^C T$$

(see Ch. 5 of [5]) with the appropriate modifications, one obtains

(41)
$$\sum_{r \leq R} \int_{t_r}^{t_r + \Delta} |\zeta(\sigma + it)|^4 dt \ll (R\Delta + R^{1/2}T\Delta^{1/2 - 2\sigma}) \log^C T$$

for $1/2 < \sigma < 3/4$ and $T^{1/2} \leq \Delta \leq T$. However, once (40) is known for $\Delta \geq T^{1/2}$, it can be essily established for $\Delta < T^{1/2}$, since $R\Delta \ll R^{1/2}T\Delta^{-1/2}$ for $\Delta \leq T^{1/2}$ and each interval $[t_r, t_r + \Delta]$ lies in at most two intervals of the form $[T + (n-1)T^{1/2}, T + nT^{1/2}]$, (n = 1, 2, ...). This procedure does not carry over to (41), in the sense that we cannot deduce in an obvious way the validity of (41) for $\Delta < T^{1/2}$ once it is known for $\Delta \geq T^{1/2}$. Note that (39) improves (41) for $R \leq T^2 \Delta^{-3}$, while (38) improves (41) in the whole range $1/2 < \sigma < 3/4$.

Another problem involving $E_2(T, \sigma)$ is to prove that $E_2(T, \sigma)$ has arbitrarily large zeros for a fixed σ satisfying $1/2 < \sigma < 3/4$. This a trivial consequence (since $E_2(T, \sigma)$ is a continuous function of T) of the conjectural Ω_{\pm} -result in (29), but perhaps a direct a proof of this result might be within reach. The corresponding problem for $E_2(T) = E_2(T, \frac{1}{2})$ was mentioned in Ch. 5 of [5], where it was also noted how one obtains

$$\limsup_{T \to \infty} |E_2(T)| T^{-1/2} = +\infty$$

if a certain linear independence of spectral values can be established. The problem of the existence of arbitrarily large zeros of $E_2(T)$ still remains open. Closely related to the above topic is problem of sign changes of $E_2(T,\sigma)$. For $E_1(T,\sigma)$ I have proved (see Th. 3.3 of [5]) that every interval $[T,T + DT^{1/2}]$ for suitable D > 0 and $T \ge T_0$ contains points τ_1, τ_2 such that

$$E_1(\tau_1,\sigma) > B\tau_1^{3/4-\sigma}, E_1(\tau_2,\sigma) < -B\tau_2^{3/4-\sigma}$$

for $1/2 < \sigma < 3/4$ and a suitable constant B > 0. In my opinion the analogue of this result, which is an open problem, for $E_2(T, \sigma)$ would be the following assertion:

Every interval [T, DT] for suitable D > 1 and $T \ge T_0$ contains points t_1, t_2 such that

$$E_2(t_1,\sigma) > Bt_1^{(3-4\sigma)/2}, E_2(t_2,\sigma) < -Bt_2^{(3-4\sigma)/2}$$

for $1/2 < \sigma < 3/4$ and suitable B > 0.

Of course the latter result by continuity trivially implies both $E_2(T, \sigma) = \Omega_{\pm}(T^{(3-4\sigma)/2})$ and the existence of arbitrarily large zeros of $E_2(T, \sigma)$.

Finally, what is the smallest σ such that

(42)
$$\int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{4} |\zeta(\sigma + it)|^{2} dt \ll T^{1+\epsilon} ?$$

Trivially (42) holds for $\sigma = 1$, and its truth for $\sigma = 1/2$ (for $\sigma < 1/2$ it is false if ε is small enough) is the hitherto unproved sixth moment of $|\zeta(\frac{1}{2}+it)|$. In fact, at present it seems difficult to find any σ satisfying $\sigma < 1$ such that (42) holds. The bound

$$\int_{0}^{T} |\zeta(\frac{1}{2}+it)|^{4} |\sum_{n\leq N} a_{n}n^{it}|^{2} dt \ll T^{\varepsilon}(T+T^{1/2}N^{2}+T^{3/4}N^{5/4}) \sum_{n\leq N} |a_{n}|^{2},$$

where the a_n 's are arbitrary complex numbers, appears to be a natural tool for attacking this problem. This result is due to J.-M. Deshouillers and H. Iwaniec [3], but the term $T^{1/2}N^2$ is too large to give any $\sigma < 1$ in (42) when we approximate $\zeta(\sigma + it)$ by Dirichlet polynomials of length $\ll t^{1/2}$.

The similar problem of finding σ such that

(43)
$$\int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2} |\zeta(\sigma + it)|^{4} dt \ll T^{1+\epsilon}$$

holds is certainly much less difficult. By using the bound

$$\int_{0}^{T} |\zeta(\frac{5}{8}+it)|^{8} dt \ll T^{1+\varepsilon}$$

(see Ch. 8 of [4]) and the Cauchy-Schwarz inequality it follows that (43) holds for $\sigma = 5/8$. Again I ask whether one can find a value of σ less than 5/8 for which (43) holds. Similarly as for (42), (43) also cannot hold for $\sigma < 1/2$ if ε is small enough, and its truth for $\sigma = 1/2$ is the sixth moment of $\zeta(s)$ on the critical line.

References

- [1] R. Balasubramanian, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$ IV, Hardy-Ramanujan **J.9** (1986), 1–10.
- [2] R. Balasubramanian, A. Ivić and K. Ramachandra, The mean square of the Riemann zeta-function on the line $\sigma = 1$, L'Enseignement Mathématique 38 (1992), 13-25.
- [3] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika 29 (1982), 202-212.
- [4] A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York, (1985).
- [5] A. Ivić, The mean values of the Riemann zeta-function, Tata Institute for Fundamental Research LN's 82, Bombay 1991 (distr. by Springer Verlag, Berlin etc., 1992).
- [6] A. Ivić, The moments of the zeta-function on the line $\sigma = 1$, Nagoya Math. J. 135 (1994), 113-129.
- [7] A. Ivić and A. Perelli, Mean values of certain zeta-functions on the critical line, Litovskij Mat. Sbornik 29 (1989), 701-714.
- [8] A. Ivić and Y. Motohashi, The mean square of the error term for the fourth moment of the zeta-function, Proc. London Math. Soc. (3) 69 (1994), 309-329.
- D. Joyner, Distribution theorems for L-functions, Longman Scientific & Technical, Essex (1986).
- [10] A. Laurinčinkas, The limit theorem for the Riemann zeta-function on the critical line I, (Russian), Litovskij Mat. Sbornik 27 (1987), 113-132 and II ibid. 27 (1987), 459-500.
- [11] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip, Japan. J. Math. 13 (1989), 1-13.
- [12] K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip II, Acta Arith. 68 (1994), 369–382; III, Acta Arith. 64 (1993), 357–382.
- [13] K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series IV, J. Indian Math. Soc. 60 (1994), 107-122.
- [14] K. Ramachandra, Lectures on the mean-value and omega-theorems for the Riemann zeta-function, LNs 85, Tata Institute of Fundamental Research, Bombay 1995 (distr. by Springer Verlag, Berlin etc.).
- [15] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 31 (1980), 161–170.

[16] E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.), Oxford, Clarendon Press, (1986).

Aleksandar IVIĆ Katedra Matematike RGF-a Universiteta u Beogradu Djušina 7, 11000 Beograd, Serbia (Yugoslavia)