Natural divisors and the brownian motion
Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 159-171.

On propose un modèle du mouvement brownien relatif aux diviseurs d’un entier, et on établit la convergence faible de la mesure associée dans l’espace 𝐃[0,1]. On obtient un résultat analogue à celui obtenu par Erdös pour les diviseurs premiers [6] (cf. [14] pour une démonstration). Ces résultats et les recherches de l’auteur [15] étendent l’étude [9] de la distribution des diviseurs. Notre approche s’appuie sur les théorèmes limites fonctionnels en théorie des probabilités.

A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space 𝐃 [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.

@article{JTNB_1996__8_1_159_0,
     author = {Manstavi\v{c}ius, Eugenijus},
     title = {Natural divisors and the brownian motion},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {159--171},
     publisher = {Universit\'e Bordeaux I},
     volume = {8},
     number = {1},
     year = {1996},
     mrnumber = {1399952},
     zbl = {0864.11040},
     language = {en},
     url = {http://archive.numdam.org/item/JTNB_1996__8_1_159_0/}
}
TY  - JOUR
AU  - Manstavičius, Eugenijus
TI  - Natural divisors and the brownian motion
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1996
SP  - 159
EP  - 171
VL  - 8
IS  - 1
PB  - Université Bordeaux I
UR  - http://archive.numdam.org/item/JTNB_1996__8_1_159_0/
LA  - en
ID  - JTNB_1996__8_1_159_0
ER  - 
%0 Journal Article
%A Manstavičius, Eugenijus
%T Natural divisors and the brownian motion
%J Journal de théorie des nombres de Bordeaux
%D 1996
%P 159-171
%V 8
%N 1
%I Université Bordeaux I
%U http://archive.numdam.org/item/JTNB_1996__8_1_159_0/
%G en
%F JTNB_1996__8_1_159_0
Manstavičius, Eugenijus. Natural divisors and the brownian motion. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 159-171. http://archive.numdam.org/item/JTNB_1996__8_1_159_0/

[1] G.J. Babu, Probabilistic methods in the theory of arithmetic functions, Ph.D. dissertation, The Indian Statistical Institute, Calcutta, (1973).

[2] P. Billingsley, Convergence of Probability Measures, Wiley & Sons, New York, (1968). | MR | Zbl

[3] P. Billingsley, Additive functions and Brownian motion, Notices Amer. Math. Soc. 17 (1970), 1050.

[4] P. Billingsley, The probability theory of additive arithmetic functions, The Annals of Probab. 2 No 5 (1974), 749-791. | MR | Zbl

[5] J.-M. Deshouillers, F. Dress & G. Tenenbaum, Lois de répartition des diviseurs, 1, Acta Arithm 34 (1979), 273-285. | MR | Zbl

[6] P. Erdös, On the distribution of prime divisors, Aequationes Math. 2 (1969), 177-183. | MR | Zbl

[7] P. Erdös, M. Kac, On the number of positive sums of independent random variables, Bull. of the American Math. Soc. 53 (1947), 1011-1020. | MR | Zbl

[8] B. Grigelionis, R. Mikulevičius, On the functional limit theorems of the probabilistic number theory, Lithuanian Math.J. 24 No 2 (1984), 72-81, (Russian). | MR | Zbl

[9] R.R. Hall, G. Tenenbaum, Divisors, Cambridge University Press Cambridge (1988). | MR | Zbl

[10] J. Kubilius, Probabilistic Methods in the Theory of Numbers Transl. Math. Monographs, Amer.Math.Soc., Providence, R.I. 11 (1964). | MR | Zbl

[11] M. Loève, Probabality Theory, D. van Nostrand Company, New York (1963), (3rd edition). | MR | Zbl

[12] E. Manstavičius, Arithmetic simulation of stochastic processes, Lithuanian Math. J. 24 No 3 (1984)), 276-285. | Zbl

[13] E. Manstavičius, An invariance principle for additive arithmetic functions, Soviet Math. Dokl. 37 No 1 (1988), 259-263. | MR | Zbl

[14] E. Manstavičius, "Probability Theory and Mathematical Statistics. Proceedings of the Sixth Vilnius Conference" (1993) B.Grigelionis et al Eds) VSP/TEV, (1994), 533-539. | MR | Zbl

[15] E. Manstavičius, Functional approach in the divisor distribution problems, Acta Math. Hungarica 66 No 3 (1995), 343-359. | MR | Zbl

[16] W. Philipp, Arithmetic functions and Brownian motion, Proc. Sympos. Pure Math. 24 (1973), 233-246. | MR | Zbl

[17] I.Z. Ruzsa, Effective results in probabilistic number theory, In, Théorie élémentaire et analytique des nombres ed. J.Coquet, 107-130, Dépt. Math. Univ. Valenciennes,.

[18] G. Tenenbaum, Lois de répartition des diviseurs, 4, Ann. Inst. Fourier 29 (1979), 1-15. | Numdam | MR | Zbl

[19] N.M. Timofeev, Ch.Ch. Usmanov, On arithmetical modelling of the Brownian motion, Dokl. Acad. Sci. Tadz.SSR 25 No 4 (1982), 207-211, (Russian). | MR | Zbl

[20] N.M. Timofeev, Ch.Ch. Usmanov, On arithmetical modelling of random processes with independent increments, Dokl. Acad. Sci. TadzSSR 27 No 10 (1984), 556-559, (Russian). | MR | Zbl