A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.
On propose un modèle du mouvement brownien relatif aux diviseurs d’un entier, et on établit la convergence faible de la mesure associée dans l’espace . On obtient un résultat analogue à celui obtenu par Erdös pour les diviseurs premiers [6] (cf. [14] pour une démonstration). Ces résultats et les recherches de l’auteur [15] étendent l’étude [9] de la distribution des diviseurs. Notre approche s’appuie sur les théorèmes limites fonctionnels en théorie des probabilités.
@article{JTNB_1996__8_1_159_0, author = {Manstavi\v{c}ius, Eugenijus}, title = {Natural divisors and the brownian motion}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {159--171}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {1}, year = {1996}, mrnumber = {1399952}, zbl = {0864.11040}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1996__8_1_159_0/} }
Manstavičius, Eugenijus. Natural divisors and the brownian motion. Journal de théorie des nombres de Bordeaux, Volume 8 (1996) no. 1, pp. 159-171. http://archive.numdam.org/item/JTNB_1996__8_1_159_0/
[1] Probabilistic methods in the theory of arithmetic functions, Ph.D. dissertation, The Indian Statistical Institute, Calcutta, (1973).
,[2] Convergence of Probability Measures, Wiley & Sons, New York, (1968). | MR | Zbl
,[3] Additive functions and Brownian motion, Notices Amer. Math. Soc. 17 (1970), 1050.
,[4] The probability theory of additive arithmetic functions, The Annals of Probab. 2 No 5 (1974), 749-791. | MR | Zbl
,[5] Lois de répartition des diviseurs, 1, Acta Arithm 34 (1979), 273-285. | MR | Zbl
, & ,[6] On the distribution of prime divisors, Aequationes Math. 2 (1969), 177-183. | MR | Zbl
,[7] On the number of positive sums of independent random variables, Bull. of the American Math. Soc. 53 (1947), 1011-1020. | MR | Zbl
, ,[8] On the functional limit theorems of the probabilistic number theory, Lithuanian Math.J. 24 No 2 (1984), 72-81, (Russian). | MR | Zbl
, ,[9] Divisors, Cambridge University Press Cambridge (1988). | MR | Zbl
, ,[10] Probabilistic Methods in the Theory of Numbers Transl. Math. Monographs, Amer.Math.Soc., Providence, R.I. 11 (1964). | MR | Zbl
,[11] Probabality Theory, D. van Nostrand Company, New York (1963), (3rd edition). | MR | Zbl
,[12] Arithmetic simulation of stochastic processes, Lithuanian Math. J. 24 No 3 (1984)), 276-285. | Zbl
,[13] An invariance principle for additive arithmetic functions, Soviet Math. Dokl. 37 No 1 (1988), 259-263. | MR | Zbl
,[14] Probability Theory and Mathematical Statistics. Proceedings of the Sixth Vilnius Conference" (1993) B.Grigelionis et al Eds) VSP/TEV, (1994), 533-539. | MR | Zbl
, "[15] Functional approach in the divisor distribution problems, Acta Math. Hungarica 66 No 3 (1995), 343-359. | MR | Zbl
,[16] Arithmetic functions and Brownian motion, Proc. Sympos. Pure Math. 24 (1973), 233-246. | MR | Zbl
,[17] Effective results in probabilistic number theory, In, Théorie élémentaire et analytique des nombres ed. J.Coquet, 107-130, Dépt. Math. Univ. Valenciennes,.
,[18] Lois de répartition des diviseurs, 4, Ann. Inst. Fourier 29 (1979), 1-15. | Numdam | MR | Zbl
,[19] On arithmetical modelling of the Brownian motion, Dokl. Acad. Sci. Tadz.SSR 25 No 4 (1982), 207-211, (Russian). | MR | Zbl
, ,[20] On arithmetical modelling of random processes with independent increments, Dokl. Acad. Sci. TadzSSR 27 No 10 (1984), 556-559, (Russian). | MR | Zbl
, ,