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On the Distribution of complex-valued multiplicative functions

par ANTANAS LAURIN010CIKAS

In honour of Professor H. Delange on his 80th birthday

RÉSUMÉ. Soient g1 (m), g2 (m) deux fonctions multiplicatives a valeurs com-
plexes. Dans un article on donne les conditions nécessaires et suffisantes de
la convergence en un certain sens de

1/n Nn ((g1(m), g2(m)) ~ A), A ~ B(C2 ),

quand n ~ ~. 

ABSTRACT. Let gj(m), j = 1, 2, be complex-valued multiplicative func-
tions. In the paper the necessary and sufficient conditions are indicated for
the convergence in some sense of probability measure

1/n card{0 ~ m ~ n : (g1(m), g2(m)) ~ A}, A ~ B(C2),
as n ~ ~.

Let R, C, N and Z denote the sets of all real numbers, of all complex
numbers, of all natural numbers and all real integer numbers, respectively.
A function g : N ~ C, not identically zero, is called multiplicative if

for all natural numbers m, n relatively prime to each other. The multiplica-
tive functions play an important role in number theory, therefore its values
distribution was studied by many authors. In probabilistic number the-
ory the behaviour of multiplicative functions usually is described by limit
theorems in sense of weak convergence of probability measures. Most of
the works of this kind are devoted to real-valued multiplicative functions.

Manuscrit recu le 20 octobre 1993

*This paper has been written during the author’s stay at the University Bordeaux I
in the framework of the program "S&#x26;T Cooperation with Central and Eastern European
Countries" .
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H. Delange was the first to begin to use probabilistic methods to study
the distribution of complex-valued multiplicative functions. In [1] he ob-
tained the following result (Theorem A). Let Nn (... ) denote a number of
m  n, m e N, satisfying the conditions instead of dots, and let

Denote by p a prime number and, for a given complex-valued multiplicative
function g(m), define the functions

Here arg g(m) is defined to within the addition of an integer multiple of
27r.

Let stand for the class of Borel sets of the space S.

THEOREM A. In order that the sequence of probability measures

converges "6troitement" to the probability measure not concentrated at
z = 0, it is necessary and sufficient that the foflowing conditions be satisfied:

10 the series 
11 , ’"

converge;

2° there exists at least one m E N such that the series

converges, or
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for all m E N and aU u E R.

In probabilistic number theory the multidimensional theorems are known
for additive functions as well as for real-valued multiplicative functions,
see, for example [2]-[6]. The aim of this paper is to present a limit theorem
which describe the joint distribution of few complex-valued multiplicative
functions = 1, ..., r. To do this we can define the probability
measure

where and consider its convergence in some sense to

probability measure on as n - oo. This problem is rather
complicated, and, for simplicity, we shall limit ourselves to the case r = 2
only.

To state our theorem, we will need some notions from [7]. Let P and Pn
be probability measures on ((C2,ti(~)). We say that Pn converges weakly
in sence O to P oo if Pn converges weakly to P and in addition

Here Pj denote the marginal distributions of P, that is

Let, for simplicity, 0’ = 0 for all z E C. Suppose that 1, j = l, 2.

THEOREM. In order that the probability measure

converge weakly in sence e2 to a probability measure which marginal dis-
tributions are not concentrated on the circle I z 1= a, a &#x3E; 0, it is necessary
and sufficient that the following conditions be satisfied:

1 ° the series ~ and j = l, 2 converge;

2° there exists at least E N such that the series
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converge, or

for all

For the proof of the theorem we will use the characteristic transforms of
probability measures on introduced in [7]. In our case r = 2
the functions 

I-

are called the characteristic transforms of probability measure P on
provided that the integrands are equal to zero when r j = 0

for some j - 1, 2. Here r j =1 - argzj, tj E JR, kj E Z, j = 1, 2.
We shall require the following continuity theorems for probability measures
on

LEMMA 1. Let be a sequence of probability measures on (C2 ,B(CJ))
and let 1, 2, be a sequence of corre-

sponding characteristic transforms.

(j=l,2, n 

o0201300 

for all tl, t2 E kl, k2 E 7Z , and that the functions
1, 2, are continuous at the points t ; = 0; ti =

0, t2 = 0, respectively.
Then there exists a probability measure P on «([:2, fi(~ )) such that Pn

converges weakly in sense ~ to P 00. In this case =

1, 2, are the characteristic transforms of the measure .~’.

LEMMA 2. Let P, Pi, P2, ... be probability measures on and

W2;j (tj, = 1, 2, w2 (tl, ~2) ~i) ~2)?’" denote their characteristic trans-
forms, respectively.

If Pn converges weakly in sense ~ to P as n 2013~ oo then wj;,, (tj, Aj) 2013~
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Proof. Lemmas 1 and 2 are the case r = 2 of Theorems 2 and 3, respectively
from [7].

Also we shall use some results on the mean-value

of the multiplicative functions g(m), if this limit exists.

LEMMA 3. Let g(m) be a multiplicative function satisfying ~ g(m) 1:!~, 1. If
M(g) exists and is not zero, then the series

converges.

Lemma is the Delange theorem, for the proof see [8], [15~.

LEMMA 4. In order that the mean-value for the multiplicative function
gem), I~ 1, exists and be zero, it is necessary and sufficient that one
of the following conditions be satisfied:

for every real u;

20 there exists a real number uo such that the series ’

converges and

Proof. Lemma is a corollary of the fundamental work of G. Halisz [9]. Its
statement is given in [10]-[12].

LEMMA 5. Let g(m) = I g(m) 1:5 1, be a multiplicative
function, and the series

converges uniformly in
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uniformly in tj for

Proof. Lemma is a special case of result from [13].
Let 

-

for all ki , k2 E 7G, ~ I ki I + k2 10 0. By Lemma 4 this is equivalent to the
condition 

- - I’ll-,, , __

for all u E R, since if

and

then we have that

too, but

Let us investigate the set of those triples
1 k1 + ~ 10 0, t E for which

By a remark above this set is not empty if and only if

for all ~’



189

LEMMA 6. Let the relation (2) be satisfied and Then

there exist ql, and t E 1~, or there exist

and tl, t2 E R such that

if and only if

or if and only if

Proof. Let A be a set of those pairs (kl,k2) for which (1) is valid. If

then, clearly, (-kl, -k2) E A, since Rez = Rez and (1)
remains true with -t instead of t. Obviously (0,0) E A, because in this
case one can take t = 0. Now let (k1, k2), (k1, ~2 ) E A, that is

for some real numbers t~ and t~~ . Then in virtue of the inequality

valid for I Zl  1,  1, see [14], we find
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Consequently, A is a subgroup of the group Z2. From the general theory of
groups it follows that there exists (ql, q2) such that each element (k1,k2) E
A is presented as

or there exist (al, a2), (bl, b2) satisfying (3) such that each element (kl, k2) E
A is of the form

It is well known that for each (ki , k2) E A there exists exactly one real
number u satisfying (4). We will find an expression for this u. First let us
consider the case (6). Suppose that u = t corresponds to (ql, q2). Applying
the inequality (5) 1 m times, we easily find that

so in this case u = mt. Now let (kl, k2)is decribed by (7). Suppose that
u = tl, u = t2 correspond to (a,, a2) and (bl, b2), respectively. Then,
reasoning similarly as above, we obtain that

so in this case u = mltl + m2t2 .

Proof of Theorem. Sufficiency. Denote by 1,2,
Wn(tl, t2, k1, k2) the characteristic transforms of the measure Pn. Then
we have that
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tl, t2 E R, ki, k2 ~ Z.

We will begin our investigation from Obviously, in case of
the latter function we can limit ourselves 0 only.

Let the series 
,

converge. Using the condition 10 and reasoning similarly as in [10], p.224-
227, we can prove the existence of such q; E N that the series

converge if and only if qj For these kj we will examine the convergence
of the series

The condition 1° shows that

uniformly in tj, 1 tj  T. Here and further B is a number (not always
the same) bounded by a constant. Thus, by (5), using the convergence
of the series (8), we obtain that the series (9) also converges uniformly in
tj, I tj (  T . Therefore, from Lemma 5
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as n -+ oo, uniformly in  T . It is easy to see that, for p &#x3E; po,

From this, (11), using the hypotheses of the theorem, we obtain that

as ?~ 2013~ oo, uniformly in tj, 1 tj ~ T, for every T &#x3E; 0, and for all integers
0. Therefore the functions =1, 2, are continuous at tj =

0. Consequently, from Lemma 1 we have that the marginal distributions
l, 2, of the measure Pn converge weakly in sense C to some

measure Pj on (C,B(C)) as n - oo. It remains to prove that Pj are not
concentrated on the circle for some a; &#x3E; 0. This can be obtained
in the following manner. Since 1# 1, j =1, 2, it is well known [16]
that under the hypothesis 1° of the theorem a real-valued multiplicative
function I possesses non-degenerate limit distribution, that is the
probability measure

as n --&#x3E; oo, converges weakly (and at x = 0) to some probability measure Qj
not concentrated at x = a~, 0. If we suppose that Pj are concentrated
on the circle z ~= aj then it follows that Qj are degenerate at the point
x = Thus, we have obtained a contradiction which shows that =

1, 2, are not concentrated on the circle.
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In the case when it can be proved using a similar method as in
[10] that

for a~ll u E R. Let Cl, C2, ... be some positive constants. Then, using the
identity

and taking into account (10) and (13), we have

for all tj E R and all u E R. Consequently, by Lemma 4 it follows in this
case that

as n --+ oo, for aJl tj E R.
If

for all ki , k2 E Z , I + ~ 0, and all u E R, then, taking k2 = 0 and
after this 0, we find that
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for all kj E N and all u E R. Therefore, reasoning exactly as in the case
kj considered above, we obtain that

as
The function already has been considered above. Conse-

quently, we see from (12), (14) and (15) that in all cases

as n - oo, for all tj E R and kj E Z, and the function W j ( t j , 0) is continuous
at tj = 0, j = 1, 2.
Now we will examine the function When J~1 = k2 = 0

we have that

and to prove the existence of limit function it suffices to verify the hypoth-
esis of Lemma 5. In view of (5) and (10)

uniformly in T, j = 1, 2. Thus Lemma 5 yields that

as n --~ oo, uniformly in  T, j = 1, 2. It is clear that, for p &#x3E; po ,
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Therefore (18) and the hypotheses of the theorem yield
(19)

uniformly in T, j = 1, 2, and evidently the limit function
W (t 1 , t2, 0, 0) is continuous at tl = 0, t2 = 0.
Now we will investigate the general case of the function Wn (tl, k2).

First assume there exist N such that the series

converge. Then, clearly,

and whence in view of (5)

for each m E N. From this and Lemma 4 we have that the relation (2) is
satisfied, and therefore Lemma 6 gives

or

By Lemma 6 if

and
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then

for all u E R. For these ki, k2 we have by (17) that

tends to infinity when x tends to infinity for all tj E 1, 2, and all
u E R. In consequence, by Lemma 4 for these k2

as n -- oo, for all E R, =1,2.
It remains to study more complicated cases when (ki, k2) is presented

as

or

First suppose that (20) is true and consider (k1, k2) having the form
(23). Note that in this case t = 0. Then from (4) it follows that

for all m e N. Here ap = qlarggl(p) + q2 aXgg2 (p), and the dash indicates
that the sum is extended over those p for which 91(P)92(P) # 0. We must
prove that the series



197

converges, too. To prove this we apply the Delange method used in [10],
[14]. Let, for x &#x3E; 2, m, ml , m2 E N,

and

Then, for x2 &#x3E; 2,

by (25). Thus, has a finite limit as x --&#x3E; oo. From the conver-

gence of the series

and (20) we deduce that

From the definition of it follows that

has a finite limit as z - oo, from this and (29) we find
that

Now suppose that
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The equality (27) gives

Consequently, the properties of and (30), (31) yield

so by induction the series (26) converges for all m e N. From this and (25)
we have that the series

converges for all ki, k2 satisfying (23).
Now we assume that (21) is valid and consider (k1, k2) having the form

(24). Let us put

Then from (4)

and we must prove that the series

converges, too. The convergence of the series (28) and (21) imply the
convergence of the series

From this, using again the convergence of the series (28) and the equality
MOItl + mo2t2 = 0, we deduce that the series
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converges. Let us put, for

and

Then, for ~2 &#x3E; 2, in view of (33)

Thus, the limit

exists. Now we take m2 = M02, 0. Clearly, we can suppose that
mo 1 &#x3E; 0. Then (36) gives the formula

Since the series (35) converges, the limit

exists. Therefore (37)-(39) yield

Let us suppose that, for m E N,
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Then in virtue of (36)

and therefore by (37), (40) and (41)

for all m E N, and, consequently, for all m E Z.

Reasoning similarly, we can show that

for all m E Z. Now it is easy to see that (37), (42) and (43) yield the
relation

for all ml , m2 E Z, and this shows that the series (34) converges for au
ml, m2 E Z.

Thus, we have proved that in considered case the series

where

is convergent.
Now we return to The convergence of the series (32)

and (17) imply

for all tl,t2 E R and kl,k2 satisfying (23) (if it take place). Therefore, by
Lemma 5
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Since, for p &#x3E; po,

Hence and from (45) we have that the limit

exists.

The case of convergence of the series (44) is considered similarly, and we
again obtain the relation (46).

If the series

diverges for all kl, k2 E Z, I ki I + I J~2 ~~ 0, and all u E R, then clearly,
the relation (22) is valid. In consequence, the sufficiency of the theorem
follows from (16), (19), (22), (46) and Lemma 1.

Necessity. Suppose that there exists a probability measure P
on ((C2 , ~3 (~ ) ) with marginal distributions not concentrated on a circle
such that Pn converges weakly in sense C2 to P as n - 00. By Lemma 2
the characteristic transforms of Pn converge to those of P as n - oo. In
p articular,
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where Wj (tj, are the characteristic transforms of P~ . From this we obtain
that the multiplicative function I 9j(m) possesses a non-degenerate limit
distribution. Then it follows from [16] that the hypothesis 10 of the theorem
is valid.

Moreover

Suppose that wj (0, 0. Let wj (0, ko~ ) # 0. Then by Lemma 3 the
series

J-- -

converges. From this we deduce that

for all m e N. Consequently, Lemma 4 shows that

for all ki, k2 E 7~, ~ I kl I + ~ I 1~2 1# 0- If --+ 0 for all
n-+oo

kl, k2 E 7~, ~ I ki 1 + k2 1# 0, then Lemma 4 for these implies

for all u E R.

This completes the proof of the theorem.
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