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On the prime density of Lucas sequences

par PIETER MOREE

RÉSUMÉ. On donne la densité des nombres premiers qui divisent
au moins un terme de la suite de Lucas définie par
L0(P) = 2, L1(P) = P et Ln(P) = PLn-1(P) + Ln-2 (P) pour
n ~ 2, avec P entier arbitraire.

ABSTRACT. The density of primes dividing at least one term of
the Lucas sequence defined by L0(P) = 2, L1(P)=
P and Ln(P) = PLn-1(P) + Ln-2(P) for n ~ 2, with P an
arbitrary integer, is determined.

1. Introduction

Let P and Q be non-zero integers. Then the sequence defined by

and for every n &#x3E; 2, Ln (P, Q) = ,

is called a Lucas sequence (of the second kind) . In this paper we will be

mainly concerned with the case Q = -l. For convenience we write Ln(P)
instead of Ln (P, -1 ) . If ,S is any set of primes, then by S (x ) we denote the
number of elements in S’ not exceeding x. The limit limz-+oo S(x)/(x), if
it exists, is called the prime density of S. It will be denoted by 

be a real quadratic field with D &#x3E; 1 and D squarefree.
(This assumption on D is maintained throughout.) Let D D denote its
ring of integers. Suppose DD contains a unit of norm -1. (Thus ED, the
fundament al unit &#x3E; 1, has norm -1. ) be a unit0f DD- In this
paper we are interested in computing the prime density of the set of primes
dividing at least one term of the sequence + The characteristic

polynomial associated to the sequence fUn + tl") is irreducible over Q.
Few people seem to have considered this problem. The papers [4, 5] are the
only ones known to the author in this direction. In contrast several authors
[1, 3, 6, 10] considered the prime density of Lucas sequences of the second
kind having reducible characteristic polynomial (i.e. sequences of the form

Our main result is the following.
Manuscrit reçu le 17 juin 1996.
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THEOREM 1. Let D be a squarefree integer exceeding 1 such that 
has a unit of negative norm. ::1:1 be a unit. Then there 0

and e of norm -1 such that u = f2Å. The sequence Un has a prime
density. In case D = 2 it is given by 17/24 if A = 0, 5/12 if A = 1 and
2-a/3 otherwise. In case D &#x3E; 2 the prime density equals 21-À/3.

It should be remarked that the question whether a quadratic field has
a unit of negative norm is still not completely resolved. If D has a prime
divisor p - 3(mod 4), then there is no such unit. From this it easily follows
that there are at most discriminants D  x for which there
is a negative unit. Stevenhagen conjectures that there are asymptotically

such discriminants, for some explict constant c ~ .58058. For
more on this topic see e.g. [9].
Theorem 1 allows one to compute the density of the Lucas sequence

{Ln(P,1)} for various P. For example the sequence {Ln(326,1)} has density
1/3. More interestingly Theorem 1 allows one to calculate for every integer
P the prime density of the Lucas sequence In this calculation
the sequence fLn(2)1"O = {2,2,6,14,34,’" }, the so called Pell sequence,
plays an important role.

THEOREM 2. For P a non-zero integer let be the Lucas se-

quence defined by Lo (P) = 2, Ll (P) = P and, for n &#x3E; 2, Ln (P) _
PLn_1(P) + Ln-2(P). Then the prime density of this sequence exists and
equals 2/3, unless IPI = Ln(2) for some odd n &#x3E; 1, in which case the density
is 17/24.
On taking P = 1 we find that the prime density of the sequence of Lucas

numbers equals 2/3. This was first proved by Lagarias [4]. Taking P = 2
it is seen that the prime density of the Pell sequence is 17/24.

I would like to thank the referee for her/his helpful comments.

2. Outline of the proofs
The arithmetic of the sequence where An = a" + 1k~, and a E

Q( /15) is a quadratic integer, is intimately connected with that of the
sequence where Wn := (a n - an)/(a - a). This sequence can be
alternatively defined by Wo = 0, W, = 1, Wn = 
for n &#x3E; 2. It is a Lucas sequence (see [7, p. 41] for a definition) of
the first kind. We recall some facts from [7, pp. 41-60]. For primes p
with (~, 2N (a) ) = 1, there exists a smallest index 1 such that

The index pa(p) is called the rank of apparition of p in If

(p, 2N(a)) = 1, thenplwn if and only if Furthermore W2n = WnAn
and Using the latter three properties it can be easily
shown that if (P,2N(a)) = 1, then p divides {An} if and only if pa(p)
is even (cf. [5, Lemma 1)). Indeed our approach to compute the prime
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density of (An) is to compute the density of primes for which pa(p) is

even. The fact that, for = 1, pa(p) divides p- (D/p),
forces us to consider the cases (D/p) = 1 and (D/p) = -1 seperately. For
s = 1, 2, e ~ 0, j ~ 1 put

x-

We show that N1 (e, j; a) has a prime density, 61(e, j; a), and express it
in terms of degrees of certain Kummerian extensions. This approach goes
back to Hasse [3]. The case s = 2 is rather more difficult, except when a is a
unit of negative norm, in which case even elementary arguments suffice. So
assume a = e is a quadratic unit of norm -1. In this case it is not difficult
to show that the prime density of the sequence {An} _ {Ln(Tr(e))} is
given by 

-

The prime densities 81 (e, j; e) and 62 (e, j; e) are computed in respectively §3
and §4. They are tabulated in Tables I and II. The entry e in the last col-
umn gives ~~°_1 be(e, j; e). The entry j in the last row gives ££o 
The distinction between the case D = 2 and D &#x3E; 2 is due to the fact that
for D &#x3E; 2, Q( VÐ) is only a subfield of Q((2;) for some j if D = 2. Finally
in §5 proofs of Theorems 1 and 2 are given.

3. The prime divisors of Lucas sequences splitting in the associ-
ated quadratic number field

Let a E be a quadratic integer. In this section the prime
density, 61 (e, j; a), of the set N1(e,j;a) will be computed by relating it to
the degrees of certain finite extensions of Q (Lemma 1). In Lemma 3 these
degrees are then computed in case N(a) _ -l. Using Lemma 1 and Lemma
3 one easily arrives at Table I.1 and 11.1. The fact that the second column
in Table I.1 only contains zero entries is due to the fact that there are no
primes satisfying (2/p) = 1 and p z 5(mod 8).
LEMMA 1. Let a E a quadratic integer. Put 0 = a2/N(a).
For 0  r  s put = ~(~/D, Bl~Zr, ~2.). Let = Q]. Let j &#x3E; 1
and 0  e  j. Then the prime density, 61 (e, j; a), of
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exists. In case e = 0,

In case e &#x3E; 1,

Furthermore 61 (e, j; a) = 0 in case e &#x3E; j.
Proof. Some details of the proof will be surpressed. The reader having
difficulties supplying the missing details is referred to [5]. If (Dip) = 1
then p splits in So (p) = q3l3 in If (p, 2N(a)) = 1, then
ordT(0) = ordp(0) = pa(p). Using that for all large enough primes satisfy-
ing (D/P) = 1, it follows that Ni (e, j; a) is finite in case e &#x3E; j.
Then 61 (e, j; a) = 0. Now assume e  j. Let Qa(p) denote the exact power
of 2 dividing pa(P). Put

Then the set Nl (e, j; a) equals

This, on its turn, can be written as {p : p E Sj, 05# m 1 (mod ~)} if e = 0
and

otherwise. The latter set equals

with the subset

taken out. The latter set equals, with at most finitely many exceptions,
the set of primes that split completely in Since for r  s, 
is normal over Q, it follows by the prime ideal theorem or by the Cheb-
otarev density theorem that the prime density of this set equals 
The density of the other sets involved are computed similarly. One finds
bl (o, j; a) - d, - and, in the case e &#x3E; 1, b1 (e, j; a) - 

+ D
In our computation of the degrees da,b we will make use of the following

easy lemma.
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LEMMA 2. [2, Satz 11
The field with a E normal and only if N(a)

is a 

LEMMA 3. Suppose that c &#x3E; 0 is a unit of negative norm in OD.
(i) D = 2. We have do,, = 2, do,2 = 4 and do,b = 2b-1 for b &#x3E; 3.

Furthermore d1,1 = 4, dl,b = do,b for b &#x3E; 2. For b &#x3E; a &#x3E; 2, da,b = 2~+b-2.
Finally, d2 , 2 = 8 and dj,j = 2 2j-2 f or j &#x3E; 3.

(ii) D &#x3E; 2. We have for b &#x3E; a &#x3E;_ 1, da,b = 2a+b-1. Furthermore do,b =
2b, b ~ 1, 6:1,1 = 4 and db b = 22b-1 for b &#x3E; 2.

Proof. (i). Since v’2 E Q((8), we have, for b &#x3E; 3, Q(v’2,(2b) = Q«(2b)
and thus do,b = 2b-1. For a = 1, b &#x3E; 2 we have Q( v’2, v-a2, (2b) =
Q (,,f2-, i, C 2 b )= ~(~, ~Zb). Thus di,b = do,b for b &#x3E; 2. Now assume that b &#x3E;
a &#x3E; 2. Then Q(v’2,(-a2)1/2G’(2b) = Q(~/2,~/~B~) = I

claim that X2G-l - a is irreducible over ~(~’2b). If it were not, then Q( va)
would be a subfield of and hence normal. But since is not nor-

mal by Lemma 2, this is impossible. Q] = 
~(~Zb)~~~(~26~ : Q] = 2a+b-2. Next consider the field (-(,~2)1/2b’ ~2b)
for b &#x3E; 3. Note that

By taking composita sees that

Thus db~b = rdb_l,b = 22b-2, Finally one checks that the missing degrees,
do,,, do,2) and d2,2, are as asserted.
(ii). We only deal with the case b &#x3E; a &#x3E; 2. The other cases are even
more similar to (i) and left to the reader (see also [5, Lemma 6]). We
have Q( v’Ï5, (-a2)1/24, (26) = ~(~, ~,1~2a~1, ~‘2b)· I claim that is
irreducible Note that the latter field, as a compositum of
two abelian fields, is itself abelian. Hence all its subfields are normal. Now
if X 2 a ! ~ - a were reducible would be a subfield of

~’2b). By Lemma 2 this is seen to be impossible. The degree da,b is
then computed as in (i). p

4. The prime divisors of Lucas sequences inert in the associated
quadratic number field

As will be seen, in case a is a unit of negative norm, the problem of
computing the density b2 (e, j; a) can be easily reduced to that of computing
the density of {p : (D/p) = -1, p - -1 + 2i (mod 2~)}. For D &#x3E; 2 this

density is computed in the next lemma.
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LEMMA 4. Let D &#x3E; 2 be squarefree. For s = 1, 2 and j &#x3E; 1 put

Then 6(Rs,j), the prime density of Rs,j, equals 2-1-i.
Proof Consider the set of primes

Let j &#x3E; 2. Now (Dip) = 1 and p - 2~) if and only if the prime
p splits completely in Q(VÐ,(2; + ~Z;1). Similarly (Dip) = 1 and p -
-1(mod 2~) if and only ifp splits completely in Q(B/D, (2i + C,~1) but does
not split completely in Q(@, ~2~ ). Since both of these number fields are
normal extensions of Q, it follows by the Chebotarev density theorem that

Since ~~(~/D,~z;) ~ ~(~,~a~ +(;1)]12 and + ~)) as a to-
tally real field is strictly included in it follows that 8(Vj) =
~~(~/D,~2;) : Q]-’. Since the only real quadratic subfield of Q((2i) is at
most it follows that [Q (vD, (2j) : Q] = (~(~) : Q] [Q ((2j) : Q] = 2i
and hence 6(l§) = 2-j. Now notice that Ri,; = Thus b(Ri,j) =
6(l§) - 6(Vj+1) = 2-1-i. If j = 1 then note that 81 is the set of primes that
split completely in the normal field Q( VÐ, i). Thus

The case s = 2 is almost immediate now. D

Remark. From the law of quadratic reciprocity one deduces that for odd
D, (D/p) = 1 if and only if p - 4D) for a set of odd ¡3 (this result
was already conjectured by Euler). This set has cp(D)/2 elements. Using
this, the supplementary law of quadratic reciprocity, the chinese remainder
theorem and the prime number theorem for arithmetic progressions, one
can give an alternative proof of Lemma 4.

Let e be a unit of negative norm. Now we are in the position to com-
pute 62(e,j;,E). For primes inert in ~(~D), Fp2, and hence
the Frobenius map acts by conjugation on e, that is eP = 6 (mod (p)).
Thus, since N(e) _ -1, we have -1(mod (p)). Hence if p -
-1 + 2 (mod 2), ’ &#x3E; 2, then 8 = (-1)EP+1 - -1(mod (p)). Thus

(= p,(p)) and therefore N2(j, j;e) = fp : (DIp) = -1, p ==
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-1 + 23 (mod 2~+1)~. In the case D &#x3E; 2, j &#x3E; 2, 62 (i, j; C) = 2’-~ by
Lemma 4. If D = 2, then 6~ ( j, j; e) = 0 for j &#x3E; 3 and NZ (2, 2; e) = p -

3(mod 8)}, that is 62(2,2; E) = 1/4. In case j = 1, p - 1(mod 4) and so
= (- 1) z!4 eP+l 1(mod (p)). Since (p + 1)/2 is odd, N2(0,1;f) =

f p : (D/p) = -1, p = 1(mod 4)}. If D &#x3E; 2, then ~2(0, l;e) = 1/4 by
Lemma 4. If D = 2 then ~2(0, l;c) = {p : p - 5(mod 8)} and so again
62 (0, 1; e) = 1/4. Thus we arrive at Table 1.2 and Table 11.2.

5. Proofs of Theorems 1 and 2

Theorem 1 is easily deduced from the following theorem.

THEOREM 3. Let E be a unit of negative norm in OD. Let p,(p) denote the
rank of apparition of p in the sequence le’ + Consider for e &#x3E; 0 the

prime density, 6(e; f), of the set f p : In case D = 2 it equals
7/24 if e  1, 1/3 if e = 2 and 2-e/3 for e &#x3E; 3. In case D &#x3E; 2 it equals 1/3
if e = 0 and 21-e/3 if e &#x3E; 1.
Proof. Let N (e, e) = {p : and for s = 1,2 let

Let b9 (e; e) denote the prime density of Ns (e; E). Thus, with at most finitely
many exceptions, = Now N1(e; f) = 
and N2(e; f) = 6). Since the latter is a finite disjoint union of
sets of non-zero density, we have b~ (e; E) = E~1 b2 (e, j; E). Similarly we
want to show that 61 (e; e) = E~1 As U~° 1 Nl (e, j; E) is an infinite
union of sets of non-zero density, this needs proof. We proceed as in [4, p.
454]. Put

Using Lemma 4 the density of this set is seen to be 2-j - b1 (e, j; c) in case
D = 2 and j ~ 3, and 2-1-j - 61 (e, j; c) in case D &#x3E; 2. Now

The smallest set in the above inclusion of sets has density 81 (e, j; e).
The largest set has prime density 2-~ + in case D = 2 and
m &#x3E; 3, and prime density 2-1-m + 81(e,j; f) in case D &#x3E; 2. Letting
m --~ oo shows that 81(e;f) = ~~° 1 bl (e, j; E). On computing the densities
Z~=i{~i(c?.?~)+~2(~J~)}? on making use of Lemma 1 and Lemma 3, the
proof is then completed. p
Proof of Theorem 1. Since the prime density of ~un + is invariant
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under replacing u by ii, -u or -11 and, by assumption, u :A 1, we may
assume w.l.o.g. that u &#x3E; 1. Then u = ED for some N &#x3E; 1, where 16D
is the fundamental unit of Write N = 2arra with m odd. Put

E = ED . Then u = f2&#x3E;’ with N (E) _ -1. Note that A is unique. Consider the
sequence + as a subsequence of 1,En + 1*~). One easily shows that
p divides + if and only if is divisible by 2À+l. Hence the
prime density of equals

...,.- "

Using this expression and Theorem 3, Theorem 1 follows. 0

Proof of Theorem 2. Put D = p2 + 4. Notice that for 0, D is not a
square. We have Ln(P) = a"+an with a = (P+ B/D)/2. If D == 0(mod 4)
then a E if D - 1(mod 4) then a E Z[(1 + B/D)/2]. Thus a E 0~.
Furthermore N (a) = -1. In order to apply Theorem 1 we have to deter-
mine when Q( P2 + 4) = that is we have to find all solutions P to
the Pell equation p2 - 2Q2 = -4. The fundamental unit of is 1 + ..,F2.
By the theory of Pell equations it follows that the solutions (P, Q) E Z~o
of 2Q2 = -4 are precisely given by 1 is odd }, where
Xn + Yn../2 = 2 (1 + ý2)n. Noting that

it is seen that xn = Ln(2). Theorem 2 now follows on invoking Theorem
1. D

With the previous proof in mind the reader will have few problems in
proving the following curiosum.

THEOREM 4. Let D &#x3E; 1 be squarefree. Suppose that X2 - Dy2 = -4 has
a solutions. For s = 1, 2, let C, denote the set of prime divisors of the set

and the set of prime divisors of the set

One has b(G4) = 1. Furthermore, when D = 2, = 7/24, b(C2) = 5/12
and 8(G3) = 7/24. If D &#x3E; 2, then S(G~) = 1/3 for 1  j  3.
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Proof. If X2 - Dy2 = -4 has a solution, then -l. Define

sequences of integers and (yn) by xn + Yn VD 2el . Then, see [8, p.
65], WI = {x" : n &#x3E; 1 is odd}, W2 = 1 is even}, W3 = (yn :
n &#x3E; 1 is oddl, and W4 lYn : n &#x3E; 1 is even}. Notice that Xn = ED + D

(ED - Using this, one easily sees that b(Cl) = 8(1; fD),
8(C2) = 1 - b(0; ED) - 6(1; ED), b(C3) = 6(0; eD) and b(C4) = 1. The result
now follows from Theorem 3. 0

The case D = 2

Table 1.1
Prime density, 61 (e, j;,E), of the set

{p : () = 1, p - 1 + 2j(mod 2+1), where N(e) _ -1.p

Table 1.2
Prime density, 82(e,j; f), of the set

, - , _ _ -
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Table 11.1
Prime density, 61 ( e , j; E), of the set

Table 11.2
Prime density, 82(e,j; f), of the set
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