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Poly-Bernoulli numbers

par MasaNoBU KANEKO

RESUME. Par le biais des séries logarithmiques multiples, nous
définissons ’analogue en plusieurs variables des nombres de Ber-
noulli. Nous démontrons une formule explicite ainsi qu’un théo-
reme de dualité pour ces nombres. Nous donnons aussi un théo-
réme de type von Staudt et une nouvelle preuve d’un théoréme
de Vandiver.

ABSTRACT. By using polylogarithm series, we define “poly-Ber-
noulli numbers” which generalize classical Bernoulli numbers. We
derive an explicit formula and a duality theorem for these num-
bers, together with a von Staudt-type theorem for di-Bernoulli
numbers and another proof of a theorem of Vandiver.

For every integer k, we define a sequence of rational numbers B(¥ (n =
0,1,2,---), which we refer to as poly-Bernoulli numbers, by

- ZB(k)—-

z=l—e"% n=0

1) “Lis(2)

Here, for any integer k, Lix(2) denotes the formal power series (for the k-th
polylogarithm if £ > 1 and a rational function if k£ < 0) Y o_, 2™ /m*.
When k = 1, BY is the usual Bernoulli number (with B® = 1/2):

ze® — 51 Z"
= B\Y —

and when k > 1, the lefthand side of (1) can be written in the form of
“iterated integrals”:

(2)
1
e . dtdt---dt=" :B(")x .

z2—-14do et—l oe‘—l

(k—1)— tlmes

n=0

Manuscrit regu le 17 février 1994.



222 Masanobu KANEKO

In this paper, we give both an explicit formula for B in terms of the
Stirling numbers of the second kind and a sort of duality for negative index
poly-Bernoulli numbers. Both formulas are elementary, and in fact almost
direct consequences of the definition and properties of the Stirling numbers.
As applications, we prove a von Staudt-type theorem for di-Bernoulli num-
bers (k = 2) and give an alternative proof of a theorem due to Vandiver on
a congruence for BY.

1. Explicit formula and duality

An explicit formula for B(¥ is given by the following:
THEOREM 1.

B =y & 1(m"1‘5;(" ™) (n > 0, k),

m=0

where

S(n,m) = E 1)‘( )
m! £=0
is the Stirling number of the second kind.
REMARK. When k = 1, the theorem and its many variants are classical
results in the study of Bernoulli numbers (cf. [1]).

Because the Stirling numbers are integers, we see from the formula that
B for k < 0 is an integer (actually positive, as demonstrated in the
remark at the end of this section).

THEOREM 2. For any n,k > 0, we have

B( k) __ B(—n)

PROOF OF THEOREMS 1 AND 2. One way to define the Stirling numbers
of the second kind S(n,m) (n > 0,0 < m < n) is via the formula

g" = gs(n,m)(w)m,

where, for each integer m > 0, we denote by (z),, the polynomial z(z —
1)(z—2)---(z—m+1) ((z)o = 1). Then they satisfy the following formulas
(when n = 0 in (3), the identity 0° = 1 is understood):
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(3) S(n,m) = m, Z( 1)‘( )
(4) (Gl i ZS(n,m)m.

m!

n=m

For other definitions, further properties and proofs, we refer to [3].
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Now Theorem 1 is readily derived from the definition (1) and the formula

(4). In fact,

1_.
Zle(z)

z=l—e™% - m_z-;o (m+1)k

oo ! ot —mp\n
= 3 o L nstmm)

m=0

_ ey (F)™miS(n,m), ()"
- Z(Z (m+1)k ) n!

n=0 m=0

Hence the theorem follows.

To prove Theorem 2, we calculate the generating function of B{™®):

(1-e®)™(m+ 1)’c

m=0

s s

k
i f: g0 Y
== " onlk!
(1 _ e—z)me(m+1)y

0
ez+y

e +ev — ety

3
il

The last expression being symmetric in « and y yields Theorem 2.
REMARK. Since

ez+y ez+y
e® +ev — ext+v 1— (e —1)(ev—-1)

= Y14 (2 —1)(e¥ — 1) + ((e® = 1)(e¥ — 1))* + --

the number B(™® (k > 0) is always positive.

')7
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2. Denominators of di-Bernoulli numbers

Using Theorem 1, we can completely determine the denominator of di-
Bernoulli numbers as follows.
THEOREM 3.

(1) When n is odd, B = —-5“—4_31Bfl1_)1 (n > 1). (Hence the descrip-
tion of the denominator reduces to the classical Clausen-von Staudt
theorem.)

(2) When n is even (> 2), the p-order ord(p,n) of B® for a prime
number p is gien as follows.

(a) ord(p,n) >0 ifp>n+1.
(b) For 5 <p<n+1, we have:
(i) ord(p,n) = -2 if p—1|n.
(i) Ifp—1 fn, then:
(A) ord(p,n) >0 ifp|£§l, orn =n' mod p(p —1) for
somel<n' <p-1.
(B) ord(p,n) = —1 otherwise.
(c) ord(3,n) > 0ifn=2mod3 andn > 2. Otherwise ord(3,n) =
—-2.
(d) ord(2,n) > 0 ¢fn =2 mod 4 and n > 2. ord(2,n) = -1 if
n =0 mod 4. ord(2,2) = —
Before proving the theorem, we establish the following lemma, which will
be needed in the proof.
LEMMA 1. Assumen > 2 is even and p > 5 is a prime number such that
m+1=2p. Then

(=1)™m!S(n,m) = 0 mod p?,

and hence (—1)™m!S(n,m)/(m + 1)? is p-integral.
ProoFr. By (3),

(-D)™m!S(n,m) = zpz:l( 1) ( )Z"
_ n 2p— 2p
= St (e (27 eo-or)
P p—l n
+(-1)( » )p

= Ii{(—l)‘ <2p . l)ﬂ" + (—U‘(zf __11)(—2npe"—1 +£%} mod p?.
£=1
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2p—1 + 2p-1 2p 2p—1
{ (-1 FAVES!

the last sum is equal to

2p(1 — n) g(—n‘ (25’_‘ 11) rL

Since

Noting that
2p - 1 = (—-1)¢"1
(13—1)_( 1) mod p,

we see that
p—-1 p-1
E( 1)‘( )E”"l =-) {"'=0 modp,
=1

because p — 1 Jn — 1 (recall that n is even and p is odd). This proves the
lemma.

PROOF OF THEOREM 3. 1. Let B, = BV forn # 1 and B; = —1/2. Then
Yoo Bnz™/n! = z/(e® — 1). By (2) in the introduction, we have

iBQ)ﬁ = / EBtﬁdt
" nl —1 Jai

m! - (£+1)!

m=0

From this we see that

B(l)le
By = Z (z) £+1

£=0

Since B{") = B, = 0 for odd £ > 3, we have for odd n

B® = 23(1)13 +BYp, , =-r=2 . 2)
2. We make use of Theorem 1. Part (a) is obvious because the Stirling
numbers in the formula in Theorem 1 are integers. For the remainder of
the proof, first we note that the expression m!/(m+1)? in the summand of
the formula is an integer except when m +1 = 8,9, a prime number, or 2x
a prime number, as can be checked in an elementary way. Now, Lemma 1
tells us that any prime number p > 5 satisfying m+1 = 2p does not appear
in the denominator of BY.

B(l)
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Our next task is to consider the case m + 1 = p, where p is a prime
number > 5. In this case

p-1 p— 1
-1D™m!S(n,m) = -1)* VA
(-1 miS(nm) = 35(-1) ( , )
The righthand side is congruent modulo p to —1 if p — 1|n and to 0 if
p —1 Jn. Thus if p — 1|n, the p-order of (—1)™m!S(n,m)/(m + 1) is —2.
Since the other summands in the formula in Theorem 1 are p-integral, we
have shown part (b)-i. Suppose p — 1 fn and calculate modulo p?. Using

<p;1) = (-1)*+(-1* lpZ— mod p?,

=1

we see that
£ p 1 n — =, n = n : 1 2
Z( -1) I4 ZE —pZZ Z-Z— mod p°.
=1 =1 =1

It is known that (cf. Cor. of Prop. 15.2.2 in [2]) if n is even and p — 1 [n,

then
p~1

> ¢ =pB mod p’.

£=1
On the other hand, when we put n mod p — 1 =n/,1 <n’ < p—1 (since
both n and p — 1 are even, n’ is also even), we find

p—1 £
}:Z”Zl, = Zl"z—. mod p
=1 =1 t =1 t

= Bf,,l,) mod p (see (63) of Vandiver [4] and Section 3 below).
We therefore have
(=1)"m!S(n,m) = p(BY — BY) mod p?,

where m+1=pandn'=n modp-1,1<n’ <p-—1.8Sincep—1 Jn,
the number B®) /n is p-integral and B{Y = n'B® /n mod p (Prop. 15.2.4
and Th.5 following it in [2]). Thus

(1)

(=1)™m!S(n,m) = mod p°.

This readily gives part (b)-ii of the theorem.

The only summands in Theorem 1 which may not be 3-integral are
21S(n,2)/32, —5!5(n,5)/62, and 8!S(n,8)/9%2. By direct calculation using
the formula (3), we obtain part (c). In a similar manner, we can determine
the 2-order as well, but we omit the details here.
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3. A theorem of Vandiver

As an application of Theorems 1 and 2, we prove the following proposi-
tion originally due to Vandiver.
PROPOSITION. Let p be an odd prime number. For 1 <i<p-—2,

p—2
1 1 .
BYV=S (1+z++— 1) mod p.
i m=1( +2+ +m)(m+ )* mod p

Proor. By Theorem 1 and Fermat’s little theorem, we see that
B® = B® P mod p.

Theorem 2 says that the righthand side is equal to BI(,ZQ , which by Theorem
1is equal to — 2% (=1)™m!S(p — 2, m)(m + 1)°.

m=0

LEMMA 2. Suppose p s an odd prime, and 1 <m < p—2. Then
(-D)™ 'm!S(p—-2,m)=1+ ! +--+ 1 mod p.
2 m
ProoOF. The Stirling numbers satisfy the recurrence formula
S(n,m)=8S(n—-1,m—-1)+mS(n—-1,m) (n >1) (see [3]).
Thus if we put (—1)™"'m!S(p — 2,m) = b,,, we get
(_l)m—lm!S(p - l’m) = m('—bm—l + bm) (m > 2)
But by (3),

(_l)m—lm!S(p—]_,m) - _tz:;(_l)l(?)zp_l

- i(—l)‘ (TZ) mod p
=1

1 mod p,

and we thus conclude that
1
by = b1 + — mod p.
m

This together with the relation b, = S(p — 2,1) = 1 gives the lemma and
hence completes the proof of the proposition.
REMARK. If i > 1, the righthand side of the proposition is congruent
modulo p to

i | 1,

>+ 2+~-~+m)m,

m=1
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and this being congruent to B; (even when 7 = 1) is a special case of
Vandiver’s congruence (63) in [4].
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