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Sums of squares in Z[~k]

par FERNANDO CHAMIZO

RÉSUMÉ. Nous étudions une généralisation du fameux problème du cer-
cle aux anneaux d’entiers quadratiques réels : nous nous intéressons à

C(N,M) = 03A3n~N 03A3m~M r(n + m~k), le nombre de représentations de
n+m~k comme somme de deux carrés dans Z[~k] (où k &#x3E; 1 et sans facteur

carré). En utilisant la théorie spectrale dans PSL2(Z)BH, nous obtenons
une formule asymptotique avec terme erreur pour C(N, M), démontrant que
certaines techniques d’estimations de fonctions L automorphes fournissent
précisément des majorations de ce terme erreur.

ABSTRACT. We study a generalization of the classical circle problem to
real quadratic rings. Namely we study C(N, M) = 03A3n~N 03A3m~M r(n +
m~k) where r(n + m~k) is the number of representations of n + m~k as
a sum of two squares in Z[~k] (with k &#x3E; 1 and squarefree). Using spectral
theory in PSL2(Z)BH, we get an asymptotic formula with error term for
C(N, M), showing that some techniques on the estimation of automorphic
L-functions can be applied to get upper bounds of the error term.

1. Introduction.

The classical circle problem asks about the asymptotic behaviour of
r(n) where r(n) is the number of representations as a sum of two

squares. The problem comes back to Gauss [Ga] and it was conjectured by
Hardy [Ha] that for every a &#x3E; 1/4

Several methods of exponential sums have been applied along this century
to extend the range of a in which (1.1) holds true. The best known result
is due to M.N. Huxley [Hu] who has proved (1.1) for every a &#x3E; 23/73.
A natural generalization of the circle problem to the ring with k

squarefree, k &#x3E; 1, leads to consider
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where r(n + m.;k) is the number of representations of n + mf as a sum
of two squares in Curiously, with this formulation circle problem in

reduces to an ellipsoid problem that can be completely solved. Other
formulations due to W. Schall [Sc] and U. Rausch [Ra] lead to difficult and
interesting problems about the distribution of the conjugates of an algebraic
number. In this paper we study

i.e. we substitute the square 1  n, m  N in the definition of C (N) by the
rectangle 

To get an optimal asymptotic formula for thin enough rectangles (M
small) appears as a difficult problem involving harmonic analysis in the hy-
perbolic plane. In fact, in the limiting case M = 2, the problem can be in-
terpreted as a hyperbolic circle problem which has strong resemblances with
the classical circle problem (see Ch. 12 of [Iw2], [Ph-Ru] and [Chl]), and in
some ranges the estimation of the error term in the asymptotic formula for
C(N, M) is related to the estimation of some automorphic L-functions.

In [Chl] it was stated as an example that the asymptotic of

can be decided using the spectral theory of automorphic forms (the needed
results are summarized in section 2 below). In this paper we study the
uniformity in m to get an asymptotic formula with error term for C (N, M).
Using well known results in lattice point theory (when M is large) and aver-
age results for Hecke eigenvalues (when M is small), we obtain in section 3
bounds for the error term. Finally, in section 4 (that we consider the main
part of this paper) we show that there is a relation between the estimation
of automorphic L-functions and bounding the error term in our problem.
Combining a method due to W. Luo (see [Lu]) with other results, we obtain
several bounds improving in some ranges the previously obtained.

The author would like to thank the referee and the editorial board for
the celerity in the acceptance of this paper. The author also wants to thank
specially the encouragement given by E. Valenti.

2. Notation and review on some known results.

The main purpose of this section is to expand C(N, M) in terms of
non-holomorphic cusp forms (see Lemma 2.3 below). The process was,
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essentially, described in [Chl] but to ease references we prefer to give here
a specific statement of the results that we need with a very brief comment
about the underlying ideas.

We shall follow the notation of [Iw2] and we also refer the reader to
that monography for any basic result on spectral theory used in this paper.
Nevertheless we find convenient to refresh briefly at least the most basic
concepts.
We shall denote by Maass cusp forms for PSL2(Z); i.e. automor-

phic functions vanishing at infinity which are normalized eigenfunctions of
Laplace-Beltrami operator. The eigenvalues will be denoted by 1/4 + t~,
taking (by notational convenience in Lemma 2.3) tj with a different sign
for and 

We shall assume that the are Hecke eigenforms, i.e. they satisfy
= where T", is the Hecke operator

On PSL2(Z)BM there is only one Eisenstein series, and

E~(~,1/2 + it) is an eigenfunction of Tm whose eigenvalue is qt(m) =
.

The hyperbolic circle problem will play an important role in the subse-
quent arguments. As the classical lattice point problem consists of counting
the images of a point under integral translations, the hyperbolic circle prob-
lem deals with 

- -

where p is the Poincaré distance given by

p(z, w) = arc cosh (1 + 2u(z, w)) with u(z, w} - 4ImzImw’ °41mzImw*

By simplicity it is convenient to write arc cosh (X/2) instead of R, defining

Let us define 
--

We shall relate c(N, m) to the hyperbolic circle problem thanks to the
following elementary result whose proof reduces to expand (a + +

(c - 
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LEMMA 2.1. Ifm is odd, = 0 and ifrrt is even, is
the number of integral solutions of a, b, c, d of

A calculation proves

where a, b, c, d are the entries of the matrix q E SL2 (Z) (see Lemma 3.8 of
[Chl] for a generalization of this fact) . On the other hand, the Hecke opera-
tor T rn can be used, roughly speaking, to pass from matrices of determinant
one to matrices of determinant m, namely

With this idea in mind, one can prove (see [Iw2] or [ChI])

LEMMA 2.2. For N, m &#x3E; 1

H(X; z,w) is automorphic as a function of z or w, so it can be analysed
with the spectral theory of The lack of regularity of H
requires some smoothing before applying the pretrace formula. These steps
were worked out in Lemma 2.3 of [Chl] (see also Proposition 2.3 of [Ch2]).
With the arguments used there, it is deduced

LEMMA 2.3. Given 0A1,~~6M and X &#x3E; 3, it holds

where a denotes the sum of positive divisor and



29

with

where an associated Legendre function (see [Gr-Ry]) and S =
arc cosh (X/2) + Ao for some Do, -0  Ao  A.

Remarks: i) Actually, the condition X &#x3E; 3 can be replaced by X &#x3E; c where
c is any constant greater than 2, but the D-constant in the error term is
unbounded when c --&#x3E; 2. The same situation occurs with the factor 3 in
the statement of Lemma 2.4 and in the results based on this lemma.

ii) Note that it holds (use 8.723.1 of [Gr-Ry] and Lemma 2.4 (c) of [Chl])

for t E R far away form zero, and g(0) G (see 8.713.2 of [Gr-
Ry]).

The Eisenstein series + it) and E. (i, 1/2 + it) are essen-
tially Epstein zeta-functions, namely

where rk (n) = #{(a, b) E Z’ : a 2+ kb2 = n}. Using standard arguments
involving an approximate functional equation of the Epstein zeta-functions
(compare with [Go] or with Theorem 4.2 of [Iv] , they can be approximated
in s = 1/2 + it by a Dirichlet polynomial of length less than Itll+E and
coefficients an « nE, then

Hence the contribution of the continuous spectrum in is
and it follows at once from Lemma 2.2 and Lemma 2.3

LEMMA 2.4. Given 0  A  1 and N &#x3E; for every e &#x3E; 0
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where

and

with g as in Lemma 2.3 taking X = N /mVk.

Remarks: i) Note that s(M) -~ 1 when M --&#x3E; oo, indeed s(M) = 1 +
o (M-1+E). .

ii) It is important to note that although Ao in Lemma 2.3 depends on X
and A, once N and A are fixed the same Ao can be chosen for every g(tj)
appearing in the summation over m in The reason of this fact
is that Ao is obtained by the mean value theorem using the monotonicity
of f (t) = H(t + N /mVk; i) and the function F(t) = is

also monotonic.

iii) In the applications, d -1 will be bounded by a power of N and
consequently calculating the supremum of EA (N, T) it is enough to consider
T less than a certain power of N because otherwise EA (N, T) is absorbed
by the other error terms. We shall implicitly use this fact in the proofs.

3. The asymptotics of C(N, M).
As we mentioned in the introduction, when N = M it is possible to get

a sharp estimate of the error term as a consequence of a similar result for
rational ellipsoids. This is the content of the following result

PROPOSITION 3.1. If N  M Vk then

holds &#x3E; 1 and does not hold for any a  1.

Remark: Note that this implies that

is the best possible up to sharpenning in the NE factor.
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Proof. By Lemma 2.1, C(N, M) is one half of the integral solutions of

but the inequalities a2 + kb2 &#x3E; c2 + k d2 &#x3E; 2 1 cd I Vk- and our hypoth-
esis N  implies that the second inequality in (3.1) is superfluous.
Moreover the values of a, b, c, d with ad - bc = 0 contribute O(N1+E), so,
up to a term of that order, C (N, M) is one half of the number of lattice
points in the ellipsoid

and when a ~ 1 the proposition follows from the classical results of Landau
[La] (see also §21 in [Fr)).

To deal with the case a = 1, it is enough to prove

By the work of Kloosterman [Kl], for infinitely many values of N, with
suitably chosen prime factors, the equation a2 + ~b2 + C2 + kd2 - N has
more than cN llplN (1 + » N log log N solutions. If ad - bc = 0 then

a = dl a’, c = dlc’, b = d2a’, d = d2c’ with gcd(a’, c’) = 1 and

hence all of the solutions excepting at most O(N~) satisfy ad - 0. 0

Now we shall state an asymptotic formula for C (N, M) when M is small
in comparison with N. Estimating the error term we shall employ sharp
average bounds for [ and but, as we shall see in the next
section, in some ranges it is possible to proceed in a better way studying
the cancellation induced by the oscillation of when m varies.

Although the bound

(uniformly for m  is only known conjecturally under Ramanujan-
Petersson conjecture IÀj(m)1 = O (me) , it is possible to prove the following
result (the same situation occurs, in a different context, in Theorem 4.3 of
[Ch 2] studying linear forms on En r(n)r(n + m))
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THEOREM 3.2. If N &#x3E; 3Mv~’k-/2, then for any e &#x3E; 0

Proof. By Lemma 2.4 it is enough to prove for some choice of A and
every T &#x3E; 1

As we remarked in Lemma 2.3

On the other hand Theorem 8.3 of [Iw2] assures

Hence, by Cauchy’s inequality, for T   2T

Using Proposition 7.2 of [Iw2] we deduce

which combined with (3.3) implies

Finally, choosing A = N-1~3, 1 (3.2) is proved. 0

4. C(N, M) and automorphic L-functions.
The growth of the Riemann zeta-function in the critical strip is closely

related to the study of the sums EmM m -it. For instance, an upper
bound of order ItlE M1/2+E for 1  M « ~ implies Lindel6f hypothesis.
In the same way, the sums
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are related to analytic properties of the automorphic (Hecke) L-function

The estimation of these L-functions (beyond convexity) is more difficult
than the one of the Riemann zeta-function because there is not an analogue
of van der Corput’s method on exponential sums after twisting with Aj (m).
H. Iwaniec and other authors have developed an amplification technique
that allows to surpass convexity arguments getting individual bounds from
average results (see [Iwl]).

After Lemma 2.2, Lemma 2.3 and the asymptotic expansion of P-1
summation over m leads in some ranges to partial sums of H(1/2 + 
let us name them as

In this way it is found a relation between the error term in the asymptotic
formula for C(N, M) and the estimation of these automorphic L-functions.

Lindel6f hypothesis in s and in spectral aspect is in this context

which suggests

The previous conjecture, as Lindel6f conjecture, is out of reach by current
methods, but there are some average results supporting it that will be useful
in our arguments, namely, from the work of W. Luo [Lu] it is deduced (apply
Theorem 1 after expanding Hq(M) using the multiplicativity of A; (m) )

ll.jl::::::.L

Note that this gives Conjecture 4.1 in average whenever MqT2 is the leading
term of the right hand side.

In the spectral analysis of C (N, M) the partial sums appear mul-

tiplied by the factor then the average result (4.1) can be only
used if we take control of the cusp forms evaluated in these special values.
The inequality G is conjectured (see (0.8) in ~Iw-Sa~, in fact it
can be understood as a stronger form of Lindel6f hypothesis) but for our
purposes it will be enough the following weaker bound
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CONJECTURE 4.2. For T &#x3E; 1 and every i &#x3E; 0

Remark: Recently N. Pitt has proved (personal communication) a Hardy-
Voronoi type summation formula implying the previous conjecture for in-
finitely many special values of z but not including z = nor z = i.

On the other hand, the best known L°°-bound for is

due to H. Iwaniec and P. Sarnak (see [Iw-Sa]), which implies (by Proposi-
tion 7.2 of [Iw2])

In order to relate and it will be convenient to use the

following result

LEMMA 4.3. Let g as in Lemma 2.4 and T  2T, then

where G is decreasing in m and

Proof. By 8.723.1 of [Gr-Ry]

It is plain that (recall that S = arc cosh (X/2) + Ao and X = 
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which substituted in (4.3) and in the definition of gives

with verifying the required properties and

Finally, Theorem 8.3 of [Iw2] proves the desired bound for E. D

Although the different level of difficulty and depth of Conjecture 4.1 and
Conjecture 4.2 (the former is an out of reach Lindel6f hypothesis and there
are partial results toward a proof of the latter) both of them imply almost
the same result in our problem.

THEOREM 4.4. For N &#x3E; 3M Vk/2 and any e &#x3E; 0 we have under Conjec-
ture 4.1

and under Conjecture 4.2

ProoL By Lemma 2.4 it is enough to prove for some 0  A  1

and

Assume firstly Conjecture 4.1, then Lemma 4.3 (after partial summation)
implies
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and by Proposition 7.2 of [Iw2]

Choosing A = N-1/3 M-1/3, (4.4) is proved.
Now, let us assume Conjecture 4.2, then by Cauchy’s inequality

for some M’  M/2.

and the second term in the parenthesis is absorbed by the other obtain-
ing (4.5). On the other hand, if T  we have as in the proof of
Theorem 3.2

which gives a better bound. 0

THEOREM 4.5. For N &#x3E; and any c &#x3E; 0 we have unconditionally

where L = min (L1, L2) with

and
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Remark: When M is very small in comparison with N this is not the
best possible result obtainable from (4.1); in fact, taking q large enough
it is possible to deduce (NM)B for 1  M  N f( 8) with 0 as close
as we wish to 2/3 (and f (0) --&#x3E; 0 as 0 ~ 2/3), but we do not consider
worthy to complicate the statement of the previous theorem covering all
the cases because in these short ranges Theorem 3.2 gives similar bounds.
For instance, when M = Theorem 4.5 could be slighty improved to

NO .759 ... using (4.1) with q = 7, but Theorem 3.2 gives in this range
L K N°~’s6....

Proof By Lemma 4.3 and Proposition 7.2 of [Iw2]

with

Using the first bound of (4.2), Cauchy’s inequality and partial summation
give

for some M’  M/2, and so it is bounded by (4.1) with q = 1 getting

Choosing A = N -6 ~23 M -fi /23 we have

Therefore by Lemma 2.4, it can be taken

On the other hand, applying H61der inequality in (4.6) with exponents
p = 4/3, p’ = 4, and using (4.2) to bound E we get
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for some M"  M/2.
Using (4.1) with q = 2

and choosing A = N -12 /41 ~ -12 /41 we get

which implies by Lemma 2.4

Some calculations prove that when the first term in (4.7) is the main term,
the bound (4.8) is better. The same situation occurs with the last term in
(4.8), hence both of them can be omitted in the final result. 0
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