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Unramified Quaternion Extensions
of Quadratic Number Fields

par FRANZ LEMMERMEYER

RÉSUMÉ. Des résultats classiques dûs à Rédei, Reichardt et Scholz
montrent que les extensions cycliques non ramifiées de degré 4
d’un corps de nombre quadratique k correspondent à certaines fac-
torisations du discriminant disc k. Dans cet article, on généralise
ces résultats aux extensions quaternionniennes non ramifiées et
galoisiennes sur Q. On montre aussi comment les construire ex-
plicitement.

ABSTRACT. Classical results of Rédei, Reichardt and Scholz show
that unramified cyclic quartic extensions of quadratic number
fields k correspond to certain factorizations of its discriminant
disc k. In this paper we extend their results to unramified quater-
nion extensions of k which are normal over Q, and show how to
construct them explicitly.

Introduction

The first mathematician who studied quaternion extensions (H8-exten-
sions for short) was Dedekind [6]; he gave Q( (2 + B/2)(3 + ...;6) ) as an
example. The question whether given quadratic or biquadratic number
fields can be embedded in a quaternion extension was extensively studied
by Rosenbliith [33], Reichardt [32], Witt [37], and Damey and Martinet [5];
see the surveys [15] and [10] for more details. Later, Fujisaki [8], Kiming
[16] and Vaughan [36] gave simple constructions of H8-extensions of Q.

In [1], Bachoc and Kwon studied H8-extensions of cyclic cubic number
fields from an arithmetic viewpoint. The corresponding problem for certain
sextic fields was dealt with by Jehanne [14] and Cassou-Nogu6s and Jehanne
[2].

Quaternion extensions of Q also played a central role in the theory of the
Galois module structure of the ring of integers of algebraic number fields
(see Martinet’s papers [27, 28]), and the Introduction of [7] for a detailed
account). As Cohn [4] showed, quaternion extensions can also be used to
explain congruences between certain binary quadratic forms.

Manuscrit reçu le 24 avril 1996.
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Since quaternion extensions of Q always ramify over their biquadratic
subfield (see Cor. 2 below), they do not occur as Hilbert class fields of
quadratic or biquadratic number fields. In order to find unramified H8-
extensions one has to look at base fields Q. Already Furtwgngler [9]
knew that such extensions exist, but it was Kisilevsky [17] who showed that
the second Hilbert 2-class field of e.g. k = ~( -30 ) is an H8-extension
of k. Hettkamp [12] found criteria for the existence of unramified H8-
extensions of certain real quadratic number fields, and finally M. Horie [13]
gave the first explicit example of such an extension. Recently, Louboutin
and Okazaki [23, 24, 25] have computed relative class numbers of quaternion
CM-extensions of Q as well as of unramified quaternion extensions of real
quadratic number fields ([26]).

In [21, 22] we have shown how to construct unramified quaternion exten-
sions of a number field k which is a quadratic extension of a field F, and
F is totally real and has odd class number in the strict sense. In this arti-
cle we will show that this construction can be carried out with completely
elementary methods as long as we restrict ourselves to quadratic number
fields.

1. Preliminaries

We begin by introducing some notation. Let k be a quadratic number
field with discriminant d. An extensions K/k is said to be unramified if
disc(K/k) = (1), i.e. if no finite primes ramify. The genus class field kgen
of k is defined as the maximal unramified extension of k which is abelian
over Q. It is known that kgen is the compositum of all unramified quadratic
extensions of k, and that kgen = Q(V/dl) Vdt where d = d1... dt
is the factorization of d into prime discriminants. Since we intend this
article to be as self contained as possible, we will give a proof for the part
of genus theory we need. First, however, we recall some basic facts from
Hilbert’s theory of ramification in Galois extensions (see, for example, [3]
for proofs). Let K/F be a finite normal extension of number fields and
put G = Gal(K/F). Moreover, let be a prime ideal in OK. Then the
stabiliser of q3,

is called the decomposition group, and its subgroup

the inertia group of The order of is equal to the ramification
index of q3 in K/F. The residue class field OK193 is a finite extension of
OF/P with Galois group isomorphic to ZT/TT; in particular, Tip is a normal
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subgroup of We will make use of the following properties of the Hilbert
sequence:

PROPOSITION 1. Let K/F be a finite norrrtal extension of number fields,
and let q3 be a prime ideal in OK lying over the prime ideal p in C~F.

(1) p splits completely in a normal subextension k/F (p E Spl(k/F)) if
and only C Gal(K/k);

(2) Let the prime ideal in Ok lying below 93; then pk is

unramified in k/F if and only if T~(K/F) g Gal(K/k);
(3) Let T(K/F) be the subgroup of Gal(K/F) generated by all the in-

ertia subgroups Tp(K/F); then the fixed field k of T(K/F) is the

maximal unramified extension of F contained in K, and k / F is

normal.

COROLLARY 1. (Chebotarev’s Monodromy Theorem) Let k be a quadratic
number field, and suppose that K/k is unrarraified and that K/Q is normal.
Then the Galois group of K/Q is generated by elements of order 2 not
contained in Gal(K/k).
Proof. Since Q does not have nontrivial unramified extensions, the group
T generated by all inertia subgroups must fix Q (by Prop. 1, part. 3.);
this shows that T = Since K/k is unramified, we have T n
Gal(K/ K) = {1}.
COROLLARY 2. If K/Q is an H8 -extension then there exists a prime
with ramification index 4. In particular, K is ramified over every quadratic
subfield of K/Q.
Proof. Since H8 cannot be generated by elements of order 2, there must
be some inertia group Tq3 of order divisible by 4. Then q3 is completely
ramified over its (quadratic) inertia subfield; in particular, P ramifies in
K/k, where k is the biquadratic subfield of K/Q.
COROLLARY 3. Let K/F be a cyclic quartic extensions with quadratic sub-
field k. Then every prime ramifying in k/F also ramifies in K/k.
Proof. Since p ramifies in k/F and K/F is cyclic of prime power degree, F
must be the inertia subfield of p in K/F.
The following result is well known (~3), 14.33):

PROPOSITION 2. Let k be a quadratic number field with discrirriinant d.
Then d can be written uniquely as a product of prime discriminants.

Finally, the next proposition contains all the genus theory we will need:

PROPOSITION 3. Let k be a quadratic number field and suppose that K/k is
an unramified quadratic extension. Then K/Q is normal, and Gal(K/k) -
(2,2).
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Proof. If K/Q is not normal, let u be the nontrivial automorphism of
k /Q. Then N = KK’ is the normal closure of K/Q, and Gal(N/Q) is a
nonabelian group of order 8 with a subgroup Gal(N/k) of type (2, 2). The
only such group is the dihedral group of order 8. Since K/k is unramified, so
are Kllk and N/k. Let F be the quadratic subfield of N /Q over which N is
cyclic, and let M be its quadratic subextension. Since N/M is unramified,,
so is M/F by Cor. 3. But then M is unramified over k and F. Since M/Q
is bicyclic, it contains three quadratic subfields, k, F, and k, say. Let p be
any prime ramified in Since M/k is unramified., p has inertia degree
2 in M/Q) hence its inertia subfield in M is k or F. But this contradicts
the fact that M/k and M/F are unramified.

2. Construction of H8-Extensions

Now let be an unramified normal extension of k with Galois group

the quaternion group of order 8 (observe that -1 denotes a central involu-
tion, i.e. an automorphism of order 2 contained in the center of the group).
We will also assume that M is normal over Q.
Our first claim is that r = Gal(M/Q) ~ D4 Cz C4 (this is the direct

product of D4 and C4 where the central involutions of D4 and C4 are
identified, also called the push-out of D4 and C4 with respect to the central
subgroups Z of order 2 in D4 and C4; see Lang’s Algebra [19], p. 81. It is the
group 16.008 in [11] and [35]). In fact, let K be the quartic subextension
of M/k; then K/k is an elementary abelian unramified extension of k,
hence contained in the genus class field of k. In particular we see that

(2,2,2); therefore r is a group of order 16 with a subgroup
of type H8 and a factor group of type (2, 2, 2). There are only two such
groups (see [11] or [35]), i.e. CZ x H8 and D4 (Bz C4. But C2 x H8 cannot
be generated by elements of order 2, therefore we must have r - D4 %z C4.
Now we put r = ~P~ ~, T ~ p 2 = ~Z = T~ = -1, [p, a] = [p,r] = =

r has seven subgroups of order 8; three of them (those containing
p) have type (2, 4), three are dihedral groups (namely O1 = (a, p7), A2 =
(7,P(j), and A3 = (pa,p7»), and one of them is the quaternion subgroup
(a, T) fixing the field k (see Table 1).
The fixed field of 0~ (1  j  3) is a quadratic number field kj with

discriminant dj. We claim that the dj are relatively prime. In fact, assume
that p is a prime ideal which ramifies in at least two of the three fields
kj = say in k1 and k2; let Tp(M/Q) denote the inertia subgroup
of r. Then Tp (M/Q) has the following properties:

(1) Tp(M/Q) has order 2: this follows from being unramified;
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(2) n ~1 = Tp (M/Q) nA2 = 111, because p cannot ramify in
Mlkj (1  j  2).

But now we see that ~1 U A contains all seven elements of order 2, hence
at least one of them must contain the element of order 2 which generates
Tp(M/Q). The same argument applied to an infinite prime yields that at
most one of the discriminants dj can be negative.

TABLE 1

Now K contains the three quadratic subfields from degree consider-
ations it is clear that we must have K = d2, d3 ). In particular,
K contains the quadratic number field with discriminant d’ = di d2 d3; we
claim that d = d’. Since K C we see that divides d (otherwise

would ramify) . On the other hand, Q(B/d) C K shows that d is the
product of some of the dZ; therefore we must have the equality d = d1d2d3.

So far we have seen: if there is an unramified quaternion extension M/A;,
then d = disc k = d1d2d3 is the product of three relatively prime discrimi-
nants at most one of which is negative.
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Next we will study the decomposition of primes in To this end,
consider a prime p dl; then pO1 = p2 for some prime ideal p in the
ring of integers C~1 of kl. Let F be the fixed field of (a); then F contains
the fixed field k of «()", r), the fixed field kl of (a, pT) and the fixed field
k23 = of (0, p). We claim that p splits in k23/~. We already
know that the inertia subgroup T = Tp(M/Q) has order 2; since the prime
ideal p above p in kl does not ramify in M/kl, we must have = {1}.
Enumerating the subgroups of order 2 in r shows that there are only the
possibilities T = (pa) and T = (-pa). But now the normaliser of T in r
equals Nr(T) _ (p, u). Since T is a normal subgroup of the decomposition
group Z = Zp (M/Q) of p, we conclude that Z C (p, o,). But this means
that the fixed field k23 of (p, a) is contained in the decomposition field for p,
i.e. p splits in 1C23~~, and we have (dzd3/p~) _ +1 for all primes PI dividing
dl. By symmetry we conclude

PROPOSITION 4. Let k be a quadratic number field with discrirrLinant d. If
there exists an unramified extension M/k with Gal(M/k) - H8 and which
is normal over Q, then

(1) 
(2) there is a factorization d = d1d2d3 of d into three discriminants

dl, d2, d3, at most one of which is negative;
(3) for all primes pj di we have (dld2/Pa) = (d2da/Pl) = (dadl/P2) =

+1.

Remark. We will call a factorization d = of d into discriminants an

H8-factorization, if the condition (d3d,/P2) = +1
is satisfied for all pj I di. It is an easy exercise to show that the quadratic
reciprocity law implies that at most one of the di is negative.

Our next task is the explicit construction of the unramified H8-extension
M/k. To this end, assume that we have already found it, and let r =
Gal(M/Q) be as above. Then K13 = is the fixed field of

(-1, pT) (we will write K13 -~ (2013l~r)); therefore M/K13 is an extension
of type (2,2) with subfields K13( d2 ) ~~ (-1), ~ = ~ (pr)
and N’ = ~ (-pr) for some E K13 . Now Q and p act on

is trivial on Q(~) and p on Q(~B/33). Since (pT)a = -pT and
(pT)P = pT, we see that No’ = N’, NP = N and NP’ = N’. In particular
we can choose v =,41.

Of course, any Jl E L can be written in the form It _ 
wVd1d3. But for the construction of the class fields it would be preferable
if 4 could be factorized into elements coming from subfields of K13. Let
us therefore put J.L = (X 1 + yl di )(x3 + + Y Vfd3 ), where the
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coefficients are rational. Since K13 ( ~w° ) = K13 ( d2 ), we conclude that
2 d2 (the symbol 2 indicates that the two sides differ only by a square

in Kr3). We find:

If we put a := x1 - then the second equation yields -a Z x3 - d3y;,
and from the first equation we get dlx2 - d3y2 I -ad2. This suggests that
in order to construct D4 EÐz C4-extensions of Q we should try to solve the
following system of diophantine equations over Z:

The same system of equations was given by M. Horie [13]; moreover,
the construction presented by Minic and Smith [29] uses three equations
which can easily be shown to be equivalent to (I)-(III). In the form of the
"common slot property" (cf. T. Smith [34], Prop. 1.1.2) of quaternion
algebras it seems to have been well known to people familiar with Brauer
groups. Now we claim

PROPOSITION 5. Let k be a quadratic number field with discriminant d, and
suppose that d = did2d3 is an H8-factorization. Then there exists an odd

squarefree a E Z such that the system (I) - (III) of diophantine equations
has nontrivial solutions in 7G. If xi, yi, zi E Z form a solution, put

where r E Z is an arbitrary nonzero integer.
Then M = Q(Vd-1, d2, d3, an H8-extension of k which is normal
over Q with Gal(M/Q) £i D4 EDZ C4. If we choose r E Z in such a way
that 1L is integral and not divisible by any rational prime p, then there
is a 2 -primary element in f ±/.t} if d1d2 == 0,1 mod 8, and in if
d1d2 == 4 mod 8.
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Existence of a. We want to show that the diophantine equations (I)-
(III) have nontrivial solutions if we choose a E Z suitably. To this end

we write di = II dl,i and d2 = II d2,i as products of prime discriminants.
We will assume without loss of generality that d2 &#x3E; 0 (otherwise we simply
exchange di and d2 - recall that at most one of the di is negative). Then we
claim that (I)-(III) are nontrivially solvable in Z if and only if the following
conditions are satisfied:

(2) (dl/a) = (d2/a) _ +1;
(3) +1 for all discriminants c!i;
(4) (d2,i/a) = for all discriminants I d2-

Before we prove this, let us show that such a E Z actually exist. If

d2 is a sum of two squares, then we can obviously choose a = 1. If not,
then we can find an odd prime a satisfying properties (1), (3) and (4) by
making use of quadratic reciprocity and Dirichlet’s theorem on primes in
arithmetic progressions (here we use that di and d2 are relatively prime).
We claim that all such primes satisfy condition (2) automatically. In fact
this is obvious for the condition on dl; since d2 was assumed to be positive,
the number of negative d2,i is even, and this implies 1 = (d2/a).
Now consider the diophantine equation (I): d, X2 -d2X22 = We

have to show that it has solutions in the reals, modulo a and modulo every
odd prime dividing d (we can neglect the prime 2 because of the product
formula). Solvability in R is clear: if (II) is solvable in R then d1  0

clearly implies a &#x3E; 0. Moreover, this condition sufhces for the solvability in
R of (I) and (II); since d2 &#x3E; 0, (III) always has real solutions. If we reduce
(I) modulo a, then we get d1Xi == since (di/a) = (d2/a) = +1,
this equation is indeed solvable. Now let p be an odd prime dividing dl;
we get mod p. The condition (d2/P) = (d3/P) shows that
solvability is equivalent to (a/p) = +1. Quadratic reciprocity shows that
this is equivalent to (p*/a) _ +1, where p* = (-1)~P-i»Zp is the unique
prime discriminant divisible by p; now condition (3) guarantees solvability.
Next assume that p d2; then we have to solve di X2 mod p.
Again, the condition (di/p) = (d3/p) reduces this to a proof of (-d/p) _
+1. If p - 1 mod 4, this is equivalent to (p/a) = +1, which holds because
of (4). If p - 3 mod 4, then (-a/p) = +1 t~ (a/p) = -1 4=*

(p*/a) = -1, and again this is true by (4). Finally let p d3; then 
mod p is clearly solvable. The equations (II) and (III) can be treated

similarly.

Computation of the Galois Group. Let K = ~( dl, d2, d3 ); then
K/k is unramified and we have Gal(K/k) - (2,2). If a, Q E K" satisfy
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an equation a = {3~2 for some ~ E KX, then we write a 2- Q. For the

computation of Gal(M/k) we need a result which was stated without proof
by Furtwängler [9]:
LEMMA 1. Let K/F be a quartic extension with Gal(K/F) - (2, 2); let a, -r
and QT denote its nontrivial automorphisms, and put M = K(JJi). Then
M/F is normal if and only if 1 for all p E Gal(K/F). If this is the
case, , write a2 (1" = aT and a2 (1’T. It is easy to see that

= for all p E Gal(K/F); define S(f.l,K/F) = 
and identify vectors which coincide upon permutation of their entries. Then

Moreover, M is cyclic over the fixed , field of ( p) if and only if a’+P = -1,
and has type (2,2) otherwise.
Proof. Let K/h be a quadratic extension and put M = for some

,o E K. Let a denote the nontrivial automorphism of Then is
normal if and only if M’ = M, and by Kummer Theory this is equivalent to
ol - J.L, Le. to J.L1-u - a~ for some au E KX. Since =

1, we see that aa = ~1.
Next suppose that is normal; a + + 

defines an automorphism of M / k whose restriction to coincides with
a. But now a2 : hence 6 has order 4 if al+° = -1
and order 2 if +1.
Now clearly M/F will be normal if and only if OP 1.. J..L for all p E

Gal(K/F), i.e. if and only if Mlki is normal for all three quadratic subex-
tensions ki of K/k. Moreover, the noncyclic groups of order 8 can be clas-
sified by their number of automorphisms of order 4: this number is 0,1, 2
or 3 if G ~ ( 2, 2, 2 ) , D4 , ( 2, 4 ) or H8 , respectively. The claims of Lemma 1
now follow.
Lemma 1 reduces the verification of H8 to a simple com-

putation ; in order to simplify the notation, put Q = 
-Y = (y1 + and 6 = (Zl + = and we find

Therefore Gal(M/k) - H8. Next we check that M/Q is normal. To this
end, let p be an extension of the nontrivial automorphism of k /Q, say
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p : for 1  i  3. Then M/Q is normal if and only of
MP = M, i.e. if 1 mod KX. A small computation shows that
jjl-p and -1.

Finally we verify that is a D4-extension for 1  i  3 (by
using Lemma 1 again); this implies that Gal(M/Q) is not isomorphic to
C2 x H8, and now Gal(M/Q) ~ D4 0~ C4 follows.

Ramification outside 200. We start with r = 1 and integral solutions
xi, y2, zi of our system of equations. Let p be a prime ideal in K lying above
an odd prime p.

Suppose first that p / d. If p ramifies in M/K, then p I /z; since M/Q
is normal, all conjugates of p also ramify, hence also divide tt, and we find
that p ~ Replacing r by r/p we see that we can find an r E Q such that
p is integral and not divisible by any prime not dividing 2d, and that the
corresponding p defines a quaternion extension M/k which is unramified
outside 2doo.

Now assume that p ~ I d is odd. Then p is unrarnified in K/k, so if p
ramifies in M/K then the ramification index ep(M/Q) must equal 4. The
inertia subfield MT of p has therefore degree 4 over Q, and all such fields
are easily seen to be V4-extensions of Q. If we assume (without loss of
generality) that p d3, then since p does not ramify in its inertia field, we
must have MT = Q( v’l4, dz ). But now M/MT is a v4-extension, so that
only primes above 2 can ramify completely. This shows that all odd p I d
are unramified in M/k.

Ramification above 2. We will assume that

is integral and not divisible by any rational prime p; moreover, we suppose
that dld2 is odd, i.e. that 2 is unramified in We have to show that

p or -it is 2-primary in K, i.e. that 2 does not ramify in at least one of
the extensions or 

Since 2 and 2 is not ramified, there is a prime ideal il above 20K
which does not divide ~c. If we can show that 1L is fl-primary, then 1.1 does
not ramify in M/K; but M/Q is normal, so if i1 does not ramify, neither
does any other prime ideal above 2, and our claim follows. It is obviously
sufficient to show that ±IL is fl-primary in Klz.

Suppose that 2 splits completely in Then 

hence p m a mod 112 for some odd integer a. But either a or -a is congruent
to 1 mod 4, hence :J:J.L == 1 mod il2 is 2-primary.
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Next assume that Q has inertia degree 2 in K12/Q. Since the norm of

p to the three quadratic subfields is either a square or d3 times a square,
these norms are 2-primary. Now we use the following
LEMMA 2. Let be a quadratic extension, and let q be a prime ideal in
Ok above 2; assume moreover that q is inert in K/k. q-primary
in Ok and q ~’ ~c then there exists an a E C~k B q such that q-primary.
Assuming the truth of the lemma for the moment, we find that it is

sufficient to show that a E ki is q-primary. But since 2 splits in we

have a - ±1 mod q2, and we are done.
Proof. [Proof of Lemma 2] We first claim that there exists a ~ E 0&#x26; B q
such that + 0 mod q, where /1’ denotes the conjugate of tL with
respect to K/k. In fact if q ,.r (/1 + /1’) then we can take = 1; assume
therefore that q ~ I (~+~c’). Since the trace is surjective in extensions of finite
fields, there exists a E OK such that ç + I’ =1 mod q. From q 2 we get
j.£ç2+tL’ç,2 = p(g + g’)2 mod q. Put v = then K(~ ) = Since

~c,u’ - r~o mod q2 for some 1}o E Ok, we find vv’ _ mod q2
for q = Ok. This implies at once that mod q in OL,
where L === &#x26;(B//~7). Put a = v + v’ + 2r~; then a E q 1 a, and
av - v(v + v’ + 2 vv’ ) _ (v + @ )2 mod q2. Therefore /1a is q-primary
in KL; but since L/k is unramified above q, this implies that ~ca is q-

primary in K.
It remains to prove our claims if 2 ramifies in To this end we

need

LEMMA 3. Let k be a quadratic number field with discriminant d = d1d2d3
and assume that M = and N = are two H8-eztensions
o f k, both constructed as in Prop. 5. In particular, they have the common
sub field K =1~ ( d1, d2, ~ ) . Then there exists a 8 E 7~ such that v 2 8¡..t.
I f, moreover, M/k and N/k are unramified outside oo, then 8 can be chosen
to be a discriminant dividing d.
Proof Let Gal(K/Q) = (2, 2, 2). If M = N, 
and there is nothing to prove. Assume therefore that MN is a quartic
extension of K and let L denote the third quadratic subfield of MN/K.
The computations after Lemma 1 showed that =~ = 

and a~ ’~ = ~3~+~ _ -1 for 1/J E ~ p, ~, T~. The proof of Lemma 1 shows
immediately that (2, 2, 2, 2), and this proves our claim that
v b 8/1 for some 8 E Z. If M/k and N/k are unraxnified outside 00, then
so is L/k, and now the last claim follows from Prop. 3.
Now let Nf = K( ) be the unramified Hs-extension of k constructed

above (i.e. p e with odd), and put N = where

v E d3 ). By Lemma 3 we know that over K we have v 2 28/1 for
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some 6 E Z. Since it is 2-primary, so is mJ.L or for every odd m E Z;
we may therefore assume without loss of generality that 6 E f ±1, ~2~.

If 4 ,.r d3 and 6 = ~1, then we are done. If d3 = 0 mod 8, then 2 or -2 is
2-primary in K, and our claims also follow. Finally, if d3 - 4 mod 8, then
one of Iv, 2vl must be 2-primary (note that -1 is 2-primary in this case).
This completes the proof of Prop. 5.

We have already remarked that the construction of the quaternion exten-
sion is much simpler when one of the discriminants is a sum of two squares:
assume for example that d2 = s2 +t2; then we can choose a =1, and z, = s,
z2 =1 and Z3 = t solve equation (III), y1 = y3 = 1 and y2 = 0 solve (II).
The following congruences help to choose the correct signs:

See Table 2 for some numerical examples.

TABLE 2

We will collect our main results in
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THEOREM 1. Let k be a quadratic number field with discriminant d. Then
the following assertions are equivalent:

(1) There exists an unramified H8-extension M/k such that M/Q is
normal;

(2) There is a factorization d = dldzd3 of d into three discriminants
which are relatively prime and which satisfy the conditions (d1d2/Pa)
= = (d3d1/P2) = +1 for all pi di.

Next we will show that this unramified H8-extension is unique if the
discriminants di are prime:

PROPOSITION 6. Let k be a quadratic number field with discriminant d =
and assume that M = K(~) and N are unramified H8 - extensions

of k with common subfield K = k (Vd-1, d2, vfd-3 ); then there exists a dis-
criminant 6 d such that N = 
Proof. This is proved exactly as Lemma 3: MN contains a subfield L such
that L/k is unram.ified of type (2,2,2) over k. Then Prop. 3 shows that
L = K( V8) for some discriminant 6 dividing d.
COROLLARY 4. Suppose that d = dld2d3 and that the di are prime discrim-

then there exists at most one o/A.inants; then there exists at most one unramified Hs-extension of k. 
impliesProof. Since the di are prime discriminants, we see Vð E K; this implies

M = N in Prop. 6.

3. Ramification at o0

Assume that d = d1d2d3 is an H8-factorization. If d has a prime factor
q - 3 mod 4, then there always exists an H8-extension of k containing K =
Q(Vd-1, Vd-3 ) which is unramified everywhere. In fact, the element
constructed in Prop. 5 is either totally positive or totally negative (since

is normal); if J.L » 0, is the sought extension, and if
p ~ 0, then we take 

If, on the other hand, d is the sum of two squares, then either every
unramified H8-extension of k is also unramified at oo, or none is. The fol-
lowing proposition tells us that this depends only on certain biquadratic
reciprocity symbols (the special case where all the di are prime discrimi-
nants such that (dildj) = -1 for i # j is due to Hettkamp [12]):
PROPOSITION 7. Let dl, d2, d3 be positive discriminants, none of which is
divisible by a prime q - 3 mod 4, and assume that d = dldzd3 is an

H8 -factorization. Then any H8-extension M/k of k = contain-

ing d2, Vd-3 ) and unramified outside oo is totally real if and only
if
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Here (dld2/da)4 = and (d/2)4 = (-1)~-~~.
Proof. Let us first assume that d - 1 mod 4. If (x, y, z) is a solution of

- - -

then x is even and yz is odd. Write d2 = a2 + b 2as a sum of squares with
2 1 b. Then the square root of p = (x dl + d2) generates
the unramified H8-extension of k if and only if p is 2-primary. But the

congruences xb - 0, b d2 - mod 4 show that A - b + x +

y mod 4. Therefore, IL is 2-primary if and only if b + x + y = 1 mod 4. This
can be achieved by replacing p by -IL; assume therefore that A is 2-primary.

Changing the sign of b does not affect the primarity of p. We are therefore
allowed to assume that b &#x3E; 0. Theno is totally positive if and only if y &#x3E; 0.

Next we compute a few residue symbols from Eq. (1). Since it implies
the congruence dZy2 mod d3, we find

Here we have used that d3 is not divisible by any prime q - 3 mod 4. In a
similar way we get

Multiplying these equation yields

Now = 1 by assumption; moreover (-1/dz)4 = (-1)b/2, On the
other hand, looking at (1) modulo y and z we get (dl/y) _ (-I/y)(d3/y)
and (di /z) = (d2/z). In order to compute (x/d2) we write x = 2~z’, where
x’ is the odd part Then (x/d2) _ (2 /d~)~ (z’ /d~) = {2/dz)~(d2/x’) and
(~~ds) _ from Eq. (1) we get (d2/x’) -
(d3/x’). Moreover, j = 1 4====~ ~ = 2 mod 4 4==~ d2d3 - 5 mod 8, hence
(2/d2)(2/d3) _ (2/dzd3) _ (-1)x2. Collecting everything gives

1 _1 1 _1 -1 _1 .. _1

Now the congruence b + ~ + y = 1 mod 4 shows that y &#x3E; 0 is equivalent to

Our claim follows since (d2d3/dl) _ +1.
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If one of the prime discriminants is divisible 8 then there are a few

complications, but the very same proof shows that the result is valid also
in this case. We may assume without loss of generality that 8 1 ~3. We
start with the equation

(where m = 1 mod 4) and put /~ = (zUfi + + B/2m), where
2m = t2 + u2 for some t - 1 mod 4; observe that xyz - 1 mod 2. Then /z
is 2-primary if and only if y - (2/di) mod 4. As above, we find

Now (~/d3) _ (d3lX) = (2m~x)~ (y~d3) _ and

(z/di) = (2/z); a routine computation modulo 16 shows that (2/x) (2/z) =
(d3d1/8m)4. This gives

As in the case d - 1 mod 4 above, this implies that a 2-primary p is totally
positive if and only if (8md1/d3)4(8md3/d1)4(dld3/8m)4 = (2/di); since
(2/d3)(d3/2) _ +1, our claim follows.

4. Unramified Dihedral Extensions

Of course, the very same methods allow us to treat unramified dihedral
extensions of quadratic number fields. In fact, the proofs in this case are
much simpler than those for quaternion extensions and are left as an exer-
cise (for complete proofs in a more general situation, see [22]). In fact, it
is easy to see that unramified extensions M/k of quadratic number fields k
which are normal over Q have Galois group D4 x C2. Using the decompo-
sition and inertia groups one finds that the existence of such an extension

implies a factorization d = disc k = dld2 ~ d3 into three (relatively prime)
discriminants such that (di/P2) = (d2/Pl) = +1 for all pi I dj (j = 1,2).
On the other hand, such a factorization implies the existence of an unrami-
fied C4-extension L of and it is easy to see that the compositum
M = kL is an unramified D4-extension of k such that Gal(M /Q) ri D4 x C2.
We find

THEOREM 2. Let k be a quadratic number field with discriminant d and
M/k an unramified D4-extension such that M/Q is normal.
Then Gal(M/Q)  D4 x C2, and there exists a "D4-factorization" d =
dld2 - d3 into discriminants di such that

(i) (1) for i ~ j, and at most one of d1 or d2 is negative;
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(ii) (di/P2) = (d2/Pl) = +1 for all primes P1 dl I d2-
Moreover, Mlk (.,fd-j ) is cyclic for j = 3 and of type (2, 2) for j = 1, 2.

If, on the other hand, k/Q is a quadratic extension with discriminant
d = disc k , and if d = dId2 . d3 is a D4-factorization, then there is an

a E k( dl ) such that M = k(Vd-1, d2, a D4-extension with the
following properties:

(1) M/k is unramified outside oo;
(2) is cyclic;
(3) M/Q is normal with Galois group D4 x C2
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