
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

KEN YAMAMURA
Maximal unramified extensions of imaginary quadratic
number fields of small conductors
Journal de Théorie des Nombres de Bordeaux, tome 9, no 2 (1997),
p. 405-448
<http://www.numdam.org/item?id=JTNB_1997__9_2_405_0>

© Université Bordeaux 1, 1997, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_1997__9_2_405_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


405-

Maximal unramified extensions of imaginary
quadratic number fields of small conductors

par KEN YAMAMURA

RÉSUMÉ. Nous déterminons la structure du groupe de Galois 
de l’extension maximale non ramifiée Kur de chaque corps quadratique
imaginaire de conducteur ~ 420 (~ 719 sous GRH). Pour tous ces corps K,
l’extension Kur coïncide avec K, ou avec le corps de classes de Hilbert de K,
ou avec le second corps de classes de Hilbert de K ou avec le troisième corps
de classes de Hilbert de K. Les bornes d’Odlyzko sur les discriminants et
les informations sur la structure des groupes de classes obtenues par l’action

du groupe de Galois sur les groupes de classes sont ici essentielles. Nous

utilisons aussi des relations sur le nombre de classes et un ordinateur pour
le calcul du nombre de classes de corps de bas degré pour obtenir le nombre
de classes de corps de degré plus élevé. Nous utilisons aussi des résultats
sur les tours de corps de classes, ainsi que notre connaissance des 2-groupes
d’ordre ~ 26 et des groupes linéaires sur des corps finis.

ABSTRACT. We determine the structures of the Galois groups Gal(Kur/K)
of the maximal unramified extensions Kur of imaginary quadratic number
fields K of conductors ~ 420 (~ 719 under the Generalized Riemann Hy-
pothesis). For all such K, Kur is K, the Hilbert class field of K, the second
Hilbert class field of K, or the third Hilbert class field of K. The use of
Odlyzko’s discriminant bounds and information on the structure of class
groups obtained by using the action of Galois groups on class groups is es-
sential. We also use class number relations and a computer for calculation
of class numbers of fields of low degrees in order to get class numbers of
fields of higher degrees. Results on class field towers and the knowledge
of the 2-groups of orders ~ 26 and linear groups over finite fields are also
used.

1. INTRODUCTION

Let K be an algebraic number field (of finite degree) and its max-

imal unramified extension. Then the Galois group Gal(Kur/ K) can be
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both finite and infinite and in general it is quite difficult to determine the
structure of this group. If .K has sufficiently small root discriminant, then
Kur = K, that is, K has no nontrivial unramified extension. This is the
case, for example, for the imaginary quadratic number fields with class
number one, the cyclotomic number fields with class number one, the real
abelian number fields of prime power conductors ~ 67 (see [57, Appen-
dix]). For some fields K with small root discriminant, we can determine
Gal(Kur/ K). The purpose of this paper is to determine the structure of

of imaginary quadratic number fields K of small conductors.
For imaginary quadratic number fields K of conductors ~ 420 (~ 719 under
the Generalized Riemann Hypothesis (GRH)) we determine 
and tabulate them for K with Kl, where Kl denotes the Hilbert
class field of K. (If Kur = Kl, then Gal(Kur/ K) = Cl(K),
the class group of K by class field theory.) For all such K, is one of

K, Kl, .K2, or K3, where K2 (resp. K3 ) is the second (resp. third) Hilbert
class field of .K. In other words, coincides with the top of the class
field tower of K and the length of the tower is at most three. If possible,
we give also simple expressions of K1 and K2. Also for K = with

723 ~ d~  1000, we tabulate except for some d.

From now on let K = Q(U2) be an imaginary quadratic number field
with discriminant d  0. J. Martinet stated in [34] that if ~d~  250,
then Kur = Kl except for 7 fields, for which he gave the structure of

(We note that H24 for K = Q( 248) in [34]
is falser) He also stated that this fact is proved by using the methods which
J. Masley [35] (and later F. J. van der Linden [50]) used for calculation of
class numbers of real abelian number fields of small conductors. They
used Odlyzko’s discriminant bounds and information on the structure of
class groups obtained by using the action of Galois groups on class groups.
In addition to their methods, we use a computer for calculation of class
numbers of fields of low degrees (we use KANT) and then use class number
relations to get class numbers of fields of higher degrees (see §3). Results
on class field towers [5, 25, 29, 31, 49] and the knowledge of the 2-groups of
orders  26 [17] and linear groups over finite fields (see §4) are also used.
We know that if 499 (jd) __ 2003 under GRH), then the degree

K~ is finite (see §2). For these d, we want to determine 
The key fact is that any unramified (finite) extension L of K has the same
root discriminant as K: rdL - ~ rdK = M. Thus, if we
have rdK  B(2N), where B(2N) denotes the lower bound for the root

1 The referee pointed out that this was corrected by Martinet in a supplement to his
paper which he distributed along with the original reprint.
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discriminants of the totally imaginary number fields of (finite) degrees &#x3E;
2N, then we get K]  N. We do not know the real values of B (2N)
(except for N - 4), however, some lower bounds for B(2N) are known.
The best known unconditional lower bounds for B(2N) can be found in
the tables due to F. Diaz y Diaz [12]. If we assume the truth of GRH,
much better lower bounds can be obtained. The best known conditional

(GRH) lower bounds are found in the unpublished tables due to A. M.
Odlyzko [38], which are copied in Martinet’s expository paper [34]. Let

Ki be the top of the class field tower of K: K = Ko 9 K, 9 K2 C ...
is the Hilbert class field of Ki), that is, I is the smallest number with
= Kl. If we cannot get Ki]  60, which implies = Ki,

from available lower bounds for B(2N), we need to judge whether Ki has
an unramified nonsolvable Galois extension and this is quite difficult. For
the fields Q( -423) and G~( -723), we have h(Ki) = 1, that is, I = 1
and we cannot get ~Kur : Kil  60 from available lower bounds for B(2N)
(even under GRH for Q(~/~723)). 420 (idl ~ 719 under GRH),
we get [Kur : Kl]  60 and our main problem is to determine the degree
[Kl : Q]. In general, it is difficult to determine [K2 : Q], because it is very
hard to calculate the class number h(Ki) of Kl. (Of course, for K with
small Cl(K), we can calculate h(Kl ) with the help of a computer.) Now
let Kg be the genus field of K, that is, the maximal unramified abelian
extension of K which is abelian over Q. If d is the discriminant of K and
d = did2 ... dt is the factorization of d into the product of fundamental
prime discriminants, then d2, ... , dt ), and we have

which implies

As K9 is a multi-quadratic number field, h(Kg) can be calculated by the
method in [51], and we may expect that [K2 : (Kg)l] is small for fields we
consider on the ground of the following proposition (§4, Proposition 2).

PROPOSITION. Let L be the Hilbert class field of the genus field Kg of an
irnaginary abelian number field K. Then for any prime number p with
p{ [L : Q], the p-class group Cl(P) (L) of L is trivial or noncyclic.

For all K with idi  1000 such that h(Kg) &#x3E; K], which is
equivalent to Kl, we have K2 = For &#x3E; 

K], h(K) must necessarily be even. Now h(K) is even if and only if d has
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(at least) two distinct prime factors, however, for most K, this inequality
holds. In fact, if a quadratic subfield # K of Kg has class number divisible
by an odd prime p, then we have ph(K)/[Kg : K~. Thus, the
following problem arises naturally:

PROBLEM. Characterize the imaginary quadratic number fields K with
K2=(K9)1 

The author expects that this problem can be settled group-theoretically
and a similar problem can be posed for real quadratic number fields. We
will discuss this problem in the Appendix 2.

For 12 fields K with ~d~  1000 for which we have verified Kur ~ 
there exists an S’4-extension M of Q such that KgM/Kg is an unramified
A4-extension, where S4 (resp. A4) denotes the symmetric (resp. alternat-
ing) group of degree four, and therefore Kur D Except
for Q(V-856) and Q(B/2013996), we can charaterize such K simply as dE d
for some quartic number field E: If the discriminant of d of K is divisi-
ble by the discriminant dE of a quartic number field E, then Kg has an
unramified A4-extension. Then the normal closure of E is an S’4-extension
of Q unramified at all finite primes over its quadratic subfield 
Since dE I d, is unramified by genus theory and therefore

is an unramified A4-extension. Also for the fields Q( -856)
and Q(B/2013996), we can find S4-extensions of Q that give their unramified
S4-extensions by composition. (For details, see §7.) Therefore, data for
quartic number fields are useful for our study. Thus, K = Q(J2) with
Idl  1000, can be classified simply as follows:

Here, by "dE d" (resp. d") we mean "d is divisible by dE for some
quartic number field" (resp. "d is never divisible by the discriminant dE for
any quartic number field" ), and in the factorization of d = d’dE, d’ denotes
a fundamental quadratic discriminant. We expect that Kur = Kl holds
for all I~ with Idl  1507, because we expect that Q ( -1507) is the first
K having an unramified nonsolvable Galois extension (see below). This

actually holds for all l~ with Idl  1000 and 1 &#x3E; 2. We also expect that
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for all fields .K with dE f d 0 -856, -996, = holds and that all

inequalities for 1 are equalties. If our expectation is true, the classification
above can be replaced by the following:

Though, there are possible exceptions, the author think that this classifi-
cation is meaningful because this is complete for Idi ~ 719 and even if an
exception would occur for Idl &#x3E; 719, modification is easy.

For most K we considered, Kur = Kl is verified. Thus, the following
natural question arises: What is the first imaginary quadratic number field
having an unramified nonsolvable Galois extension ? (What is the first K
with Kur # Ki ?) Recent data for quintic number fields [3, 44] enable us
to give a partial answer (§8, Proposition 8):

PROPOSITION. The field Q("; -1507) is the first imaginary quadratic num-
ber field having an unramified A.5 -extension which is normal over Q in the
sense that none of of discriminants d with 0 &#x3E; d &#x3E; -1507 has such

an extension.

We expect that the field Q( -1507) gives the answer to the question above.
For the determination of the structure of Gal(Kur/K), the results on

2-class field towers due to H. Kisilevsky [25], F. Lemmermeyer [29, 31], and
E. Benjamin, F. Lemmermeyer, and C. Snyder [5] are very helpful. They
give us information on the structure of the Galois group Gal(K 2 (2) of

the second Hilbert 2-class field K22~ of K over K in many cases.
Now we explain the notations in our table. In the simple expressions

of Kl and ai,,3i and Ti denote any algebraic numbers generating the
ith cubic number field of signature (1, ), the ith quartic number field of
signature (2, 1) with Galois group isomorphic to S4, and the ith quintic
number field of signature (1, 2) with Galois group isomorphic to D5, re-
spectively, where we consider that the number fields of each signature and
each type (of Galois group of normal closure) are numbered up to conju-
gacy by absolute values of discriminants. (Here we do not need to consider
nonisomorphic fields with same discriminants.)
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G denotes the Galois group Gal(Kur/ K). As usual, Cn is the cyclic
group of order n, V4 is the four group, that is, V4 - C2 = C2 x C2, Dn
(n &#x3E; 3) is the dihedral group of order 2n, Q4n (n &#x3E; 2) is the generalized
quaternion group of order 4n, and ,S’D8n (n &#x3E;_ 2) is the semi-dihedral group
of order 8n:

(m ~ 2, n &#x3E; 3) denotes the group of order 2mn given by

M2n (n &#x3E;_ 4) denotes the modular group of order 2n given by

A4 is the double cover of A4 : A4 ^--’ SL(2, 3).
For some 2-groups we use designations given in the table by M. Hall and
J. K. Senior [17]. We note that T. W. Sag and J. W. Wamsley give minimal
presentations for all 2-groups of orders 26[42]. For simplicity, for some of
them we use the following designations used in [5]. rl t denotes the group
of order 2m+t+l given by

denotes the group of order given by

We note that r~,2 = 641,3p, r~,3 = 64rsC2, r!,2 = 64r3n2, r~,3 64r 8 e.
The organization of this paper is as follows: In Section 2, we review how

to obtain an upper bound for K] by using discriminant bounds. In
Section 3, we review some results on class number relations. In Section

4, we describe the information on the structure of class groups that can
be obtained by considering the action of Galois groups on class groups.
In Section 5, we review some results on class field towers. In Section 6,
we describe how to determine for selected values of d. In
Section 7, we describe fields having an unramified extension not contained
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in (Kg) 1 - In Section 8, we describe unramified nonsolvable Galois exten-
sions of imaginary quadratic number fields. In the Appendix 1, we explain
how to calculate class numbers of S4-extensions of Q. In the Appendix 2,
we discuss the problem of characterizing quadratic number fields I~ with
KJ

Acknowledgements. The author thanks Prof. R. Schoof for useful ad-

vices [43]. He also thanks Dr. F. Lemmermeyer for information on his
results [32].

Table of imaginary quadratic number fields K = 719 with Kl
I I .. I I -- I - I - ,
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Continued (under GRH)
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Table of Gal(Ku,./K) for 723 _ ~d~  1000 (not complete)
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Continued
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Continued

Supplements. We expect that all inequalities for l in our table are equal-
ities. For this expectation we give the following supplemental data.

, , .

V4-extension L which is an S4 x C3-extension of K. If L, then

~K.~,T:L~=2,or4.
For K = Q( -916). D3 x C5- Put L = 

where denotes the maximal extension of Q( V229) unrami-
fied at all finite primes, which is an S4-extension of Q. (Cf. For K =

(~( -687), Kur = See §7. The index "w-ur" means

"weakly-unramified" . ) L is an unramified V4-extension of K2 which is an
S4 x C5-extension of K. If L, then [fur : L] = 2, or 4.

For K = Q(ý-996). Gal(K2/K) c--- D3 x C6. K2 has an unramified V4-
extension L which is an S4 x C6-extension of K. We have L] __ 32
and the odd part of Cl(L) is trivial or isomorphic to C3, or C5.
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2. UPPER BOUND FOR K]

We review here how to obtain an upper bound for ~K~ for a given
number field K by using discriminant bounds.

In this section K denotes an algebraic number field of finite degree. If
we denote by nK the degree of K, the nKth root of the absolute value of
the discriminant dK of K is called root discriminant of K and denoted by
rdK:

The following lemma is fundamental for our study.

LEMMA 1. Let L/K be a finite extension of algebraic number fields. Then
rdL = rdK if and only if L/K is unramified at all finite primes.

This can be easily proved by the transitive law of discriminants.

The following estimates for rd = rdL are known (see [39]): Uncondition-
ally we have

as n - oo, where C = 0.5772... denotes Euler’s constant, and n = nL
and ri (resp. r2) denotes the number of real (resp. imaginary) primes of
L. From this, for all imaginary quadratic number fields K = d  0

with 499, [K,,,, : K]  oo. Under GRH we have

as n - oo. From this, for all K =  0 with I dl ~ 2003,
[Kur : K]  oo.

By Lemma 1 we immediately obtain the following proposition, which
tells us how to get an upper bound for ~Kur : K].

PROPOSITION 1. Let B(n, rl, r2) (N 9 n = rl + 2r2, rl, r2 nonnegative
integers) be the lower bound for the root discriminants of algebraic number
fields F of finite degrees (&#x3E;_ n) such that ri(F)/nL = ri /n for i = 1, 2,
where rl(F) (resp. r2(F)) is the number of real (resp. imaginary) primes
of F. Suppose that K has an unramified normal extension L of degree m.
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Let H be a positive integer.
(i) If rdK  then [Kur : L]  H and
therefore h(L)  H. In particular, if rdK  B (2mnK, 2mrl (K), 2mr2(K)),
then Kur = L.
(ii) If h(L) - 1 and rdx  then

Kur = L.

We note that the number 60 in (ii) is the minimal order of the finite
nonsolvable groups, that is the order of A5, the alternating group of degree
five.

Thus, the knowledge of good lower bounds for B (n, rl, r2 ) is very im-

portant for our study. The best known unconditional lower bounds for

B(n, rl, r2) can be found in the tables due to F. Diaz y Diaz [12]. If we
assume GRH, much better lower bounds can be obtained. The best known
conditional (GRH) lower bounds are found in the unpublished tables due to
A. M. Odlyzko [38], which are copied in Martinet’s expository paper [34].

All the imaginary quadratic number fields K = Q(~), -d = 3, 4, 7, 8,11,
19,43, 67,163 satisfy the condition in (ii) for L = K. In fact by the table
in [12] we have rdK  163  B(60 - 2, 0, 60 1). Therefore none of these
fields has any nontrivial unramified extension.

Let K be an imaginary quadratic number field of small conductor. What
unramified normal extension can we take as L when we apply Proposition
1 ? Since known lower bounds for B (n, rl, r2 ) grow large as n grows large if
r2 /n is fixed, we need to take an extension L of large degree. By the reason
described in the Introduction it seems that the best choice is L = the
Hilbert class field of the genus field Kg of K except when we can easily get
an unramified extension of larger degree. In most cases we cannot conclude

= L only by (i) of Proposition 1, that is, we get only L]  H
for some H &#x3E;_ 3. Therefore we need to show h(L) = 1 by class number
calculation or using criteria for class number divisibility.

3. CLASS NUMBER RELATIONS

In this section we review some results on class number relations on nor-
mal extensions of algebraic number fields. We will use them to calculate
class numbers of fields of large degrees from class numbers of subfields.

Let L/K be a (finite) normal extension of algebraic number fields and G
its Galois group. For any subgroup H of G, we denote by 1~ the induced
character of G from the principal character of H. S. Kuroda [27] and
R. Brauer [6] proved independently the following relation among the class



418

numbers h(M), the regulators R(M), and the numbers w2(M) of roots of
unity of 2-power orders of intermediate fields M of L/K: If we have a linear
relation among 1 H

then we have the following relation

Here, LH denotes the intermediate field of L / K corresponding to H by
Galois theory.
We want to get h(L) from the knowledge of h(.K) and h(M) for inter-

mediate fields M. When an arbitrary finite group G is given, there does
not exist necessarily such a nontrivial (that is, aH 54 0 for some H) lin-
ear relation. Even if there exists a nontrivial linear relation, it is diflicult
to use (t) in this form because it contains regulators. However, in some
cases the product can be simplified into the form [EL : E]/q

H

by elementary calculations, where EL is the group of units in L, E is its
subgroup generated by E~ for some subfields M of L, and q is some power
of a prime, and moreover [EL : E] is also some power of the prime dividing
q. Such a simplified relation is often very useful for calculation of class
numbers of fields of high degrees.

Let G = ( a, b I a2n = b2 = 1, b-lab = be the dihedral group of
order 2n (n &#x3E; 2) (the four group if n = 2). Then we have the following
relation:

From this and some elementary calculations, we get the following lemmas.

LEMMA 2. (~27, 28)) Let L/K be a V4-extension of algebraic number fields
and F, M and N its three intermediate fields. Then we have the following
class number relation:

where r is the Z-rank of EK, t is the number of infinite primes ramified in
L/K, and v E 10, 11 (for the definition of v, see [28]). Moreover, the index
[EL : EFEMEN] is a nonnegative power of 2.
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The special case K = Q and L D Q( I) of this is a classical result
due to Dirichlet, which we can consider as a prototype. By this lemma we
can calculate class numbers of some fields of degree 24.

LEMMA 3. ([18, 19, 36]) Let K be an imaginary quadratic number field
or the rational number field Q, and p an odd prime number,. Let L be a

Dp-extension o f K. Let M and M’ be any two intermediate fields o f L/K
with [M : K] = [M’ : K] = p and N the unique quadratic subextension of
L/K. Then we have the f oldowzng class number relation:

where b =1 i f K = G~ and L is imaginary, and b = 2 otherwise. Moreover,
the index [EL : EMEM,EN] = pa with 0 - a - b. Furthermore, if L/N is
unramifced, then a = b -1, that is,

Let K be an imaginary quadratic number field whose p-class group is
cyclic of order p. Then the Hilbert p-class field of .K is a Dp-extension of Q.
If p = 3, or 5, by Lemma 3 we can compute its class number by calculating
the class number of its subfield of degree p. For this purpose, we use data
for cubic fields and quintic fields. Data for number fields of degrees n with
3 __ n _ 7 and small discriminant (in absolute value) are available by
anonymous ftp from megrez.math.u-bordeaux.fr (147.210.16.17).

LEMMA 4. ([9]) Let L be an imaginary D4-extension of Q. Let M and N
be the two nonisomorphic nonnormal quartic sub fi elds and K its quadratic
subfield such that L/K is cyclic. Therc we have the f ollowing class number
relation:

r ~ T""I T""I 1

Here, v = 3 if L is a CM-field and v = 2 otherwise. Moreover, the index
~EL : EMENEK] is a nonnegative power of 2.

If K is an imaginary quadratic number field with cyclic 2-class group of
order 4, then by this lemma the class number of the unique unramified
cyclic quartic extension L of K can be computed from the class numbers of
two nonnormal quartic subfields of L. In this case, L is a D4-extension of Q
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and all of its nonnormal quartic subfields have odd class number. Therefore
we have

because the exact 2-power dividing h(L) is h (2) (K)/4, where h~2~ (K) is the
2-class number of K.

4. THE ACTION OF GALOIS GROUPS ON CLASS GROUPS

The action of Galois groups on class groups can often be used to obtain
useful information on the structure of class groups.

We first review the following, often called p-rank theorem.

LEMMA 5. (See [53, Theorem 10.8]) Let L/K be a finite cyclic extension
of degree n of algebraic number fields. Let p be a prime nurriber with p f n
and assume that all fields E with K C E § L have trivial p-class group.
Then for each positive integer a, the of the p-class group of L is
a multiple of the order f of p modulo n. In particlar, if p I h(L), then
pf h(L), and if h(L)  pf, 

The following proposition gives us more information in a sense.

PROPOSITION 2. Let K be art imaginary abelian numbers field and Kg its
genus field, that is, the maxirraal unramified abelian extension of K which
is abelian over Q. Let L be the Hilbert class field of Kg. Then for any
prime number p with p f [L : Q], the p-class group Cl(p)(L) of L is trivial
or noncyclic.

Proof. We first note that both L and its Hilbert p-class field M are normal
over Q. The Galois group r = Gal(L/Q) acts by conjugation on Gal(M/L),
which is isomorphic to Cl(p)(L) by class field theory. This action induces a
group homomorphism

Now we assume that CI~P~(L) is cyclic. Then Aut(CI~P~(L)) is abelian and
therefore the kernel of p contains the derived group of r. Hence if we let F
be the field corresponding to Ker(p), F is abelian over Q and therefore F
is contained in Kg. Since Ker(p) = Gal(L/F) acts on Gal(M/L) trivially,
by the assumption p f [L : Q] = If we conclude that Gal(M/F) is factored
as
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This implies that the class number of F is divisible by IGal(Mj L)I =
and therefore I h(Kg) . Hence Cl(p)(L) must be

trivial.

Remark. As described in the Introduction, if K is an imaginary quadratic
number field, we can easily calculate the class number of K9. Thus, this
will be a powerful tool.

The group homomorphism p above often gives a useful information on
CI(l) (L) also for prime divisors l of [L : Q]. The same argument works in
more general situation. The referee pointed out that this proposition is a
special case of a result due to O. Grfn with proofs (essentially the same as
above) by L. Holzer and A. Scholz (Jaresber. DMV 44 (1934), 74-75).

Let L/K be a finite Galois extension of algebraic number fields with
Galois group r. Let p be a prime number and A the p-class group of L.
The action of r on V = induces a group homomorphism

where r is the pl-rank of A. Thus, the knowledge of the structure of linear
groups over finite fields is often useful for the study of the structure of class
groups. Later we use the following facts.

LEMMA 6. ([22, II, Satz 7.3a]) Let p be a prime and f and n positive
integers. GL(f, pn ) has a cyclic subgroup S of order pin - 1. (S is called
Singer cycle.) For any subgroups T of S whose order is not a divisor of

for any e  f , its norrrialixer in GL( f, pn) is the semi-direct product
of S with a cyclic group C of order f such that the action of one generator
of C on S is powering.

Remark. Let q be a prime number p and f the order of p modulo q.
Then any Sylow q-subgroup of GL( f, p) is a subgroup of a Singer cycle and
its normalizer in GL( f, p) has order f (pf - 1).

LEMMA 7. ([8]) Let q be a power of an odd prime and W a Sylow 2-subgroup
of GL(2, q). If q - 1 (mod 4), then W is isomorphic to C2s 1 C2, the wreath
product of C2s by C2, where 21 is the exact power of 2 dividing q - 1, while
if q - 3 (mod 4), then W is a semi-dihedral group of order 2t+2, zuhere 2t
is the exact power of 2 dividing q + 1.

Remark. By this lemma Sylow 2-subgroups of GL(2, 3) and GL(2,5) are
isomorphic to SD16 and C4 1 C2 (= 32r3e), respectively. We note that
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has three maximal subgroups isomorphic to C4, D4 Y C4, and SDls.
Here, D4 Y C4 denotes the central product of D4 and C4.

Later for an unramified Galois extension L of an imaginary quadratic
number field which is normal over Q, we consider the action of the Ga-
lois group Gal(L/Q) on the class group Cl(L) of L. Then an important
problem is to determine the image of the induced group homomorphism

Aut(Cl(L)). Thus, we prepare the following.

LEMMA 8. Let K be a quadratic number field and L its finite extension
which is normal over Q. Suppose that L/K is unramified at all finite
Prirraes. Then the Galois group of L/Q is generated by elements of order
two not contained in the Galois group of L/K. In particular, Gal(L/Q) is
isomorphic to none of the 2-groups C4, Q8, SD16, and C4 I C2.

The former assertion of this is a special case of [11, Corollary 16.31],
which is easily deduced from Cebotarev monodromy theorem. None of the
2-groups C4, Q8, SDls, and C4 62 is generated by elements of order two.
We note that if a quadratic number field has an unramified quaternionic ex-
tension which is normal over Q, then its Galois group over Q is isomorphic
to D4 Y C4 ([30]).

5. RESULTS ON CLASS FIELD TOWER

We also use results on class field tower. We review here some results.
The following is well known.

LEMMA 9. (See [49, Theorem I].) Let K be an algebraic numbers field of
finite degree and P any prime number,. If the p-class group, i.e., the p-part
of the class group of K is cyclic, then the p-class group of the Hilbert p-
class field of K is trivial. Moreover, if p = 2 and the 2-class group of K is
isomorphic to V4, then the 2-class group of the second Hilbert 2-class field,
that is, the Hilbert 2-class field of the Hilbert 2-class field, of K is trivial.

This can be easily proved by using group theory.
All fields we consider have cyclic p-class group for any odd prime p. In

fact, a noncyclic p-class group for an odd prime p first occurs as

C1(Q(B/-3299)), which is isomorphic to Cg x C3 ([7]). On the other hand,
noncyclic 2-class groups often occur as the 2-class group of (a(f ), d  0
with small But for all fields we consider, the 4-ranks of the class groups
are at most one. The first example for bigger 4-rank is d = -2379.
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In the rest of this section, we review some results on the 2-class field
towers of imaginary quadratic number fields K:

K = Ko2~ C Ki2~ c K22~ C ~ ~ ~ (Ki+i is the Hilbert 2-class field of K~2~.)

By the lemma above, if the 2-class group C1~2~ (K) of K is cyclic, then the
2-class field tower of K terminates with that is, K22~ = When

does K22~ = hold? F. Lemmermeyer [29] gave a necessary condition:
If K22~ = Ki2~, then CI(2) (K) is cyclic, or isomorphic to C2 x 1).
He also obtained sufficient criteria in terms of the factorization of d.

If C1~2~ (K) ^_-’ V4, then K32~ = K22~ by the lemma above. We know that
any nonabelian finite groups of order 2’~ with n &#x3E; 2 whose abelianization is

isomorphic to V4 is isomorphic to Q2n , or SD2,.. Thus, if (K) E£
Y4, then V4, D 2- Q2n, or SD2n, where n is determined by
2 n-2 11 h(K (2)) (and therefore n can be easily calculated, because Ki2) _
Kg). H. Kisilevsky [25] characterized the occurrence of these groups in
terms of the factorization of the discriminant d of K.

When does K32~ = K22~ hold? The complete answer has not been given
yet. However, Lemmermeyer [29] determined when / K) is meta-
cyclic. (Of course, if is metacyclic, K32 = K2 ) by Lemma
9.) He proved that if is nonabelian but metacyclic, then

C1~2~ (K) ’-’ V4, or d is of the form -4pq, where p and q are primes congru-
ent to 5 modulo 8:

(i) If (plq) = 1, then Gal(’ 2 /K) is isomorphic to the group given by

according as the norm of the fundamental unit of the real quadratic number
field is -1 or 1. Here, n is determined by 2n 11 h(Q(ýPq)) (in
both cases), and m is determined by 11 In [5],
these groups are denoted by MC,~ and respectively. We use these
notations in the Appendix 2.
(ii) If (p~q) _ -1, then M2m+2, where m is determined by

11 h(K). Note that the presentation of Gal(K 2 (2) IK) given in [29] is
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and that if we put T = then T2 = 1 and = a 27n+l .

Recently E. Benjamin, F. Lemmermeyer, and C. Snyder characterized
K whose 2-class fields have cyclic 2-class group [5]. They proved that

Gal(K 2 (2) is nonmetacyclic and its derived group is cyclic, if and only
if d is of one of the following forms: d = -4Pp’, where p and p’ are primes
with p - 1, p’ - 5 (mod 8) and (p/p’) = 1, (p/p’)4(p’/p)4 = -1; d =
-rpp’, where -r is a negative discriminant # -4, and p and p’ are positive
prime discriminants with (plp’) = (r/p) = 1 and (r/p’) _ =

-1. Moreover, / K) is isomorphic to r:n,t or according as
d = -4pp’ (in this case 2t = h~2~(Q( -4p)), or d = -rpp’ (in this case
2t = h,~2~(Q( -rp)), and in both cases 2m = h (2) (K)/2.

6. DETERMINATION OF 

In this section, we determine Our procedure for each K =
is as follows:

(1) We take a normal unramified extension L of K of large degree for which
we can obtain an upper bound for L] less than 60 by discriminant
bounds (unconditional for idi ~ 420 and conditional for idl &#x3E; 420).
(2) We show h(L) = 1 and conclude = L by Proposition 1. (For fields
with cyclic class group of odd order prime to 15, we can conclude = K,
from [Kur : Ki]  168 (see below).)
(3) We determine the structure of (This is not difficult for
most fields.)

As described in §2, for most K, we take L = (Kg),. The exceptional
cases are the following two cases:
(El) d is divisible by the discriminant dE of a quartic number field E and
the quotient d/dE is a fundamental quadratic discriminant or 1. In this case
the normal closure M of E is an unramified A4-extension of the quadratic
number field Q(J5) and the composite field KM is not contained in

This case is divided into the following three subcases:
(a) d = dE = -p, where p is a prime - 3 (mod 4): d = -283, -331, -491,

-563, -643, -751. In this case, K has an unramified A4-extension, which
yields a quaternionic extension of Ki = (Kg), by composition.
(b) d = dE is a composite: d = -731 = 17. (-43). In this case, K has
an unramified A4-extension, which yields a V4-extension of Kl = by
composition.
(c) d = d’dE, where d’ is a fundamental quadratic prime discriminant:
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d = -687 = (-3) . 229, d = -771 = (-3) ~ 257, d = -916 = (-4)’ 229. In
this case, K has an unramified S4-extension, which yields a V4-extension
of (Kg), by composition.
(E2) Though K does not satisfy the condition in (El), we can check that
K has an unramified S4-extension: d = -856, -996.

These exceptional cases will be treated in the next section. In the rest
of this section, we treat the other fields. Let L = Then we will show

K
We can treat fields with same class group similarly. (Of course, for some

fields, additional consideration is needed.) None of K with h(K) = 1 has
any nontrivial unramified extension. For the fields K with h(K) = 2, we
have determined in [58].
We first treat fields with odd class number &#x3E; 3. Note that Kg =

K if and only if h(K) is odd. We note that except for fields listed in

(a) no fields with odd class number appear in our table as fields with
1 ~ 2. For all K with odd class number and idl  1000 except for d =

-787, -827, -859, -883, -947, -967, -971, -991, we get Ki]  60

by discriminant bounds. Therefore our task is to prove h(Ki) = 1. We
have the following.

PROPOSITION 3. Let K be an imaginary quadratic number field with cyclic
class group of odd order n, &#x3E; 7. Assume that for all intermediate fields
E of K,IK, we have El = Kl. Then if h(Kl) &#x3E; 1 (this is equivalent to
K2 ~ Kl), we have 26 = 64. (This is valid also for real quadratic
number fields. In the case where K is imaginary and h(K) is a prime (&#x3E;_ 7),

64 can be improved to 132 = 169. See the remark after
the proof.)

Proof. Let 1 be a prime factor of h(K) = n. Then by the assumption
there exists a subextension E of Kl/K such that h(E) = l and El = Kl.
Therefore l ~ h(Kl) by Lemma 9.

Let p be a prime factor of h(Kl) and r the p-rank of the p-class group
of Kl. We will show p’’ &#x3E;__ 26 = 64. Since by Lemma 5 and Proposition 2
we have r &#x3E; 2 and 1 (mod n), it suffices to eliminate the following
four possibilities: (a) p = 2, r = 3 if n = 7; (b) p = 2, r = 4 if n = 15; (c)
p = 2, r = 5 if n = 31; (d) p = 3, r = 3 if n = 13. Note that for all these
possibilities, r is the order of p mod n.

Put r = Dn and A = Cn. The action of r
on F~ induces a group homomorphism



426

If A n {1}, then we would have I h(F) for the field F corres-
ponding to A n Ker(p), which contradicts the assumption. (Cf. the proof
of Proposition 2.) Therefore A n Ker(p) _ {1} and p(A) = A ££ Cn. Since
Im(p) is a factor group of F ££ Dn, Dn. Since A is a normal

subgroup of r, Im(p) is contained in the normalizer N of p(A) in GL(r, p) .
Therefore N must have a subgroup of isomorphic to D~,.

Assume that n is a prime and that r is the order of p mod n. Then p(A)
is a subgroup of a Singer cycle of GL(r, p) satisfying the condition of Lemma
6. Therefore N ^--’ Cpr-l x Cr. Since N has a subgorup of isomorphic to

r must be even. This eliminates the posiibilities (a), (c), and (d).
We know GL(4,2) = PSL(4,2) ~ A8 [22, II, Satz 6.14, (5)]. Since this

group does not have a subgroup isomorphic to D15, and
n = 15. This completes the proof.

Remark. Regrettably the same argument does not work for h(K) = 5:
The Singer cycles of GL(4,2) ~ A8 have a subgroup isomorphic to Ds.
However, the class number relation (Lemma 3) enables us to compute h(Kl)
by calculating class numbers of quintic subfields of Kl. For all K with

h(K) = 5 (all such K have discriminant ~ 2683 [2, 52]), we have h(Kl) = 1
and therefore K2 = Kl. We note that we can find in [20] the class numbers
of the unramified cyclic quintic extensions F of K with 5 1 h(K) and
~d~  1000. For all such K, h(F) = h(K)/5. By Lemma 3 we can check
that for all K with 3 1 h(K) and idl  1000 except for d listed in (a),
we have h(F) = h(K)/3, where F is the unique unramified cyclic cubic
extension of K.

F. Hajir checked the parities of h(Kl) of K with Cq (q an odd
prime 19) and Idi  15000 by using elliptic units [16]: For all such K

except for d = -283 (q = 3), -331 (q = 3), -643 (q = 3), and -14947
(q = 17), h(Kl) is odd (28 = 256 1 h(Kl) for d = -14947). All K with

h(K) = 7 have discriminant 5923 [2, 52] and therefore h(Ki) is odd for
all such K. By this reason in the case where (K is imaginary and) h(K) = q
(q an odd prime &#x3E;_ 7), 64 can be improved to h(Kl) &#x3E;_ 132 = 169.
(Note that GL(2,13) has a subgroup isomorphic to D7.) Moreover, in the
case where h,(K) &#x3E;_ 11 and 21,63, 64 can be improved to
h(Kl) &#x3E;_ 2$ = 256 (without assuming the imaginarity of K.) (Note that
GL(8,2) has a subgroup isomorphic to D17.)

Suppose Cn, where n is an odd integer prime to 15. The
estimate 169 under the assumption h(Kl) &#x3E; 1 is important. By
this, if [fur :  168, then we can conclude = Kl under the
assumption that K does not have an unramified A5-extension which is
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normal over Q. (Though there exist (probably infinitely) many imaginary
quadratic number fields with cyclic class group of odd order prime to 15
having such an extension, the maximal discriminant of such fields is -2083.
(h(Q( -2083) = 7. See §8.)) For this conclusion, we need only to show
that Kl does not have an unramified A5-extension. (Note that the second
minimal order of nonabelian simple groups is 168.) Suppose that Kl has
such an extension M. Then the Galois group Gal(M/K) is an extension
of A5 by C~,. Since any such extension is the direct product A5 x Cn, K
has an unramified A5-extension and this extension must be normal over Q,
for otherwise its normal closure has degree 2 ~ 60z = 7200. This contradicts
the assumption. Thus, [Kur : Kl~  168 implies Kur = Kl. For K =

Q(~/Il827), Q( -859), Q( -967), Q(~/~991), we do not get Ki 
60 but get  168 by Odlyzko’s (conditional) discriminant bounds
and therefore = Kl (under GRH).
Now we treat fields K with even class number. For such K, K.

First we calculate h(Kg ) . We have two cases:

The equality h(Kg) = K] is equivalent to = Ki.
(This holds trivially in the case of odd class number.) If Kur = Kl, then
we have = Kl. We expect the converse, that is, if (Kg), = Kl, then
Kur = Kl holds for fields considered. In fact, we can show this for most
K.

We first treat fields with nontrivial cyclic 2-class group. For such K, its
discriminant d is the product of two prime discriminants: d = dld2 and
Kg = Q(,/d-,, Since h(K9) but h(K) I h(Kg) by Lemma 9,
we have h(Kg) = by Lemma 2. (Note that
since d1 and d2 are prime discriminants, both and 
are odd. More precisely, we have

_ , F "r , , - - . F F , , r F .

where Cl(K) x Cl(K) but CI(K)2 = E CI(K)1, be-
cause the odd part of the class group of a biquadratic bicyclic number
field is isomorphic to the direct product of those of its quadratic subfields
(see [28]). Hence in this case = h(K)/[Kg : K] is equivalent to
h(Q( dl)) = = 1. We take d2 as d2 &#x3E; 0. How often does

= 1 occur? H. Cohen and H. W. Lenstra, Jr. [10] posed heuris-
tic conjectures (the so-called Cohen-Lenstra heuristics) on the distribution
of class groups of algebraic number fields. Their conjectures state that the
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probability that a real quadratic number field with prime discriminant has
class number one is about 0.75446 and this has been numerically supported
by A. G. Stephens and H. C. Williams [48]. The first two discriminants of
real quadratic number fields with prime discriminant and class number &#x3E; 1
are 229 and 257. These are also discriminants of quartic number fields! The
Cohen-Lenstra heuristics state also that the probability that an imaginary
quadratic number field has class group whose odd part is cyclic is about
0.97757. Thus, for simplicity, we consider here fields with = 1

and Cn (n an odd integer). Then h(Kg) = K]
is equivalent to n = 1. When n = 1, under some condition by considering
Galois action as in Proposition 3, we get an estimate for h(Ki). When
~ &#x3E; 1, we can easily determine the structure of We first

give an estimate for h(Kl) if n = 1 and then determine Gal((Kg)l/K) if
n&#x3E;1.

PROPOSITION 4. Let K be an irraaginary quadratic number field with non-
trivial cyclic 2-class group.
(i) Assume C2m (m &#x3E;_ 3) and that the unique unrarraified cyclic
quartic extension E of K has class number 2m-2. (The latter assumption
irnplies h(Kg) = h(K)/2.) If h(Kl) &#x3E; 1, then we have 72 = 49.

(ii) Assume h(K) = 2q (q an odd 7) and h(Kg) = q (= h(K)/2).
If h(Kl) &#x3E; 1, then we have h(Kl) __&#x3E; 26 = 64.
(These are valid also for real quadratic number fields if Kg is the unique
unramified quadratic extension of K.)

Proof. We give only a sketch.
(i) Put r = Gal(Ki /Q). Then r = D2-. By Lemmas 7 and 8 any group
homomorphisms F - GL(2,3) and F - GL(2,5) have image of order at
most eight and this implies that neither C~ nor C5
can occur by the assumption. (Cf. the proof of Proposition 2. Note that
the Sylow 2-subgroups of GL(2, 7) are isomorphic to SD32 and they have
a subgroup isomorphic to D8.) Hence we get the conclusion.
(ii) Put F = Q( 04). Then D9. Thus, the same argument
as in the proof of Proposition 3 works.

Remark. Note that when K has an unramified cyclic quartic extension
E, we can calculate h(E) by using Lemma 4. The fields with Cl(K) ’-’
C2m (m &#x3E;_ 2) and  1000 are divided into two types: fields K with

h(E) = 2 m-2 and fields K with = 2’n-lq (q an odd prime). For
most of the fields of the former type, we can easily check = Kl by
using the proposition above. For the fields of the latter type, we can check
Kur = Then we consider the Galois group.



429

Also when K has an unramified cyclic octic extension F, we can cal-
culate h(F) by using Lemma 2, however we must calculate the factor-
ization of a rational prime in its nonnormal quartic subfield and find a
suitable generator of a prime factor. (For the construction of F, see [54].)
For example, let K = Q( -904). Then C8. First we calcu-
late the class number of the unique unramified cyclic quartic extension
E of K. Its nonisomorphic nonnormal subfields are Q( 9 + 4 2) and
Q( (9 + ~/113)/2). Both of them have class number one and therefore

h(E) = 2. Put a = 9 + 4~ and N = Q(a). Then Kl is a V4-extension
of N. To obtain h(Ki ) , we calculate the class number of an intermediate
field (~ E) of KIlN. By using KANT we get the factorization of the ra-
tional prime 113 in the ring of integers of N and calculate a generator of
each prime factor. Then as such an intermediate field we can take 
where Q = 104 + 48H - (235 + 108ý-2)a. KANT gives h(N(~)) = 1
and therefore h(Ki) = 1 by Lemma 2.

PROPOSITION 5. Let K be an imaginary quadratic nurraber field with cyclic
class group of order 2’"’~ (m ~ 2). Assume that the class group of its genus
field Kg is cyclic of order 2"°-ln, where n is an odd integer 3. Then the
Galois group of the Hilbert class field L of Kg over K is isomorphic to ’n

In2-.

Proof. In this case, L is a cyclic extension of Kl of degree n and therefore
Gal(L/K) is isomorphic to a semi-direct product of Cn by C2m. Thus, it
suffices to show that for each prime factor p of n, the action of 
C2m on the Sylow p-subgroup of Gal(L/Kl ), which is isomorphic to

Cq, is given by inversion, that is, 
where F is the Hilbert p-class field of Kg and q = [F : Kg]. Since

C2m, we can present it as

for some i with q t i. By the assumption a2 must
commute with b and therefore i = Since Gal(KiFIK) is nonabelian,
i = -1, that is, 

Remark.. All K with C4 satisfy h(Kl) = 1 or = 2q (q an
odd prime). (S. Arno [1] verified that the known list of imaginary quadratic
number fields with class number four is complete. Therefore we can easily
check this.) Note that Q4q-
Now we consider fields K = with 2 11 h(K), h((a( d2)) = 1

and Cn (n an odd integer 3), where F = For such K,
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Cloaa (K) x Cn, where Clodd(K) is the odd part of Cl(K) and
Gal(Fl/Q) ’-’ D~,. Hence Gal(KFl/K) x

Dn x Cloaa (K). Thus, groups of this form occur as G.
For the other fields, the 2-rank of the 2-class group is larger than or equal

to 2, and the length of the 2-class field tower often becomes two. Therefore
an important problem is to determine the Galois group For
this purpose we do not have sufficient knowledge of the 2-class field tower.
In fact, we cannot get the structure of for K = Q( -660)
and K = Q( -840) without additional consideration. For some fields

many computer calculations of class numbers are needed. In the rest of this
section, we will describe details for selected values of d. For simplicity, we
denote by B(2N) the lower bound for the root discriminants of the totally
imaginary number fields of (finite) degrees &#x3E; 2N instead of B(2N, 0, N).

d = -420. J. Martinet writes in [34] that R. Schoof communicated to
him an unconditional proof for ~Kur : Q] = 64, but that proof is not given
there. The author was informed by Schoof with a complete proof that there
had been a gap in the proof he had communicated to Martinet and that
this gap was filled by F. Lemmermeyer a few years ago [43]. Recently in
[31] he gives an unconditional proof for [Ku,. : Q] = 64. He also determines
the structure of for some fields K with CI(K) c--- C2 from
which we get rl - 32T4c3 for K = Q(ý-420), where 1~
is the designation used in [31] denoting the group of order 21+4 given by

We can give another proof for 32F4c3, but we do not give
it here because the situation is similar to the case K = Q(B/2013840).

d = -660. F. Lemmermeyer told the author the structure of Gal( Kur / K)
and sketch of his proof [32]. We give here another more computational
proof.
We have C2, Kl = Q(B/~l, B/~3, B/~U, B/5), and h(K1) = 8.

We will show = K2. Since rdK = 660 = 25.6904 ... and rdK  B (2 ~
8.8.4) ([38]), we have K2~ _ 3. By Proposition 2, h(K2) ~ 3. Before
proving h(K2) i- 2, we determine the structure of Cl(Kl) and Gal(K2/K).
We first show that C4 x C2. We have 

C8 x C2. Therefore Cl(Kl) contains an element of order at least four. Hence
the 2-rank of Cl(Kl ) is at most two, that is, C8 or C4 x C2.
Assume C8. Put G = Gal(K2/K). Then G is a group of order
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64 such that

Therefore G belongs to the family r8 or Fig. We note that any quadratic
subextensions of Kl /K has class number eight or sixteen. In fact, we have

Therefore G does not have an abelian subgroup of index two. Hence G must
be isomorphic to 64r,gal or 64riga2. Now we put Hl = 

-55)). Then Hl is a group of order 32 such that

Therefore H, is isomorphic to 32r2il, 32r2j2, or 32r2k. However, neither
64ri90i nor 64riga2 has a subgroup isomorphic to any one of these groups.
This is a contradiction. Hence C4 x C2.

Next, we determine G = Gal(K2/K). G is a group of order 64 such that

Therefore G belongs to the family rl4, rl5, f16, or r24 - Since G has a

subgroup isomorphic to 32f2jl, 32f2j2, or 32r2k, G belongs to the family
r15.

In order to know subgroups of G of order 32, we determine three such
groups Hl, H2 = and H3 = Gal(K2/Q( 11,
v/1-5)).

First, we determine Hl exactly. For this, we determine the class groups
of the three intermediate fields of Kl = v/"--3, V5-, ~/~lI)/Q(B/3,
V~55), that is, of Q ( 1 , 3, B/~55), 5, 11), and V5,
B/201311). We can execute this by computer. We have



432

Thus, Hl contains two subgroups isomorphic to C8 x C2 and one subgroup
isomorphic to C4 x V4. Hence 32r2 jl .

Next, we determine H2. For this, we calculate the class groups of some
quadratic subextensions of B/201333), that is, of Q( 3 + 2~,
~/-33). (Note that the Hilbert class field of Q( -55) is

(a( -11, B/3 + 2B/5) = (~( -11, 3 - 2~).) By computer calculation
we have

Therefore H2 contains two subgroups isomorphic to C4 and one subgroup
isomorphic to C4 x v4. Since H2 is a group of order 32 such that

we have H2 Ef 32r2 f .

Thus, G contains a subgroup isomorphic to 32r2 j 1 and one isomorphic
to 32r2 f , and therefore G ^--’ 64r 15 f 1 or 64ris/2.

Now, we determine H3. H3 is a group of order 32 such that

Since H3 is a subgroup of 64F15 fi or 64F15 f2, 32F4bi or 32r4b2,
according as G = 64F15 fi or 64F15 f2. To judge the structure of H3, we
consider its maximal subgroups. Among the seven maximal subgroups of
32F4bi (resp. 32r4b2), three are (isomorphic to) 16F2ai , two are 16F2ci ,
and one is 16F2ci (resp. one is 16r2a2, two are 16F2ci, and three are
16F2c2). They correspond to the quadratic subextensions of

~2/Q(B/~Tl, B/15), that 

Q(~,~, -11), Q(~/(3T~H)72, 15), Q(~/-(3±~~Tl)/2, 
(Note that the Hilbert class field of Q( -55) can be expressed as

Q(J5, B/(3 ± -11)/2) = Q(J5, B/-(3±~U)/2).) By computer cal-
culation we have

Cl(Q(B/(3±V~Il)/2, Cl(Q( -(3 ~ -11)/2, C4 x C2.

Noting that both of the abelianizations of 16F2 ai and 16F2 a2 (resp. l6f2cl
and 16F2c2) are isomorphic to Cfl (resp. C4 x C2), we conclude that H3
contains at least four subgroups isomorphic to l6r2Cl or 16r2c2. Therefore

32F4b2. Hence G ££ 64F15 f2.
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Now we prove h(K2) # 2. Assume h(K2) = 2. If we denote by r the
Galois group ~, v~--5-5)). Then F is a group of order
32 such that

Therefore r is isomorphic to 32r2jl, 32r2j2, or 32r2k. All of these groups
have only abelian maximal subgroups. This contradicts that the maximal
subgroup Gal(K3/Kl) of r is nonabelian. Hence 2. Thus, =

K2.
d = -759. We have Cl(K) ’- C12 x C2, Kg = Q(B/~3,V~TT,B/~23),

and = 18. Put L = We will show = L. Since rdK =

759 = 27.5499 ... and rdK  B(2.4.18.5) ([38]), we have LJ _ 4.
We will show h(L) = 1.

First we show 3. Put F = Q( 23). Then h(F) = 3 and
L = K,Fl. Since Ki2) /KF is cyclic (quartic), is cyclic and
therefore L / Ki3) Fl is cyclic. Hence if the class number of the inter-

mediate field of is not divisible by 3, then the 3-
rank of Cl(L) is a multiple of 2 by Lemma 5 and then we can conclude

3. In order to show 3 t it suffices to show 3 1/
h(KgKi3»). So we calculate h(KgKi3»). For this we calculate the class

numbers of the intermediate fields Ki3) F, (V/--3), K(3) ( -11) of the
Y4-extension Ki3) F IF is a D3-extension and its quadratic
subextension is KF = (~( -23, 33). We have h(KF) = 36. We calcu-
late the class number of a cubic subextension F(a94) of where

a3 - a94 + 6a94 - 3 = 0. Put A = a94 + 23. Then F(a94) = Q(A) and
A6 - 2,B5 +82,B4 -110,B3 + 1676A~ - 956A~ + 7047 = 0. The function ’polred’
of pari-gp gives a simpler generating polynomial: Q(a) = Q(8), where
86 - 3(}5 + (}4 + 303 _ 1102 + 90 + 27 = 0. Then KANT gives h(Q(0)) = 3.
Hence by Lemma 3 we get h(Ki3) F) = 12 and therefore C12.
Similarly we get = h(Ki3)(ý-ll)) = 4. Thus, by Lemma 4
we conclude that h(KgKi3») is 3 up to a 2-power. Hence h(L) ~ 3.

Next, we show 2 t h(L). Assume that 2 Since C12
and is cyclic quartic, by Lemma 9 we have 2 f h(Kl). Therefore
since L/Kl is cyclic cubic, Cl(L) ££ V4 by Lemma 6. Now we consider the
action of Gal(KFl/K) x C12 = D3 x C12 on Cl(L). This

induces a group homomorphism
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Obviously 3 ~ [ ~Ker(p)~ and therefore Gal(L/Ki) or acts triv-

ially on Cl(L). Hence 4 h(Kl) or 4 ~ We already see 2 f h(Kl).
Thus we calculate h(KFl). KFl/K is a D3-extension and K(al) is its
cubic subextension. As above, we get h(K(al)) = 24 and h(KFI ) = 12 by
Lemma 3. Since is cyclic quartic, 2 f by Lemma 9.
This is a contradiction. Hence h(L) = 1. Thus, Kur = L.

d = -840. We have C), Kl = Q(ý=2,ý’=3,yI5,yI=7), and
h(Ki) = 4. We will show Kur = K2. Since rdK = 840 = 28.9827... and
rdK  B(2 ~ 8 ~ 4’ 11) ([38]), we have K2]  16. We first show that

h(K2) is odd. Since Cl(Q(B/5,v~42)) ~ C4, we have V4. Hence
by Lemma 9, the 2-class group of K2 is cyclic. Assume that h(K2) is even.
Let M be the unique quadratic subextension of K3/K2. Then obviously
M is normal over K. We put A = Gal(M/K). Then A is a group of order
64 such that

However, any group of order 64 has abelian derived group (see [17]). This
is a contradiction. Thus, h(K2) is odd and therefore Cl(K2) is trivial or

C~ by Proposition 2. (Note that K9 = Kl in this case.)
Assume C~. Put F = Gal(K2/Q). The action of F on Cl(K2)

induces a group homomorphism

By Lemma 8 the image of p is isomorphic to D4, because if 4,
then p has an abelian image and the same argument as in the proof of
Proposition 2 shows that h(Kl) must be divisible by 9. Let F be the field
corresponding to Ker(p). Then F is normal over Q and Gal(F/Q) ~ D4.
Let E be the quadratic subfield of F such that F/E is cyclic and E’ the
intermediate field of F/E. If E’/E is ramified, then F/E is totally ramified.
Therefore E’/E must be unramified because all the inertia groups of primes
of F have order at most two. We take the quadratic subfield of Kl
such that the primes ramified in this field coincide with those ramified in F.
Then is unramified at all finite primes. Thus, if Q(J7)
is contained in F, then F/E’ is unramified at all finite primes, but this is
impossible, because any quadratic subfield of Kl has narrow class group of
exponent at most two. Hence F( d’) is a D4 x C2-extension of Q. Then
F(J7) /E’ is a V4-extension. Let F’ be the third quadratic subextension
of it. Then F’ is a D4-extension of Q. There exists a prime p that is
ramified in F/Q but not ramified in E’/Q. Then the prime divisors of p
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in E’ must be ramified in both F/E’ and F’/E’. Since 
is unramified, these divisors are ramified also in E’( d’)/E’. Thus, the
inertia group of any prime divisor of p in F(J7) is isomorphic to V4. This
is a contradiction. Hence Cl(K2) is trivial and = K2.
Now we determine G = Gal(K2/K). G is a group of order 32 such that

There are 9 (nonisomorphic) such groups, which belong to the family r4
(see [17]). Among them, the groups having an abelian subgroup isomorphic
to C4 (note that -42)) = C4) are 32r4a2, 32r4a3, 32r4c2,
32r4c3, and 32r4d. Let N be any quadratic subextension of Kl/K other
than Q( J5, vf--42), that is, any of the fields Q(V/’--2, 105), 70),
, 30), Q(ý’6, V~35), Q( -10, -B/-2-1), and Q(ýÍ4, B/~15), and put
H = Gal(K2/N). We have Cl(N) ~ C4 x C2. Hence H is a group of order
16 such that

-- . --, - __6 -

Therefore H is isomorphic to l6r2Cl, 16f2c2, or 16r2d. Thus, G is isomor-
phic to 32r4c3, or 32r4d, according as G has a quotient group isomorphic
to 16r2a2(= Qs x C2), or not. (All these arguments work also for K =
Q( -420). We have h(Q( -420)1) = 4 and 
C4.) If K has an unramified Q8-extension, then the composite field of it
with Kl is a Q8 x C2-extension of K. Since 32r4c3 does not have two nor-
mal subgroups with quotient isomorphic to Q8 x C2 , we need only to judge
whether K has an unramified Q8-extension which is normal over Q. F.

Lemmermeyer gives a criterion for this [30]. By his result K does not have
such an extension. Hence G ~ 32r4d. (Since Q( -420) has an unrami-
fied Q8-extension which is normal over Q, Gal(Q(~/-420)~/Q(~/-420)) ~
32r4c3.)

d = -920. We have CI(K) c-t-’ Cio x C2, Kg = v’5, v/’--23), and
h(Kg) = 60. Put L = We will show Kur = L. Since rdK =

920 = 30.3315 ... and rdK  B(2.4.60.4) ([38]), we have L]  4.

Since V4, the 2-class field tower of K terminates with W(2) and
therefore 2 f h(K22~). Since K1K22~~K22~ is cyclic quintic, 2 f h(K,K (2)
by Lemma 5 and since is cyclic cubic, 2 f h(L) by Lemma 5
again.

Next, we show 3 t h(L). Put F = Q( v’5, -46). This is one of the

intermediate fields of We have C4o. Hence is
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cyclic octic and therefore also W(2) (a,)/F(al) is cyclic octic. Note that

h(Q( 23)) = 3 and Q( 23)1 = (a( -23, al), where a 3 - al - 1 = 0
and that (K9)13~ = K9(al). Therefore 3 f h((K9)13~) by Lemma 9 and then
3 f h(K2 (2) (a,)) by Lemma 5. Since is cyclic quintic, 3 ~’ h(L)
by Lemma 5. Hence h(L) = 1 and therefore Ku,. = L = K2.
We easily check that x 

By the result of H. Kisilevsky [25], we have Q16. Therefore
Cs) X Cs.

Finally, we note that the maximal unramified extension of Q( -920)
has degree 480 and is the field with class number one of the largest degree
we know (under GRH). (J. Martinet gave an example of a field with class
number one and degree 116 [33]. (This is an unconditional result.))

7. QUADRATIC NUMBER FIELDS HAVING AN
UNRAMIFIED EXTENSION NOT CONTAINED IN 

We explain here that from some quartic number fields of type S4 we
can obtain quadratic number fields whose genus fields have an unramified
A4-extension.

First, we review the following general fact.

PROPOSITION 6. ([26]. See also [56].) Let E be an algebraic number field
of degree n &#x3E;_ 3. If the discriminant. dE of E is a fundamental quadratic
discriminants, that is, a discrirrainant of a quadratic number field, then the
normal closure M of E is an Sn-extension of Q and is unramified at all
finite primes over its quadratic subfield Q( vIdE).

From this, any number field E of degree n _&#x3E; 3 whose discriminant is
fundamental quadratic yields a quadratic number field Q (J5) having an
unramified An-extension. (If dE &#x3E; 0 and E is not totally real, then the
infinite primes are ramified.) Moreover, E yields infinitely many quadratic
number fields having an unramified Sn-extension. In fact, for any quadratic
number field with dK = dEd’, where d’ is a fundamental qua-
dratic discriminant, the composite field KM is an unramified Sn-extension
of K. (The unramifiedness of KQ(J5) /K follows by genus theory.) In
this case, since KM and K9 are linearly disjoint over KQ(J5), Kg has
an unramified An-extension. (This is the case also when K = 
Therefore, if n &#x3E; 4, then KgM is an unramified extension not contained
in In particular, if n = 4, then the (narrow) class field tower of the
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field has length at least two and the (narrow) class field tower of
K has length at least three if d # dE.
Now we describe the field K = Q( -687). The factorization of -687 is

-687 = (-3) . 229 and 229 is the first prime discriminant of totally imagi-
nary quartic number fields. Let E be a quartic number field with discrimi-
nant 229 (there exists only one such field up to isomorphism [14]) and M its
normal closure. Then by the proposition above, M is an S4-extension of Q
which is an A4-extension of the real quadratic number field F := 
unramified at all finite primes (abbrev. weakly-unramified). We can show
that the class number of M is one by the method described in §8 plus some
additional consideration. Since by the table in [12], B(24 ~ 60,0, 12 . 60) &#x3E;

rdF = 229, M has no nontrivial weakly-unramified extension. (This is
unconditional.) Hence M is the maximal weakly-unramified extension of
F. (While Fur = Fl, [Fl : F] = 3.) Since C12, the composite field
KIM has degree 288. By the table in [38], B(576, 0, 288) &#x3E; rdK = 687
under GRH. Therefore = under GRH. Now we determine the

structure of the Galois group G = Gal(Kur/K). Obviously and

are linearly disjoint over K and therefore G is isomorphic to the di-
rect product H = with C3. We consider
the structure of H. Let C be a cubic subextension of KM/K. Then C
corresponds to a Sylow 2-subgroup of H and Gal(KM/E) is isomorphic to
a Sylow 2-subgroup of S4, that is, isomorphic to D4. Thus,
if we put T = then we have

Since C2, we have T = 16F2ci £f D4 A C4. Hence T
contains a cyclic subgroup W of order four containing 
with T fl W = {1}, and this group and generate H.
Therefore H ’-’ C4. (We note that H is a nonsplit extension of

S4 by C2. But H is not a double cover of S4.) Thus,
(A4 x C4) X Cr3.

Some quartic number fields whose discriminants are fundamental qua-
dratic yield infinitely many quadratic number fields with class field tower
of length at least four.

PROPOSITION 7. (See [45]) Let E be a quartic number field with dE = -p
(p - 3 (mod 4) a prirrae). Then E is embedded into an octic numbers field
E whose normal closure is an §4-extension of Q and is unramified over
its quadratic subfields Q(~), where 6’4 is the double cover of S4 which is
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characterized by the property that a transposition in S4 lifts to an element of
order two, while a product of two disjoint transpositions lifts to an element
of order four: 84 ~ GL(2, 3).

From this, from a quartic number field E with dE = -p - 1 (mod 4),
we get an unramified A4-extension of the imaginary quadratic number field
Q(~). We note that from the data for quartic number fields of signature
(2,1) [13], the quartic prime discriminants -P - 1 (mod 4) with p _ 2003
are -283, -331, -491, -563, -643, -751, -1399, -1423, -1823, -1879, and
-1931. All such fields give two dimensional complex projective linear rep-
resentation

of the absolute Galois group Gal(Q/Q) of Q of type S4 which has a lifting

with conductor p and odd determinant (see [45, §8]). (A. Jehanne [23] has
studied the general embedding problem 64 2013~ S4, especially for the case
where the base field is Q. We find in [23] a generating polynomial of E for
p = 283, 331, 491, 563, 643, 751. Field E in Proposition 7 yields infinitely
many quadratic number fields with class field tower of length at least four.
Let M be the normal closure of E. Then M is an S4-extension of Q. For
any quadratic number field K such that dK/dE is fundamental quadratic,
the composite field KM is an unramified 84-extension of K. Then K has
(narrow) class field tower of length at least four. For example, let K =

Q(~/-5-283). Since Cl(K) ~ C34 ^--’ C2 x C17, 
84 x C17 and therefore [~iQ(~-283)~ : Q] = 1632. Even under GRH,
we get only  44 from Odlyzko’s bound, however,
it is thought likely that = (this implies Kur = K4 =
K1Q( -283)uT), but no proof has yet been obtained. (We can prove K3 =
~iQ(v~283)2.)

There exist many quartic number fields of type S4 whose discriminants
are not fundamental quadratic which yield infinitely many quadratic num-
ber fields having an unramified S4-extension.
We will not consider here general such fields. We decribe only such

quartic number fields giving unramified S4-extensions of Q( -856) and
Q(B/~996).

Let E be a quartic number field defined by the (irreducible) polynomial
f(X) = X4 - 2X3 + 5X2 - 2X - 1 and M its normal closure. We easily
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see Gal(M/Q) = S4 and dE = -6848 = -2~ . 107. Let K = Q( -856).
Note that -856 = 8 . (-107). We see that KM/K is an unramified S4-
extension. For this, it suffices to show that KE/K is unramified. We
can easily get a generating polynomial of KE. For example, we can easily
calculate the minimal polynomial of 0 + -214, where 0 is a root of f(X)
with E = Q(9). From this we get as a generating polynomial of KE,
X8 - 2X~ + 15X6 + 20X5 + 25X4 + 228X3 + 573X2 + 170X + 25 by using
the function ’Polred’ of pari-gp. Then we get dKE = 212 . 1074 = d 4 by
using ’discf’ of pari-gp. Hence KM/K is unramified. For any quadratic
number field F such that 856 1 dF and that the localization of F at the
prime divisor of 2 in F is (isomorphic to) the one of K at the prime divisor
of 2 in K, FM/F is an S4-extension unramified at all finite primes.

Let E’ be a quartic number field defined by the (irreducible) polynomial
X~ - 3X~ - 2X + 1 and M’ its normal closure. We easily see Gal(M’/Q) ~
S4 and dE~ _ -1328 = -2~ . 83. Let K’ = Q( 996). Note that -996 =
(-4) ~ (-3) ~ (-83). As above we can show that K’M’/K’ is an unramified
S4-extension.
We note that the discriminants of the fields E and E’ above are of the

form f2d’, where d’ is a fundamental discriminant with h(Q (@) ) = 3 and
f = 8 = dQ(v’2)’ or f = -4 = dQ(,/-- 1). We also note that the ramification
of the prime 2 in M/Q (resp. M’/(a) occurs over the subfield of M (resp.
M’) which is an S3-extension of Q.

8. UNRAMIFIED NONSOLVABLE GALOIS EXTENSIONS
OF IMAGINARY QUADRATIC NUMBER FIELDS

For imaginary quadratic number fields K of small conductors we con-
sidered, the maximal unramified extension Kur is the top of the class field
tower of K. Then the following natural question arises: What is the first
imaginary quadratic number field having an unramified nonsolvable Galois
extension ? Recent data for quintic number fields enable us to give a partial
answer:

PROPOSITION 8. The field Q( 1507) is the first imaginary quadratic
number field having an unramified A5-extension which is normal over Q
in the sense that none of of discriminant d with 0 &#x3E; d &#x3E; -1507
has such an extension. Moreover, such an extension of K = Q(y’-1507)
is given by the composite field of K with the splitting field of the quintic
polynomial X 5 - 5X3 + 5X2 + 24X + 4, which is an A5-extension of Q.

Proof. From the table in [2], the splitting field of the quintic polynomial
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X5 - 5X3 + 5X2 + 24X + 4 is an A5-extension of Q and the only two
primes 11 and 137 are ramified in this field with ramification index two.
Therefore the composite field of Q( -1507) with it is an unramified A5-
extension of Q( -1507) (note that the factorization of 1507 is 1507 =
11 ~ 137), which is an A5 x C2-extension of Q. Now we show that none of

of discriminant d with 0 &#x3E; d &#x3E; -1507 has such an extension. Let
L be an unramified A5-extension of a quadratic number field F which is
normal over Q. Then the Galois group Gal(L/Q) is isomorphic to S5 or
A5 x C2. If Gal(L/Q) ~ S5, then L is the normal closure of its quintic
subfield E and the discriminant dE of E coincides with the one dF of F (see
[26]). Since the maximal discriminant of quintic number fields of signature
(3, 1) (whose normal closures are 55-extensions of Q) is -4511 and the
minimal discriminant of quintic number fields of signature (1, 2) is 1609

([44]), Q( -4511) is the first imaginary quadratic number field having an
unramified A5-extension which is an S5-extension of Q. Now, we assume
Gal(L/Q) ~ A5 x C2 and let M be the unique subfield of L which is an
A5-extension of Q. Since L = MF/F is unramified, the primes ramified
in M are prime divisors of dF and their ramification indices are all two.
Hence if we let E be a quintic subfield of M, we get From the data
for quintic number fields in [44] and the table in [3], C~( -1507) is the
first imaginary quadratic number field having an unramified A5-extension
which is an A5 x C2-extension of Q.

Remark. Probably, the condition "which is normal over Q" is unnecessary.
It is reasonable to expect this. In fact, if we assume that GRH is true,
Odlyzko’s discriminant bounds enable us to show that most of with
0 &#x3E; d &#x3E; -1507 do not have an unramified A5 x A5-extension. (We can show
that under GRH, except for d = -1387, -1451, -1459, -1480, -1483, -1492,
and -1499, none of Q(J2) with 0 &#x3E; d &#x3E; -1507 has any unramified A5-
extension.) We expect that in future data for number fields of degree ten
will enable us to eliminate the condition above; If an A5-extension L of a
quadratic number field K is not normal over Q, its normal closure L has
Galois group isomorphic to A5 x A5 over K. Let E be a quintic subex-
tension of L/K. Then E has degree ten. The five conjugate fields of E
which are conjugate over K generate L and the other five conjugate fields
generate another A5-extension of K. Thus 

We expect stronger assertion that (a( -1507) is the first imaginary
quadratic number field having an unramified nonsolvable Galois extension.
We exhibit here two other examples of an imaginary quadratic number field
having an unramified nonsolvable Galois extension. Q( -14731) has an
unramified A6-extension which is an S6-extension of Q. Such an extension
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is given as the splitting field of the sextic polynomial X6 + 3X5 + 5X4 +
4X3 + 3X2 + 2X + 1. Q( -30759) has an unramified PSL(2, 7)-extension
which is a PSL(2,7) x C2-extension of Q. Such an extension is given as
the composite field of (a( -30759) with the splitting field of the septic
polynomial X~ + 2X 6 - 3X4 _ X3 _ X2 - X + 2. The fact that this

splitting field is a PSL(2, 7)-extension of Q was found by K. Yamazaki [61].
As explained in §2, under GRH, if Idl _ 2003, then K]  oo for

K = = dK  0. In this range, we only know one other field
having an unramified nonsolvable Galois extension, namely, the field with
d = -1959 = (-3) ~ 653. This is the second imaginary quadratic number
field having an unramified A5-extension which is normal over Q. Let L be
the splitting field of the quitic polynomial X5 + X3 + 62X2 + 104X + 169.
Then L is an imaginary A5-extension of Q, in which (except for the infinite
prime) only the finite prime 653 is ramified and its ramification index is
two ([3]). Thus, for any quadratic number field K whose discriminant is a
multiple of 653, the compositum KL is an A5-extension of K unramified at
all finite primes. (If K is real, the infinite primes are ramified in KL/K.)
We note that F = Q( 653) is the first real quadratic number field having
an weakly-unramified A5-extension which is normal over Q. F has narrow
class number one. Therefore F has no nontrivial weakly-unramified abelian
extension. Under GRH from Odlyzko’s bound we get FL~ _ 3 and
therefore is isomorphic to A5, or a nonsplit extension of AS
by C2 or C3.

The third imaginary quadratic number field having an unramified A5-
extension which is normal over Q is Q( -2083). Moreover, the A5-
extension of K = Q( -2083) is given by the composite field of K with
the splitting field of the quintic polynomial X’ + 8X3 + 7X2 + 172X + 53,
which is an A5-extension of Q.
Now we return to the field Q( -1507). We have C4. The

Hilbert class field K, of K is K( (-23 + 3V137)/2) and its class number
is one. Thus, Kl is an imaginary D4-extension of Q with class number one
having an unramified A5-extension. This field is only example we know
of an imaginary normal extension of Q with class number one having an
unramified nonsolvable Galois extension. (On the other hand, there exist
many (probably infinitely many) real quadratic number fields with class
number one having an unramified An-extension for each n &#x3E; 5 [55, 60].)
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APPENDIX 1. CALCULATION OF CLASS
NUMBERS OF S4-EXTENSIONS OF Q

Let M be an S4-extension of Q. We consider here how to calculate its
class number. If we know the class numbers of a cubic subfield and sextic
subfields containing it, we get the class number h(M) of M up to a power
of two by using class number relation for V4-extension repeatedly. Let L be
the unique normal subfield of M which is an S3-extension of Q. Then M/L
is a Y4-extension and three intermediate fields are conjugate. Therefore,
if we know the class numbers of L and any one of the intermediate fields
of MIL, then we get h(M) up to a 2-power. Let E be a cubic subfield of
L. Then M/E is a D4-extension and the Y4-subextension N of M/E is an
intermediate field of M/L. Thus, if the class numbers of three intermediate
fields of N/E, which are sextic, are known, we get h(N) up to a 2-power.

Now, we give the sextic fields more explicitly by starting with a quartic
subfield of M. Let F be a quartic subfield of M and f (X) = X4 +alX3 +
a2X2 + a3X + a4 E Z[X] its generating polynomial, that is, F = Q(,8),
where 3 is a root of f (X ). Then the resolvent cubic = X 3 - a2X 2 +

of f (X) is irreducible over Q and its roots
are a = + + /?2/?4 /?i/?4 + where and /?4 are
the roots of f (X). Let E = Q(a) and N the V4-subextension of M/E. We
want to know the three intermediate fields of N/E and their class numbers.
One is L = KE = which is the splitting field of where K
is the unique quadratic subfield of M and d its discriminant. Other one is
Q(/?l/?2) = Q(/?l/?2 - /?3/?4). Note that 
4fli fl2fl3 fl4 = a2 - 4a4 and we can write this field as E( a - 4a4). Thus,
the other one is E( d(a2 - 4a4)) = Q( d(a2 - 4a4)) = 
I34y· The minimal polynomial g(X) of fli fl2 is

and its discriminant is + a4a2 + a 4), where d f is the dis-

criminant of f (X). The minimal polynomial u(X) of 
is
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We describe ramification. H. J. Godwin [15] proved that the discriminant
of equals dEdF (see also [24]). In order that the extension M/K is
unramified at all finite primes, dF = d is necessary and sufficient (see [26]).
In that case, we have also dE = d and therefore &#x3E; = d2 = d2 . This
implies that both 4a4)) and are unramified at
all finite primes.
Now we explain how we get h(K2) for K = Q( V-643). It is a classical

result that K2 for K = Q( -643) is an S4-extension of Q. So, put M = K2
and we use the notations above. Then we can take f (X ) = X +X + 2X + 1
and d f = d = -643. (From the irreducibility and the squarefreeness of d f,
we can deduce the fact that the splitting field of f(X) is an S4-extension
of Q and is unramified over the unique quadratic subfield K = Q(B/2013643).
(See [56].)) Then = X3 - 2X - 5 and we can check h(E) = 2 by
computer. Since h(K) = 3, by using the class number relation in Lemma
3, we get h(L) = 4. (More precisely, by Lemma 5, V4.) Now

g(X) = X6+X4-5X3+X2+1, u(X) = Xs-8~643X4+20~6432X2+9~6433
and KANT gives = 1. Hence in this case, the field Q(/?i/?2)
is the Hilbert class field of E and 4a4)) is unramified. The
function ’polred’ of pari-gp reduces u(X) to X6 - 3X5 + llX4 _ 9X3 +
23X2 + 8X + 57 and KANT gives C8. We also
note that the field Q( d(a2 - 4a4)) is totally imaginary and therefore
the narrow class group of it concides with its class group. Then the class
number relation for V4-extension shows that h(N) is a power of 2, and
since N is the unramified quadratic extension of Q( d(a2 - 4a4)), we
get Cl(N) t3£ C4. Using the class number relation for V4-extension again,
h(M) is a power of 2, and since M is the unramified quartic extension
of Q(~/d(c~ 2013 4~4)), we get h(M) = 2. By the same method, we get
h(K2) = 2 also for K = Q(V-283) and Q(V-33l). Moreover, if we take
M as the normal closure of the third (resp. fourth, and eighth) quartic
number field of type S4, which is an unramified A4-extension of Q( -491)
(resp. Q( -563), and Q( 751)), we get h(M) = 6 (resp. h(M) = 6,
and h(M) = 10).

APPENDIX 2. IMAGINARY QUADRATIC
NUMBER FIELDS K WITH K2 = Kl

We give here a note on the following.

PROBLEM 1. Characterize the irrtaginary quadratic number fields K with
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Let K be an imaginary quadratic number field. The inequality ~
Kl is equivalent to h(Kg) &#x3E; K] and we can easily calculate
h(K), [Kg : K], and h(Kg). Since K9 = K if and only if h(K) is odd, for

Kl, h(K) must be even and therefore the discriminant d of K
must have two disctinct prime factors.

On the other hand, it is hard to calculate h(Kl) in general. However,
by considering the p-class field tower, we can get some necessary condition
for K2 = ( Kg) 1. Let p be an odd prime. If the class number of the

Hilbert p-class field of K is divisible by p, then we have

because the odd part of the class group of K9 is the direct product of
the odd parts of the class groups of the quadratic subfields of Kg. If the

p-rank of the p-class group of K is larger than one for some odd prime
p, then is divisible by p [37, Theorem 2] and therefore in this
case K2 D For example, let K = Q( -3896). Then we have

Cl(K) ££ = -487), and C42 x C3. Therefore

K2 ~ Ki3~ (K9 ) 1 = Thus, for K2 = the p-class field tower
must terminate with for all odd primes, in other words, the odd part
of the class group of K must be cyclic.

Problem 1 seems to be very difficult. Thus, it is reasonable to consider
the following before treating Problem 1.

PROBLEM 2. Characterize the imaginary quadratic number fields K with
,-, ,-, ,-,

Put A = Then = 

and Problem 2 consists in characterizing K such
that

If CI(2) (K) is elementary abelian, then Kg = and therefore if moreover

h(Kg) is divisible by 2, then (**) trivially holds. We can characterize

such K: C1~2~ (K) is elementary abelian if and only if d does not have a
factorization of the second kind (in the terminology of R6dei-Reichardt).
F. Lemmermeyer [29] characterized K for which A is abelian. By known
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results on the 2-class field tower, if the 2-class group of I~i2~ is nontrivial
and cyclic, (**) holds. (Refer to §5.) In fact, for A = 
or r.t, (* * *) holds. Therefore the remaining case is where C1~2~ (K) is

not elementary abelian and C1~2~ (Ki2~ ) is noncyclic. The author knows no
example of .K with K22  (K ) 12&#x3E; &#x3E; K(2)2:;t; 91 :;t; 1.

Finally, we note that there exist 2-groups A satisfying A1’ 
A" = {1}. The groups 64r22~i,64r22~64r23ai, 641~3~ 64f23a3, and
64r23a4 are so. This is the complete list of the nonabelian 2-groups of
orders ~ 64 having nonabelian Frattini subgroup. (See [17].)
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