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Two problems related to the non-vanishing
of L (1,~)

par PAOLO CODECA, ROBERTO DVORNICICH,
et UMBERTO ZANNIER

RESUME. Dans cet article, nous étudions deux problemes à priori
assez éloignés, l’un se rapportant à la géométrie diophantienne,
et l’autre à l’analyse de Fourier. Tous deux induisent en realite
des questions très proches, relatives à l’étude du rang de matrices
dont les coefficients sont nuls ou égaux à ( (xy/q) ), (0 ~ x, y  q),
ou ((x)) = x - [x] - 1/2 désigne la partie fractionnaire "centrée"
de x. L’étude de ces rangs est liée au problème d’annulation des
fonctions L de Dirichlet au point s =1.

ABSTRACT. We study two rather different problems, one arising
from Diophantine geometry and one arising from Fourier analysis,
which lead to very similar questions, namely to the study of the
ranks of matices with entries either zero or ((xy/q)), 0  x, y  q,
where ((u)) = u - [u] - 1/2 denotes the "centered" fractional
part of x. These ranks, in turn, are closely connected with the
non-vanishing of the Dirichlet L-functions at s =1.

1. INTRODUCTION

The following problems, which arise in quite different contexts, have led
us to very similar questions.

Problem A. This is a problem in Diophantine geometry and it was

suggested by Cellini [2] for the study of the dimension of a commutative
descent algebra of the group algebra over Q of the Weyl groups of type

Let q be a positive integer and for each a E Z consider the function

For fixed q, how many among the functions f a~q are linearly independent?

Manuscrit reru le 11 mars 1996.
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It is clear that fa,q depends only on the congruence class of a modulo q.
For a real number a, let [a] denote its integer part, denote its fractional
part and ((a)) = {a} - 1/2. Then

whence is 1/g ’ identity plus a function which is periodic modulo
q. Let also ~a~9(yt) _ ((an/q)). We shall prove the following

Theorem 1. The dimension of the vector space generated by the functions
ga,q is equal to [(q - 3)/2] -t- d(q) and the dimension of the vector space
generated by the functions fa,q is equal to [(q - 1)/2] + d(q), where d(q) is
the number of divisors of q.

To prove this we have to study the rank of the matrix

and this will be done in Corollary 2, where the rank will be given in terms
of the number of non-vanishing expressions of the form

where X is a Dirichlet character with modulus a divisor d of q. The method
uses a decomposition of the space of functions If f : Z/qZ - C} into
an orthogonal sum of subspaces defined in terms of the primitive Dirichlet
characters modulo divisors of q. Although this decomposition follows rather
easily from the classical theory of Dirichlet characters, we do not have
explicit references for this result, so we include its complete proof.

It is rather surprising that Corollary 2 turns out to be equivalent to
the non-vanishing of the first Bernoulli numbers relative to odd characters
x, which in turn is equivalent, via the functional equation, to the non-
vanishing of the corresponding Dirichlet functions L(s, X) at s =1.

Problem B. Let q be a positive integer and let f : Z - C be odd and
periodic modulo q. Then the series
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is convergent everywhere (see Lemma 7 below). Let 8h(d) denote the Rie-
mann sum

where d &#x3E; 1 is an integer and h is given by (4). Our problem is the following:
is it possible to have 6h(d) = 0 for every d &#x3E; 1 and the corresponding f (n)
not all zero? The answer is negative (see Theorem 2) and is equivalent to
proving that the rank of the matrix P(ij/q) (1  i, j  q), where

is ~(q - 1)/2~. In the proof a vital step is provided by the well known identity
(see for instance [3] and [4])

which can be deduced from L(1, x) ~ 0 and the convergence of the series

for all non-principal Dirichlet characters X modulo q.

2. SOLUTION TO PROBLEM A

Let q &#x3E; 1 be an integer. We shall denote by 0 a character modulo a
divisor of q. If the modulus m(,O) of o is q/d for some divisor d of q, 1b will
also be denoted by 0(d). We shall denote by or by f d,~ if we want to

make explicit the modulus, the function defined on (Z/qZ) into the complex
numbers such that

We abbreviate Z/qZ by (q) and set V = (q) - C}. The scalar
product of two functions f,g E V is given by

Lemma 1. There are exactly q functions of the type these functions
are pairwise orthogonal and generate V as a vector space. Furthermore
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Proof. The first assertion follows from the fact that there are Ø(q/d) char-
acters modulo q/d and be characters as above.

We have

Set d = hdi, e = hel with (el, dl) = 1, hence [d,e] = hdlel. Letting
X = y[d, e] one sees that the last sum equals

Now hdlel = del divides q, whence I (q/d) and, similarly, di q/e. Since
1/J and 6 have modulus q/d and q/e respectively, we get that = 0
unless ei = d1 = 1, that is d = e. In this case

and the lemma is proved. 0

Let X be a primitive character. If X induces 0 we write X ~ 1 0. Let Vx be
the vector space generated by the such 

Lemma 2. V is the direct sum of the subspaces Vx, where X runs over all
primitive characters whose modulus is a divisor of q.

Proof. Clear. F-1

The scalar product on V induces a pairing

as follows:

To study the properties of this pairing a lemma will be useful. If 9 is a
character with modulus q/d and h is a divisor of d we denote by 9h the
character induced by 0 with modulus (q/d)h = m(9)h. Hence
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By definition we have

Lemma 3. The following equality holds:

Then the right-hand term equals

The modulus of 1Ph/v is qh/dv. Hence if (hlv, r/v) &#x3E; 1 we have 

0. On the other hand (r/v) ~ I (h/v), whence our sum contains at most
one non-vanishing term, corresponding to v = r, namely (xl). Now
(qh1/d, Xl) = (q/d, xi), hence ’Øhl (Xl) = In conclusion (Xl) =
- # .....1" , , I , -

Lemma 4. For a character V) of modulus q/d the following formula holds:

Proof. Let d = di h, y = Y1h, (dl, yl) = 1. Since f1/J(xy) = 0 if d I xy, we
assume that d xy, or, equivalently, d, I x and x = d1x’. In this case

Using Lemma 3 with x = x’ = x/dl we obtain

Let

We have (q/d) . (h/v) = q/dlv, whence
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and therefore

whenever dit x. If d1 X x then all terms vanish and the formula holds
again. 0

Proof. The first statement follows easily from Lemma 1 and Lemma 4.
Suppose now that ~ = 1Pp.. If p fy we have Ifo, = 0 and the same is
true for the righthandside of (10). If p y one has

Applying Lemma 3 with h = d/ J.1 we have

and, setting x = y/p,

Corollary 1. The function rF : V - V given. by

maps Yx into Vx and vice-versa.

Proof. Clear.
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where X runs over primitive characters with modulus dividing q and Fx E
vx, and set

Let ~ be a character induced by X. From Lemma 5, putting m(~) = q/r, we
get

Let X = x~a&#x3E;, that is qla = ~n(X). Then ria. If 9 = then d I a.

Moreover 9 [ g implies rid whence rid I a. Since also s I a, is

equivalent to (q/d)(r/v) = q/s, that is rs = dv.
If X is a non-real (resp. real) character, the matrix associated to the

restriction of the function rF to Vx e Vg (resp. Vx) is of type

(resp. of type (A) ) where A is the matrix of a linear function r on a vector
space with basis such that

where 1b is the unique character of modulus q/d induced by X and (3d = Q1jJo
The conditions on d and v can also be written as v ~ (r, s) and d = (rs/v) ~ a.
Moreover 

,

otherwise.

Hence (11) becomes

We note that

Further, if v satisfies (12) then v I (r, s) since r, s I q; so the inner sum

contains at most one term. Hence we have proved
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Lemma 6.

We consider now the special case F(x) _ ((x/q)). Observe that in this
case

hence rF can be represented by the matrix M defined in (3).

Proposition 1. The rank of TF is maximal on V. + Vg 2uhen L(X) ~ 0
and is zero when L(X) = 0.

Let o be induced by X = X~a~ and = q/d. We have

But d I a and X(c) = 0 if (c, q/a) &#x3E; 1. Hence, since I

(a/d), one may assume c I (a/d) and

The inner sum is equal to ((a/qz)), whence

where
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It follows that if L(X) = 0 then the linear function T is identically zero.
Assume L(~) 7~ 0. The action of r is given by

where À(a/d) is multiplicative.

Let 6r,s be the coefficients of YS in the last expression. We have to prove
that 0. Let p be a prime divisor of q. For an integer m we set

- _1- . - . , I." ...... - - .1. - _I

Then

Let = By multiplicativity of the functions involved one
gets

If a = pla*, whence the matrix 6r,s is of type

and

(see for intance [1, Prop. 2.14, p. 202] for the last formula). By induction
on the number of prime factors of a we obtain

for suitable integer exponents ep. Hence it suffices to prove that

for any p. Consider ep,,. We have = 0 if min(p + a, K) &#x3E; a. Otherwise

Observe that = 1, ~(p) _ À(p2) = ... = 1 - ~(p). Moreover X(p) _
0 o p ~ I {::} a  x. Assume first a  rc. Then A (p/1) = 1, Vp. We have
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and the matrix becomes

and has non-zero determinant. Suppose now a = . In this case we have
- c# ""- _ - --"’- ... - ___ _ _

Regarding note that a non-vanishing factor of all terms,
hence it may be neglected. Also we may neglect X(pP+6) = by
first dividing the p-th row by X(pP) and after dividing the cr-th column by

Setting 77 = XA/0 we must then compute that
is 

, - . -

Subtracting the second last column from the last one it becomes clear that

whence

On the other hand

Corollary 2. The rank of rF is [(q - 1)/2] + d(q), where d(n) is the num-
ber of divisors of n.

Proof. L(X) = is in fact the first Bernoulli number associated with X.
It is well known that Bl,x = 0 for all non-principal even characters, whereas

5~ 0 if x is odd or x is the principal character (see for instance [5, p.
31] for details). By Proposition 1 the rank of rF is the sum of dimension
of vX for X either odd or principal. The principal character X = 1 induces
exactly one character for each modulus dividing q, hence dim VI = d(q).
Moreover, a character o is induced by an odd primitive character X (or is
primitive odd itself) if and only if V) is odd. So the dimensions of Vx for X
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odd equals the number of odd characters modulo a divisor of q. It is well
known that, for d ~ 1, 2, there are exactly ~(d)/2 odd characters, while for
d =1, 2 there is only one character (the principal one). Hence we have

and the corollary follows. D

We finally go back to the proof of Theorem 1.

Proof of Theorem 1. Let jj : V -~ V be the linear function defined by

The q x q matrix associated to p is

Then the dimension of the vector space spanned by the functions ga,q is

equal to the rank of the matrix BM, where M has rank ~(q -1)/2~ + d(q)
by Corollary 2. Sincle clearly B has rank q -1, the rank of BM is equal
either to rank(M) - 1 or to rank(M) depending on whether the image of
rF intersects or not the kernel of the linear function p. Taking for f the
function which is 1 at the zero class and zero elsewhere, we get that

whence rF is a constant and is contained in the kernel of /~.
As to the second part, note that the equality

implies that the identity belongs to the vector space generated by the f a,q,
which therefore can be spanned by the identity together with the ga,q. Now
the identity is clearly linearly independent from all the functions ga,q, since
all these functions are periodic, and the result follows. 0
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3. SOLUTION TO PROBLEM B

We begin by proving the following
Lemma 7. Let f : Z - C be odd and periodic modulo q. Then the series

converges everywhere and we have the identity

where

and P(x) is given by (6).

Proof. Let us consider the equivalent relations

It is easy to see that f is odd if and only if such is g. First suppose that f
is odd: then we have

The implication in the other way is proved similarly.
Since f is odd and periodic modulo q so is g and this implies that

and

if q is even. Now consider the sum
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If we substitute (14) for f (n) and exchange the sums we get

Taking into account (15) and (16) we can write (17) in the form

Since we see that (13) follows from

(18) when N -~ 00. 
~ 

0

We now prove that the coefficients f (n)/n of the function h(x) can be
recovered from the corresponding Riemann sums 6h (d) given by (5) of the
introduction.

Theorem 2. Let h(x) = cos 27rnx as in Lemma 7. Then we have

for every integer d &#x3E; 1.
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Proof. By (13) of Lemma 7 we can write

Since . for every x E R we have

It is easy to see that

From (21) and (22) follows the identity

so that (20) becomes

From (23) we obtain

Now recall that
,-.

in (24) by the first one of the two reciprocal relations (14) we get

since cos 27rmd/q = 0 because g is odd.
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Theorem 2 implies the following

Corollary 3. For every integers q &#x3E; 3 we have

Proof. We shall show that if we suppose that (25) is false for an integer
q &#x3E; 3 we reach a contradiction.

If (25) is false then there exist values g(m) not all zero such that

Let us now consider the odd continuation with period q of the g(m) which
are solutions of the system (26), i.e. we require that g : Z - C is periodic
modulo q and g(q - m) = -g(m) V m E Z.

Let f (n), n E Z, be defined by the first relation in (14), that is f (n) _
~2013i

As already noted f (n) is also odd and periodic modulo q: moreover since
the g(m) are not all zero, the same is true for the f (n). Let us now put

-

cos 2Jrnz as in lemma 1. Equality (23) can be written in

the form

because we have

since both 9 and P are odd.
From (26) and (27) it follows 6h (d) = 0 V d &#x3E; 1 which implies, by (19)

of Theorem 2, f (d) = 0 V d &#x3E; 1. But this is a contradiction, since f is not
identically zero. This proves the corollary. D
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