Arithmetic of elliptic curves and diophantine equations
Journal de théorie des nombres de Bordeaux, Volume 11 (1999) no. 1, p. 173-200

We give a survey of methods used to connect the study of ternary diophantine equations to modern techniques coming from the theory of modular forms.

Nous décrivons un panorama des méthodes reliant l'étude des équations diophantiennes ternaires aux techniques modernes issues de la théorie des formes modulaires.

@article{JTNB_1999__11_1_173_0,
     author = {Merel, Lo\"\i c},
     title = {Arithmetic of elliptic curves and diophantine equations},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {1},
     year = {1999},
     pages = {173-200},
     zbl = {0964.11028},
     mrnumber = {1730439},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1999__11_1_173_0}
}
Merel, Loïc. Arithmetic of elliptic curves and diophantine equations. Journal de théorie des nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 173-200. http://www.numdam.org/item/JTNB_1999__11_1_173_0/

[1] D. Abramovich, Formal finiteness and the torsion conjecture on elliptic curves. A footnote to a paper: "Rational torsion of prime order in elliptic curves over number fields" by S. Kamienny and B. Mazur. Astérisque 228 (1995), Columbia University Number Theory Seminar (New- York, 1992), 5-17. | MR 1330925 | Zbl 0846.14013

[2] A. Ash & G. Stevens Modular forms in characteristic l and special values of their L-functions. Duke Math. J. 53 (1986), no.3, 849-868. | MR 860675 | Zbl 0618.10026

[3] F. Beukers, The diophantine equation AxP + Byq = Czr. preprint 1995. | MR 1487980

[4] D. Bump, S. Friedberg & J. Hoffstein, Nonvanishing theorem, for L-functions of modular forms and their derivatives. Invent. Math. 102 (1990), 543-618. | MR 1074487 | Zbl 0721.11023

[5] H. Carayol,Sur les représentations λ-adiques associées aux formes modulaires de Hilbert. Ann. Sci. de l'ENS 19 (1986), 409-468. | Numdam | Zbl 0616.10025

[6] I. Chen, The Jacobian of non-split Cartan modular curves. To appear in the Proceedings of the London Mathematical Society. | MR 1625491 | Zbl 0903.11019

[7] J. Cremona, Computing the degree of a modular parametrization, in Algorithmic number theory (Ithaca, NY, 1994), 134-142, Lecture Notes in Comput. Sci. 877, Springer, Berlin, 1994. | MR 1322718 | Zbl 0840.14018

[8] H. Darmon, The equations xn + yn = z2 and xn + yn = z3. Internat. Math. Res. Notices 10 (1993), 263-274. | MR 1242931 | Zbl 0805.11028

[9] H. Darmon, Serre's conjecture, in Seminar on Fermat's last Theorem. CMS Conference Proceedings 17, American Mathematical Society, Providence, 135-155. | MR 1357210 | Zbl 0848.11019

[10] H. Darmon, Faltings plus epsilon, Wiles plus epsilon and the Generalized Fermat Equation. preprint 1997. | MR 1479291

[11] H. Darmon, Faltings plus epsilon, Wiles plus epsilon, and the Generalized Fermat Equation. preprint 1997. | MR 1479291

[12] H. Darmon, A. Granville, On the equations xP + yq = zr and zm = f(x, y). Bulletin of the London Math. Society, no 129, 27 part 6, November (1995), 513-544. | MR 1348707 | Zbl 0838.11023

[13] H. Darmon & L. Merel, Winding quotients and some variants of Fermat's last theorem. To appear in Crelle. | Zbl 0976.11017

[14] P. Deligne & M. Rappoport, Les schémas de module des courbes elliptiques, in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 143-316, Lecture Notes in mathematics 349, Springer, Berlin, 1975. | MR 337993 | Zbl 0281.14010

[15] P. Dénes, Über die Diophantische Gleichung x + y = cz. Acta Math. 88 (1952), 241-251. | MR 68560 | Zbl 0048.27503

[16] F. Diamond, On deformation rings and Hecke rings. Ann. of Math. (2) 144 (1996), no. 1, 137-166. | MR 1405946 | Zbl 0867.11032

[17] F. Diamond, K. Kramer, Modularity of a family of elliptic curves. Math. Res. Letters 2 (1995), 299-304. | MR 1338788 | Zbl 0867.11041

[18] L.E. Dickson, History of the theory of numbers. Chelsea, New York, 1971. | JFM 60.0817.03

[19] V. Drinfeld, Two theorems on modulars curves. Funct. anal. appl. 2 (1973), 155-156. | MR 318157 | Zbl 0285.14006

[20] B. Edixhoven, On a result of Imin Chen. preprint 1995. To appear in: Séminaire de théorie des nombres de Paris, 1995-96, Cambridge University Press.

[21] N. Elkies, Wiles minus epsilon implies Fermat, in Elliptic curves, modular forms and Fermat's Last Theorem (Hong-Kong 1993). J. Coates, S-T. Yau, eds., Internat. Press, Cambridge, MA, 1995, 38-40. | MR 1363494 | Zbl 0836.11013

[22] G. Frey, Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Saraviensis, Ser. Math 1 (1986), 1-40. | MR 853387 | Zbl 0586.10010

[23] G. Frey, Links between solutions of A - B = C and elliptic curves. Lect. Notes in Math. 1380 (1989), 31-62. | MR 1009792 | Zbl 0688.14018

[24] G. Frey, On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2, in Elliptic curves, modular forms and Fermat's Last Theorem (Hong-Kong,1993). J. Coates, S-T. Yau, eds., Internat. Press, Cambridge, MA, 1995, 79-98. | MR 1363496 | Zbl 0856.11026

[25] G. Frey, On ternary relations of Fermat type and relations with elliptic curves. preprint 1996.

[26] A. Granville, On the number of solutions of the generalized Fermat equation, in Number Theory (Halifax, NS, 1994), 197-207, CMS Conf. Proc., 15, Amer. Math. Soc., Providence, RI, (1994) . | MR 1353932 | Zbl 0836.11014

[27] B. Gross & G. Lubin, The Eisenstein descent on J0(N). Invent. Math. 83 (1986), 303-319. | MR 818355 | Zbl 0594.14027

[28] B. Gross & D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225-320. | MR 833192 | Zbl 0608.14019

[29] A. Grothendieck, Esquisse d'un programme. 1984.

[30] Y. Hellegouarch, Points d'ordre 2ph sur les courbes elliptiques. Acta Arith. 26 (1974/75), no. 3, 253-263. | MR 379507 | Zbl 0264.14007

[31] Y. Hellegouarch, Thèse. Université de Besançon, 1972.

[32] M. Kenku & F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Mathematical Journal 109 (1988), 125-149. | MR 931956 | Zbl 0647.14020

[33] S. Kamienny, Points on Shimura curves over fields of even degree. Math. Ann. 286 (1990), 731-734. | MR 1045399 | Zbl 0693.14010

[34] S. Kamienny, Torsion points of elliptic curves over fields of higher degree. International Mathematics Research Notices 6 (1992), 129-133. | MR 1167117 | Zbl 0807.14022

[35] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992), 221-229. | MR 1172689 | Zbl 0773.14016

[36] K. Kato, p-adic Hodge theory and special values of zeta functions of elliptic cusp forms. to appear.

[37] K. Kato, Euler systems, Iwasawa theory, and Selmer groups. preprint. | MR 1727298

[38] K. Kato, Generalized explicit reciprocity laws. preprint. | MR 1701912

[39] V.A. Kolyvagin & D. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Leningrad Math. J., vol. 1 no. 5 (1990), 1229-1253. | MR 1036843 | Zbl 0728.14026

[40] A. Kraus. Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris 321, Série I (1995), 1143-1146. | MR 1360773 | Zbl 0862.11037

[41] A. Kraus, Sur certaines variantes de l'équation de Fermat. preprint 1997.

[42] G. Ligozat, Courbes modulaires de niveau 11, in Modular functions of one variable V. Lecture Notes in Math. 601 (1977), 115-152. | MR 463118 | Zbl 0357.14006

[43] S. Ling & J. Oesterlé, The Shimura subgroup of Jo(N), in Courbes modulaires et courbes de Shimura. Astérisque 196-197, (1991), 171-203. | MR 1141458 | Zbl 0781.14015

[44] L. Mai, R. Murty, The Phragmen-Lindelof theorem and modular elliptic curves, in The Rademacher legacy to mathematics University Park, PA, 1992, 335-340, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994. | MR 1284072 | Zbl 0822.11047

[45] Y. Manin, Parabolic points and zeta functions on modular curves. Math. USSR Izvestija 6, no. 1 (1972), 19-64. | MR 314846 | Zbl 0248.14010

[46] Y. Manin, Modular forms and number theory. In the proceedings of the international congress of mathematicians 1978, (1980), 177-186. | MR 562606 | Zbl 0421.10016

[47] D. Masser, G. Wüstholz, Galois properties of division fields of elliptic curves. Bull. London Math. Soc. 25 (1993), no. 3, 247-254. | MR 1209248 | Zbl 0809.14026

[48] B. Mazur, H.P.F. Swinnerton-Dyer, The arithmetic of Weil curves. Invent. Math. 25 (1974), 1-61. | MR 354674 | Zbl 0281.14016

[49] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), 33-186. | Numdam | MR 488287 | Zbl 0394.14008

[50] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162. | MR 482230 | Zbl 0386.14009

[51] B. Mazur, Questions about number, in New Directions in Mathematics. to appear.

[52] B. Mazur, Courbes elliptiques et symboles modulaires. Séminaire Bourbaki 414, Lecture Notes in mathematics 317(1973), 277-294. | Numdam | MR 429921 | Zbl 0276.14012

[53] B. Mazur, Letter to J. Ellenberg.

[54] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437-449. | MR 1369424 | Zbl 0936.11037

[55] L. Merel, Homologie des courbes modulaires affines et paramétrisations modulaires, in Elliptic curves, modular forms, and Fermat's last theorem (Hong-Kong 1993). J. Coates, S.-T. Yau, eds, Internat. Press, Cambridge, MA, 1995, 110-130. | MR 1363498 | Zbl 0845.11023

[56] F. Momose, Rational points on the modular curves Xsplit (p). Compositio Math. 52 (1984), 115-137. | Numdam | MR 742701 | Zbl 0574.14023

[57] K. Murty, R. Murty, Mean values of derivatives of L-series. Ann. Math. 133 (1991), 447-475. | MR 1109350 | Zbl 0745.11032

[58] A. Nitaj, La conjecture abc. Enseign. Math. 42 (1996), no. 1-2, 3-24. | MR 1395039 | Zbl 0856.11014

[59] J. Oesterlé, Nouvelles approches du "théorème" de Fermat. Sém. Bourbaki 694, Astérisque 161-162, S.M.F. (1988), 165-186. | Numdam | MR 992208 | Zbl 0668.10024

[60] I. Papadopoulos, Sur la classification de Néron des courbes elliptiques. J. Number Theory 44 (1993), no.2, 119-152. | MR 1225948 | Zbl 0786.14020

[61] P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. prépublication 95-33, Institut de recherches mathématiques de Rennes (1995).

[62] B. Poonen, Some diophantine equations of the form xn + yn = zm. to appear. | MR 1655978

[63] K. Ribet, On modular representations of Gal(/Q) arising from modular forms. Invent. Math. 100 (1990), 431-476. | MR 1047143 | Zbl 0773.11039

[64] K. Ribet, On the equation aP + 2αbp + cP = 0. Acta Arith. 79, no. 1, (1997), 7-16. | Zbl 0877.11015

[65] K. Rubin et A. Silverberg, A report on Wiles' Cambridge lecture. Bull. Amer. Math. Soc. (N.S.) 31 (1994), no.1, 15-38. | MR 1256978 | Zbl 0924.11046

[66] Serre J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259-331. | MR 387283 | Zbl 0235.14012

[67] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(/Q). Duke Math. J. 54. no. 1 (1987), 179-230. | MR 885783 | Zbl 0641.10026

[68] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques. Proceedings of Symposia in Pure Mathematics, 55 (1994), Part 1, 377-400. | MR 1265537 | Zbl 0812.14002

[69] J.-P. Serre, Travaux de Wiles (et Taylor,...), Partie I. Séminaire Bourbaki, 803, Juin 1995, Astérisque 237 (1996), 5, 319-332. | Numdam | MR 1423630 | Zbl 0957.11027

[70] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Pub. Math. I.H.E.S 54 (1981), 123-201. | Numdam | MR 644559 | Zbl 0496.12011

[71] J.-P. Serre, Œuvres, vol. III, Springer-Verlag.

[72] J.-P. Serre, Représentations linéaires des groupes finis. Hermann, Paris, 1978. | MR 543841 | Zbl 0407.20003

[73] J. Silverman, Heights and elliptic curves. in Arithmetic geometry (Storrs, Conn., 1984). Springer, New-York, 1986, 151-166. | MR 861979 | Zbl 0603.14020

[74] L. Szpiro, Discriminants et conducteurs de courbes elliptiques, in Séminaire sur les pinceaux de courbes elliptiques (Paris, 1988). Astérisque 183 (1990), 7-18. | MR 1065151 | Zbl 0742.14026

[75] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. 141 (1995), 553-572. | MR 1333036 | Zbl 0823.11030

[76] P. Vojta, Diophantine approximation and value distribution theory. Lecture Notes in Mathematics, 1239, Springer-Verlag, Berlin, 1987. | MR 883451 | Zbl 0609.14011

[77] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. of Math. 141 (1995), 443-551. | MR 1333035 | Zbl 0823.11029

[78] D. Zagier, Modular parametrizations of elliptic curves. Can. Math. Bull. 28 (1985), 372-384. | MR 790959 | Zbl 0579.14027