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Diophantine Approximation on Algebraic
Varieties

par MICHAEL NAKAMAYE

RÉSUMÉ. Nous donnons un apergu de progrès récents en théorie
de 1’approximation diophantienne. Le point de départ étant le
théorème de Roth, nous nous intéressons d’abord à la conjecture
de Mordell, puis ensuite à des résultats analogues en dimension
supérieure, résultats dûs à Faltings-Wustholz et à Faltings.

ABSTRACT. We present an overview of recent advances in dio-
phantine approximation. Beginning with Roth’s theorem, we dis-
cuss the Mordell conjecture and then pass on to recent higher
dimensional results due to Faltings-Wustholz and to Faltings re-
spectively.

0. INTRODUCTION

The theory of diophantine approximation often begins with a finite col-
lection of polynomials f 1 (X), ..., In (X) E (~~.X l, ... , Xm) with rational co-
efficients. There are then two distinct types of questions commonly asked.
First, one can look for rational points (pl/ql, ... which lie on the

common set of zeroes of the polynomials, i.e. pm/qm) = 0 for
all i. This line of inquiry leads to the Mordell conjecture (which deals with
the case of a single polynomial in two variables) and higher dimensional
generalizations due to Faltings and Vojta. Alternatively, one can look for
rational points (pl/ql, ... ,Pm/qm) which are ’approximate solutions’ or in
other words lie very close the set of common zeroes of the f i’s. This question
is perhaps older than the first and is aptly called diophantine approxima-
tion because one is looking not for solutions to diophantine equations but
for approximate solutions. In this direction, the most striking results are
Roth’s theorem, dealing with the case of a single irreducible polynomial in
one variable, and the Schmidt subspace theorem which allows for several
variables but deals with very specific (linear) polynomials.
One of the simplest results in diophantine approximation is Liouville’s

theorem. For this, we consider a single irreducible polynomial f (X ) E Q(X~
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of degree d &#x3E; 2 with a root a E R. Since f is irreducible, a g Q and it
makes sense to approximate this zero of f (X) by rational numbers. Liou-
ville’s theorem states that for any rational p/q one always has an inequality
of the form

where c(a) is an explicity determined constant depending only on a. It
turns out, however, that the exponent d in the denominator is not best
possible except for quadratic f (X ). In fact, Roth proved that 0.1 can be
improved by replacing d with 2 + E for any f &#x3E; 0. The disadvantage to
Roth’s theorem is that the constant c(a) is no longer explicitly determined.

Roth’s theorem was generalized fifteen years later by Schmidt who deals
with the case of n independent linear forms Li(X) E k[Xl,... Xnj where
Q has now been replaced by a finite extension k/Q. The Schmidt subspace
theorem (see §5 for an explicit statement) states that the set of rational
points (pl/ql, ... , pn/qn) which are close to the n linear subspaces 
0 are degenerate; here degenerate means contained in a finite union of
proper linear subspaces. In the one variable case, choosing L(X) = X - a,
one recovers Roth’s theorem since a degenerate linear subspace of Q is
just a point. Schmidt’s subspace theorem has recently been extended by
Faltings and Wüstholz to deal with the case when the Li are no longer
linear.

Returning to the first question posed in diophantine approximation we
take the subvariety X C pn defined over Q as the common zero locus of
our collection of polynomials. As noted above, in this case one is not ’ap-
proximating’ a geometric object with rational points but rather looking for
actual rational solutions to the system of equations defining X. The con-
nection between the problem of finding actual as opposed to approximate
solutions to polynomial equations was developed by Vojta in his proof of
the Mordell conjecture [V2]. The Mordell conjecture states that if X is a
smooth projective curve of genus at least 2, defined over a number field
k, then X has only finitely many rational points. Like Roth’s theorem,
the result is ineffective in that it does not bound the size of the solutions.

Building upon Vojta’s ideas, Faltings [Fl, F2] was able to obtain similar
results for higher dimensional varieties under certain restrictions.

The goal of these notes is to give an introduction to the ideas and argu-
ments occurring in diophantine approximation, beginning with the simplest
result, Liouville’s theorem, and culminating with the difficult results of Falt-
ings and Vojta on the one hand and Faltings-Wilstholz on the other. The
rough structure of these notes is as follows: the first section begins with
Liouville’s theorem and procedes to analyse the difficulties encountered
when trying to sharpen Liouville’s result to obtain Roth’s theorem. The



441

second section then deals with these difficulties, concentrating on the geom-
etry behind Roth’s theorem, specifically the product theorem and Dyson’s
lemma. The third lecture moves from Roth’s theorem to Vojta’s proof of
the Mordell conjecture, developing the necessary theory of height functions
and the corresponding metrics on line bundles along the way. We will once
more emphasize the geometric aspects of the proof and give a rough idea of
the difficult arithmetic machinery involved. Lectures four and five will be
devoted to higher dimensional problems, one to higher dimensional Mordell
type theorems and one to the Schmidt subspace theorem respectively. The
proofs presented here will not, in general, be complete but we hope to em-
phasize all of the important points so that the interested reader can then
consult the literature for rigorous proofs and hopefully the account here
will facilitate this process.

There are several expositions of the material covered in these lectures.
For Roth’s theorem and the Schmidt subspace theorem one can consult
Schmidt’s two collections of lecture notes [Sl, S2]. For Dyson’s lemma, in
addition to Dyson’s original paper [D], one can consult [Bl, EV, Nl, N3].
Vojta has two proofs of the Mordell conjecture, [V2, V3], the second of
which is closer to the exposition given here. He also has a beautiful paper
[V4] giving a full proof of the higher dimensional results of Faltings [Fl , F2].
For surveys of the material behind Faltings’ work, one can consult [H] for
a beautiful overview or [EE] for a more thorough treatment.

These notes form the basis of a series of five lectures delivered at the Isaac
Newton Institute from March 23 through March 27, 1998. It is a pleasure
to thank the organizers of the workshop, Christophe Soul6, Jean-Louis
Colhot-Th6l6ne, and Jan Nekováf, for inviting me to present this material.
I would also like to thank all of those who attended the lectures and whose
comments have helped to remove many errors from these notes as well as
to add better and more complete explanations. I also thank those who
attended courses I gave on part of this material at Harvard in the spring of
1995 and at Bayreuth in the winter of 1996: it is only after trying to teach
the material several times that I have reached a full appreciation of the
subtleties involved. The spirit of these notes is hopefully the same as that
of the lectures, namely informal but aiming to give a reasonably complete
picture of the difficult techniques involved in these questions of arithmetic
geometry.

1. FROM LIOUVILLE TO ROTH

We begin by recalling the quick and elegant proof of Liouville’s theorem.

Theorem 1.1 (Liouville). Suppose a E R is an algebraic irrational num-
ber of degree d over Q. Then there exists an effectively computable constant
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The proof can be formally divided into three stages which will reappear
in all of our arguments but which are particularly transparent in this case.
We begin with the irreducible polynomial f (X ) E Q[X] for a over Q. To
specify f uniquely one can take f E Z[X] with relatively prime coefficients.
The outline of the argument is as follows:

Step 1: 0 for any p/q E Q since otherwise f would not be
irreducible over Q.

Step 2: since qd is a common denominator for the terms
in 1(P/q).

Step 3: a~ for an explicit constant b(a).
Liouville’s theorem follows, with c(a) = 1/2b(a), by comparing the bounds
in Steps 2 and 3. Only the upper bound in Step 3 requires further comment.
Suppose we take the Taylor series expansion of f (X ) about a. Since f (a) _
0 the first term is zero:

Thus

This establishes Step 3, provided lplq - al  1, with b(a) = Ed 1 jail
and proves Liouville’s theorem (taking c(a) = As for

effectivity, the numbers ai depend only on a as they are the coefficients of
the Taylor series expansion of f(X) about a. Consequently, b(a) and c(a)
depend only on a.

Suppose now that one tries to improve the exponent d in Liouville’s
theorem. One idea would be to run through the same argument with a
different auxiliarly polynomial f (X). Of course this risks losing effectivity
because f (X) was determined uniquely by a. Nonetheless, one could try. A
review of the argument reveals that the exponent d in the theorem comes
by taking the quotient of deg f(X) by multa ( f (X )). Thus if we replace
f (X ) with a different polynomial g(X) which also vanishes at a we will get
the same result with an exponent of
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But for Step 2 to work, we need to have g(X) E Q[X] and thus g(X)
will be divisible by Thus we always will have

degg(X)/multa(g(X)) &#x3E; d
and there is no improvement.

Thus some new idea is needed in order to improve the exponent d of
Liouville’s theorem. At the beginning of the century, Thue had the idea of
running the same argument with an auxiliary polynomial in two variables.
Thus in order to bound how close a single rational number can be to a,
Thue considers a pair of rational numbers both of which are
close to a. The reason why an extra approximating rational point helps is
that now the auxiliary polynomial will be in two variables and this gives
additional degrees of freedom allowing for an improvement in the important
ratio

which occurs as the exponent in Liouville’s theorem. There are of course
immediate complications in the argument, particularly with Step 1 as with
two variables there will not be a well-defined choice of auxiliary polyno-
mial with big multiplicity at (a, a). But without a canonical choice of

f (X,Y) there is no longer any reason why f (pl/q,,P2/q2) should be non-
zero, without which the argument runs aground. Thus the simplest step in
the proof of Liouville’s theorem, Step 1, becomes the most cult when
one considers an auxiliary function in more than one variable.
Of course, once one is willing to consider f (X, Y) there is no reason to

stop there and Roth was finally able to obtain the best result possible by
considering an auxiliary polynomial with an arbitrary number of variables:

Theorem 1.2 (Roth’s Theorem). Suppose a E R is algebraic and irra-
tional. Then for any e &#x3E; 0 there are only finitely many solutions to

Note that the formulation of Roth’s theorem is slightly different from that
of Liouville’s theorem. It follows from the fact that 1.3 has only finitely
many solutions that there exists a constant c(a) such that

The problem is that the constant c(a) is not effective and this is why Roth’s
theorem is formulated in this alternative style.
The strategy for proving Roth’s theorem is identical to that of Liouville’s

theorem except that we will use several good approximating points. So we
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assume that Roth’s theorem is false and this gives a sequence of good
approximating points

The strategy for the proof will be to choose m of these good approximating
points, where m -+ oo as e --~ 0, and construct an auxiliary polynomial
in m variables with large order vanishing at (a, ... , a). Steps 2 and 3 of
Liouville’s theorem will then tell us that the approximations are too good,
giving a contradiction. In order for Steps 2 and 3 to yield a contradiction,
one needs to choose the appropriate notion for the order of vanishing of our
polynomial f (X 1, ... , X,,,~ ) at (a, ... , a) . We will see as we go through with
the proof that the following, though at first awkward, is the apt definition:

D efinit ion 1.5. Let 0 7~ /(Xi,...,X~) E and let

(al, ... , 7 am) E Consider the Taylor series expansion of f about
(a , ... , 7 am):

Suppose f has multi-degree (dl , ... , The ind ex of f at (a~ , ... , 
is defined as follows:

The index of a at a point x E cm is a

weighted multiplicity. For example, if di ==...== dm = d then

In general, each variable is weighted so that it can contribute a maximum
of 1 to the index.
To see the relevance of the notion of index, we run through the three

step proof of Roth’s theorem which we would like to model after Liouville’s
theorem: we construct an auxiliary polynomial f (Xl, ... , of multi-

degree (dl, ... , with large index at the point (a, ... , a). Then the

proof should procede as follows:

Step 1: Show that 0.

Step 2: I 
as in Liouville’s theorem.

Step 3: If(PI/ql,... I is small since lpilqi - al is small and f
has large index at (a, ... , a).



445

As it stands, much work is needed in order to make this into a proof.
Only Step 2 requires no further justification. We begin by explaining the
upper bound for ,Pm/qm)1 in Step 3 as this is what motivates
the notion of index. As we did in Liouville’s theorem, consider the Taylor
series expansion of f about (a, ... , a):

Using 1.4 will give the following upper bound

for some constant C which depends on the number of terms in 1.6 and
the size of the coefficients of P. We see, ignoring the constant C for the
moment, that 1.7 contradicts the lower bound of Step 2 provided provided
aj=0 whenever

Since we do not know the relative sizes of the qz, the only reasonable way
to guarantee inequality 1.8 is by choosing di so that qai are all roughly
proportional, i.e. we need to choose

Moreover, with this choice of di inequality 1.8 translates into the following:
we want aj=0 whenever

And here the index has finally reappeared as a natural consequence of the
argument: indeed, 1.10 says that we want

To summarize, the lower and upper bounds for given
in Steps 2 and 3 respectively contradict one another, assuming we can
suitably bound the constant C in 1.7, provided that m/(2+e).

At this point there are three technical issues to deal with in order to
make this sketch a rigorous proof
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Problem 1: Show that f (pl/ql, ... , 0.
Problem 2: Bound the constant C occurring in 1.7.
Problem 3: Show that one can find 0 ~ f with index &#x3E; m/(2 + e) at

(a, ... , a).
We will deal with the three problems in reverse order. Problem 3 is

essentially a counting problem. We want to kill leading terms aj in the
Taylor series expansion 1.6 provided J satisfies 1.10. In order to guarantee
that one can force all of these a~ to vanish, it suffces to show that the
number of m-tuples ( jl, ... , jm) with 0  j~  c~ satisfying 1.10 is a small
f raction of the total number of monomials; for if this is true then a dimen-
sion count shows that there are lots of polynomials, with coefficients in a
finite extension having index at least m/(2 + e) at (a, ... , a) and
all of its Galois conjugates. Taking the norm over Q of such a polynomial
and clearing denominators gives the desired auxiliary polynomial. To show
that all of this works in our particular setting is a special case of what Falt-
ings and Wiistholz [FW2] refer to as the ’law of large of numbers’. Rougly
speaking, this says the following: for each i, the "average" value of ji/ dï
is 1/2 so if one randomly chooses a set the probability that 1.10
is violated approaches zero as m approaches infinity. For a rigorous state-
ment and proof one can consult [FW2] Proposition 5.1. Alternatively, for
the case in which we are interested, one can make an explicit computation
as in [L1] pp. 170-171.

Next we deal with Problem 2. There are two separate issues here, first
counting the number of terms aj and second bounding the size of the jail.
The first of these is simple as the number of aj is

Bounding the size of the aj is equivalent to bounding the size of the co-
efficients of the auxiliary polynomial f (X) which is potentially a serious
manner as f was constructed abstractly to satisfy certain vanishing condi-
tions. The fact that the size of the coefficients of f can be controlled is a
consequence of the famous Siegel lemma:

Lemma 1.11 (Siegel’s Lemma). Consider a system of rra linear equations
in n unknowns, with m  n:

Suppose az j E Z for all i, j and that laijl I  A for all i, j . Then there
exists a solution (xl, ... , xn) E Zn to the system of equations with ixi I 
1 + (nA)mj(n-m) for all i.
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We apply Siegel’s lemma by viewing the condition ind~a ... a~ ( f ) &#x3E; m/(2+
e) as a system of linear equations in the coefficients of f , i.e. we view the
coefficients of f as variables. Siegel’s lemma cannot be applied directly in
this situation because our system of linear equations will have coefficients
in the number field K = Q(a) since we are trying to impose large index at
a. Choosing a basis for K as a vector space over Q allows one to make the
reduction to Lemma 1.11 (for details, see [S2] Lemma 9A). One then ob-
tains a polynomial g E 0~[Yi,... , with large index along (a, ... , a)
and its conjugates such that the coefficients have bounded size; taking the
norm of g then gives the desired f .
The crucial observation to make about Siegel’s lemma is that the ex-

ponent m/(n - m) is small provided that the number of unknowns is a
fixed multiple of the number of equations. At this point, one needs to do
a lot of accounting to check that Siegel’s lemma gives an auxiliary polyno-
mial f E Z(Xl, ... , such that the constant C in 1.7 is small enough
to obtain a contradiction when comparing the lower and upper bounds on

In practice, to get the numbers to work out one
chooses m big enough to impose index m/(2 + e/2) at (a, ... , a) and the
extra e/2 allows one to absorb the bound for C in 1.7 and still obtain a
contradiction when comparing the numbers in Steps 2 and 3.

2. INTERLUDE: DYSON’S LEMMA

We still have not faced the most difficult of the obstructions to proving
Roth’s theorem, namely the issue arising at the beginning of the argument
in Step 1: how can we guarantee that

Without this information, all of our computations to obtain a contradiction
from comparing upper and lower bounds of [ are in
vain. This is by far the most difficult part of Roth’s theorem as the rest
of the argument essentially consists in counting. In general, there is of
course no way to guarantee that 0 because f has
not been explicity constructed: we simply know from dimension counting
that such an f exists but of course there may be several and most of them
will vanish at the approximating point Roth originally
dealt with this problem in an essentially arithmetic manner. He proved,
in what is now called Roth’s lemma, that provided di W d2 ... » d",,
(or, equivalently, given 1.9, ql « q2 « ... « q."a) the polynomial f (X )
constructed using Siegel’s lemma cannot have large order of vanishing at
(pi/9i)’ " Taking the appropriate derivatives of f then yields a
contradiction (since the number of derivatives is small, it does not affect
the contradiction arrived at in Steps 2 and 3 of the argument). Roth’s
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lemma is essentially arithmetic in nature, using the facts that f has integer
coefficients and that we are interested in its order of vanishing at a rational
point. For a proof, one can consult [Ll] pp. 179-181.
An alternative geometric argument to establish non-vanishing of

,pm/4m) was developed thirty years later by Esnault and
Viehweg [EV] building upon previous work of Dyson [D], Bombieri [Bl],
and Viola [Vi]. Esnault and Viehweg approach the problem from the
following point of view. Suppose that whichever f (X) we choose with
large index at (a, ... , a) we always find that f (X ) also has large index at
(pl/qi,... This says that certain linear conditions on the space
of all polynomials of degree (dl, ... , fail to be independent. Thus if
one could establish this independence then this would also yield a contra-
diction. The advantage to this viewpoint is that it is entirely geometric;
the fact that the points in which we are interested are all algebraic becomes
unimportant.
To state the powerful result which Esnault and Viehweg were able to

prove, we introduce some new notation. Let

be a product of m projective lines defined over k, an algebraically closed
field of characteristic zero. We will assume for simplicity that k - C,
the field of complex numbers although the argument remains valid in the
general case. Let 7ri : P - Pl be the projection to the ith factor. For

positive integers d 1, ... , dm write d = ( d 1, ... , dm ) and

For fixed d let 0 # s E H°(P,Op(d)). The index of s at a closed point
, of P is defined by locally identifying s with a polynomial and applying
Definition 1.5. We need to define certain volumes as in [EV] Definition 0.2:
Definition 2.1. Let 1m = l~ = (~1, ... , £m) E Rm 0  ~~  1 for all i}
and let Vol(t) denote the volume of

I 

Of course 1 - Vol(t) measures, asymtotically in d, the proportion of
sections of HO (P, Op (d)) with index &#x3E; t at a point C. Dyson’s lemma
gives conditions on a set of points {~~} C P and a line bundle Op (d)
so that requiring index ti imposes almost independent conditions on
global sections of The following is an alternative, slightly more
transparent formulation of Esnault and Viehweg’s Dyson lemma:

Theorem 2.2. Suppose 0 f= s E H°(P, and ~1, ... , Cm C P so
that no two (i are contained in a proper product subvariety, i.e. the points


