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The Complex Sum of Digits Function and Primes

par JÖRG M. THUSWALDNER

RÉSUMÉ. La notion de développement q-adique d’un entier, pour
une base q donnée, se généralise dans l’anneau des entiers de
Gauss Z [i] au développement d’un entier de Gauss suivant une
certaine base b ~ Z [i], ce développement étant unique. Dans
cet article, on s’intéresse à la fonction 03BDb, désignant la somme
de chiffres dans le développement suivant la base b. On montre
un résultat sur la fonction somme de chiffres pour les nombres
non multiples d’une puissance f-ième d’un nombre premier. On
établit aussi pour 03BDb un théorème du type Erdös-Kac. Dans ces
résultats, l’équidistribution de 03BDb joue un rôle essentiel. Partant
de cela, les démonstrations font alors appel à des méthodes de
crible, ainsi qu’à une version du modèle de Kubilius.

ABSTRACT. Canonical number systems in the ring of Gaussian
integers Z [i] are the natural generalization of ordinary q-adic num-
ber systems to Z [i]. It turns out, that each Gaussian integer has a
unique representation with respect to the powers of a certain base
number b. In this paper we investigate the sum of digits function
03BDb of such number systems. First we prove a theorem on the sum
of digits of numbers, that are not divisible by the f-th power of a
prime. Furthermore, we establish an Erdös-Kac type theorem for
03BDb . In all proofs the equidistribution of 03BDb in residue classes plays
a crucial rôle. Starting from this fact we use sieve methods and a
version of the model of Kubilius to prove our results.

1. INTRODUCTION

Let vq(n) denote the sum of digits of the q-adic representation of a pos-
itive integer n. Gelfond [5] proved, that vq(n) is equidistributed in residue
classes modulo an integer. In particular, he established the following result.
For r, m E Z with
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one has

The exponent ~1  1 in the error term can be computed explicitly and
does not depend on a, s, r and N. This result forms the basis for the

application of sieve methods, in order to get results on the sum of digits
of prime numbers. The first result of this type, also contained in Gelfond’s
paper [5], is the following. Let Sr,m(N) = In  N r (~n)}. Then
the number of elements of 8r,m(N), being not divisible by the f-th power
of a prime is given by

with a constant A2  1. Here ( denotes the Riemann zeta function. Re-

cently, Mauduit and S6xk6zy [15] proved an Erd6s-Kac type theorem for
the elements of the set 8r,m(N): Let m, r E Z such that (1) holds. Denote
the normal law by ~(a?) and let w(n) count the distinct prime divisors of
n. Then

The aim of this paper is to extend these results to the sum of digits
function of canonical number systems in the ring of Gaussian integers 
First we give a definition of these number systems. Let b E and fii =

{O, 1,... , N(b) - 11, where N(b) denotes the norm of b over Q. If any

number 1 E admits a representation of the form

for c; E {0,1, ... , N(b) - 11 (0  j  h) and 0 for h ~ 0, then (b, N)
is called a canonical number system in 7G~i~. b is called the base of this

number system. In Kitai, Szab6 [11] it is shown that b can serve as a base
of a canonical number system in if and only if

The sum of digits function of the number system (b, N) is defined by

Some properties of this function have been investigated in recent papers.
An asymptotic formula of the summatory function of in large circles
was computed by Grabner, Kirschenhofer and Prodinger [7]. Moreover,



135

Gittenberger and Thuswaldner [6] established asymptotic formulas for the
moments of 
The notion of canonical number systems can be extended to arbitrary

number fields, provided that they have a power integral basis (cf. Kovics
[12]). The bases of these number systems are characterized in Kovics,
Peth6 [13]. This characterization is not explicit and depends on the shape
of the integral basis of the number field. Some results on the sum of digits
function can be extended to the general case of canonical number systems
in number fields. The results (3) and (4) can be generalized to number
fields, whose ring of integers is a unique factorization domain. For further
generalizations a new notion of the sum of digits function with ideals as
arguments seems to be necessary. Since we also need the finiteness of
the group of unity of the ring of integers under consideration, we confine
ourselves to the Gaussian case.

Again our results are derived from a result of the type (2). The number
field version of (2) is established in Thuswaldner [18]. We only need the
"Gaussian" case of this result: Let b = -~c ~ i be the base of a canonical
number system in with minimal polynomial We define the sets

Then, for m, r E Z, a E Z [I] and an ideal s of Z [i], satisfying

we have the estimate

A  1 is an effectively computable constant independent of r, a, s, and N.
In Section 2 we will provide the necessary tools needed in the proofs

of our theorems, Section 3 is devoted to the generalization of (3) and in
Section 4 the Erd6s-Kac type result (4) is established for canonical number
systems in Z[I] .

2. AUXILIARY RESULTS

In this section we want to list various results from algebraic number
theory, that will be needed further on. First we give some estimates for
sums over prime ideals of (in fact, these estimates remain valid for rings
of integers of arbitrary number fields). In Narkiewicz [17, Lemmas 7.3-7.6]
it is proved, that
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The sum is extended over all prime ideals p whose norm is less than x.
Recall Abel’s identity (cf. Hardy, Wright [8, Theorem 421])

for A(t) = an and a continuously differentiable function f (t). Apply-
ing this to (7) yields the estimate

Furthermore, we have (cf. Narkiewicz [17, Chapter 7, Exercise 7])

We will also need the estimate

which can be proved in a similar way as Theorem 429 in [8].
Next we recall a result due to Hua [9] on exponential sums over number

fields. Let tr(z) denote the trace of z over Q and let D = 2Z[i] be the
different of Q(i). Then, writing e(x) = exp(27rix),

-

where runs over a complete residue system in modulo c-1.
In order to prove our results we will need a version of Selberg’s sieve

method and a generalized Kubilius model in number fields. These objects
are discussed in Kubilius [14, Chapter X] (cf. also Danilov [2] for related
results). In a more general setting they are studied in Juskys [10] and
Zhang [20]. Moreover, Thuswaldner [19] gives a survey on Selberg’s sieve
and the Kubilius model in number fields. We start with the statement of a

quantitative version of Selberg’s sieve in (cf. [19]).
Lemma 2.1. Let an E (1  n  N) and p &#x3E; 0. Let ~~, ... , p, be

prime ideals of with ...  p and set 11 = pi -" p,.
is an ideal that divides il (~~~ then we assume that there exists a

representation
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where X and R are real numbers, X &#x3E; 0, and = for
divisors of fl with (Dl, D2) = 0 (o denotes the unit ideal). Furthermore for
each prime ideal p we assume that 0  17(P)  1, holds.

Set

Then the estimate

holds uniformly for p &#x3E; 2,

w(c~) is the number of distinct prime ideal factors of -0, and

Now we sketch the construction of the generalized Kubilius model for
Z[I]. Again we refer to [19] for details. Let the same notation as in

Lemma 2.1 be in force. Set

and, for tlû,

. I r

Let A be the set algebra generated by the sets Et. In order to make A to
a probability space, we define the measure

If all conditions for the application of Lemma 2.1 are fulfilled, it can be

applied to vEt to get the estimate
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with H as in Lemma 2.1, 1 Oll [  1 and 82  1. Here [t, cJ denotes the least
common multiple of t and D.
Now we set

for each Unfortunately, pEt := ~~ in general does not define a proba-
bility measure on ,A, because there may exist empty sets Et with positive
pEt. Therefore we have to use a trick due to Zhang [20] in order to construct
a sequence of independent random variables such that the distribution of
their sum has density ut.

Remark 2.1. The fact that pEt in general does not define a measure on
,A was observed by Zhang [20]. Unfortunately, many versions of Kubilius
models proposed so far, treat pEt as a measure (cf. for instance [14, 3, 19]).
This lacuna can be mended in many cases with help of a trick used in
Zhang [20] (cf. also the proof of Lemma 2.3 of the present paper). We
want to mention explicitely, that the Erd6s-Kac type theorems in Mauduit-
S6xk6zy [15, 16] are not affected by this lacuna. Their proofs can be adapted
by reasoning in the same way as in the present paper.

Lemma 2.2. Having the same assumptions as in Lemma ~.1, suppose, that
R(N, t) = 0 (NA’) and T = such that A’+ 7J  1. Then Et :A 0 for

and N large enough.

Proof. Using (10) we easily obtain

On the other hand, by the assumptions in the statement of the present
lemma we have

Both constants cl, c2 are absolute. By the estimate (13) the result follows.
0

After these preparations we establish the following result (cf. also
Elliot [3, Lemma 3.5]).
Lemma 2.3. Having the same assumptions as in Lemma 2.1, suppose that
p &#x3E; 2 and max(log p, S)  $ log T hold. Furthermore, assume 
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for N(~)  T~ for some /3 &#x3E; 0. Define the strongly additive function

where l(p) is a function from to R. Define the independent random
variables Wp for each prime divisor p of 11 by

Then

do not differ by more than
/ ,

where {3’ = min( 1, (3). This holds uniformly for all sets F.

Proof. Consider the variables

It is easy to see, that P(E Wp E F) _ p(n : g(an) E F). Thus it remains
to show that it and v approximate each other.

Let E be the set of all () 111, for which E 0. Then v is again a probability
measure on the set algebra generated by the elements of S.

Following Thuswaldner [19, p. 496] we get the estimate

It remains to treat the sets Et with N(t) &#x3E; T. We get from [19, Lemma 1]
(cf. also [3, Lemma 2.3])
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By our assumption we have

Applying (15) to the sums containing put in (16), we arrive at

(14) (15) and (17) now yield the result. D

3. PRIME POWERS

This section is devoted to the generalization of Gelfond’s result (3). In-
stead of the ordinary zeta function in our theorem the Dedekind zeta func-
tion of the number field Q(i) occurs.

Theorem 3.1. Suppose m, r E Z fulfill (5) for a base b of a canonical
number system in Z[i]. Let T6 f(N) be the number of elements of Ur,m(N)
that are not divisible by the f -th power of a prime (f &#x3E; 2). Then there is
a constant 1L  1 independent of N, such that the estimate

holds.

Proof. Define the function

Then Tb, j (N) has the representation
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where the s-sums run over all ideals of in the indicated range. Setting
N1 = N~1-~»2, , where A is as in (6), we split the last double sum in two
parts:

For IR21 ] we obtain the estimate

Since there are 0(rl) (E &#x3E; 0, arbitrary) elements k in with N(k) = r
(cf. [17, Lemma 4.2]), we get

and, hence

Keeping in mind, that Nl = N(1-À)/2, we get for c small enough

In order to extract the main term, we apply (6) to Ri to derive

Since

and

we have
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Setting p = max(al, a2, a3)  1 yields the result. 0

4. AN ERD6s-KAc TYPE THEOREM

Now we prove an Erd6s-Kac type theorem for the complex sum of digits
function. This extends (4) to number systems in Z[i]. Throughout this
section ~b(x) denotes the normal law. Furthermore we use the notation

f (x) C 9O) for f (z) = 0(g(x)).

Theorem 4.1. Suppose m, r E Z fulfill (5) for a base b of a canonical
numbers system. in ~(i). Define the frequency

where w(z) counts the distinct prime factors of z E Z[i]. Then

holds uniformly for X and N &#x3E; 8. 

Proof. We will construct a measure, with respect to that the additive func-
tion behaves like a sum of independent random variables. To this
matter we will apply the general Kubilius model defined in Section 2. In a
second step we will use the Berry-Esseen Theorem (cf. [1, 4]) to show the
convergence to the normal law.

Set t = exp and let w, (z) count the distinct prime factors( log log log N
p of z, whose norms satisfy N(b)  N(p)  t. LN(X) shall denote the
frequency emerging from QN(X) if one replaces by wi (z) (We will also
use these functions with ideals as arguments. In this case they count the
distinct prime ideal factors of their argument. Since is a principal ideal
domain we have w(z) = and wl(z) = wl(z7G(il) for any z E Z[i]).
Now we want to apply the Kubilius model: assign the elements of 
to the numbers aj of the model and set X = IUr,m(N)I and 17(q) = N(q)-l.
For the prime ideals pl, ... , ps of the model we take all prime ideals p with
N(b)  N(p)  t. The function S of the model turns out to be

Using (8) we get the estimate S = log t(1 + o(l)). Hence, the conditions of
the model allow T to be any power of N. Our first goal is the application of
Lemma 2.3. To this matter we have to show, that the sets Ee are non-empty
up to a certain value of N(~). We do this by using Lemma 2.2. Hence, we
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have to estimate the remainder terms R(N, t). It is easy to see, that in our
case the remainder terms R(N, t) are given by

In order to estimate the R(N, t) we use Hua’s result (11). Let o be the

different of 7G~i~. Then

The sum runs over a complete residue system in mod-

ulo c~-1 not containing the element - 0 (c~-1). We will use this notation in
the rest of this paper. Setting

for a E yields

In the next part of our proof we need the following estimates (cf. [18,
Lemmas 3.2 and 3.1]):

For 1 = 0 we have

Moreover, for any ~ E Q(i) we have, for :

Now we get, following [15],
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Using the estimates (18) and (19) yields

Hence, with A’ = max( ) , A) we have

Set 11t’ and

By (20) and (21) the conditions for the application of Lemma 2.2 are ful-
filled. Since X = = O(N) by (6), we conclude, that Et =,4 0
for N(t)  . With that we have established the conditions for
the application of Lemma 2.3. Define a collection of independent random
variables by

Lemma 2.3 now yields

where £’ indicates, that the sum runs over all square-free ideals t, whose
prime factors p have N(b)  N(p)  t.
The estimate (22) holds for all t &#x3E; 2 and for max(log t, S)  1 8 . Some

calculations yield that the first error term in (22) is for
each d E N.
Now we estimate the second error term. Recall that there are 

(6 &#x3E; 0, arbitrary) ideals in Z [I] whose norm is equal to r. Since I R (N, t) I =
O(NÀ’) we get for e  6
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The last step is a consequence of (6).
This implies, together with (22), that

Now we turn to the second step of our proof. In order to apply the Berry-
Esseen Theorem on the convergence of a sum of independent random vari-
ables to the normal law (cf. ~1, 4~), we define the random

variables Zp by

Let Then, by (9) we have

The Berry-Esseen Theorem now yields, again using (9),

For the random variables Wp we derive

Together with (23) this yields

Since a number z with Izl2  N has at most log log N) prime factors
p with norms not contained in the interval [N(b), t], we can replace LN(X )
by Qrr(X) and derive
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