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On integral representations by totally positive
ternary quadratic forms

par ELISE BJÖRKHOLDT

RÉSUMÉ. Soit K un corps de nombres algébrique totalement réel
dont l’anneau d’entiers R est un anneau principal. Soit f(x1, x2, x3)
une forme quadratique ternaire totalement définie à coefficients
dans R. Nous étudions les représentations par f d’entiers totale-
ment positifs N ~ R. Nous démontrons une formule qui lie le
nombre de représentations de N par des classes différentes dans
le genre de f, au nombre de classes de R[~2014cf N], où cf ~ R
est une constante qui dépend seulement de f. Nous donnons une
démonstration algébrique du résultat classique de H. Maass sur les
représentations comme sommes de trois carrés d’entiers de Q(~5)
et une dépendance explicite entre le nombre de représentations et
le nombre de classes du corps biquadratique correspondant. Nous
donnons également des formules analogues pour certaines formes
quadratiques provenant d’ordres quaternioniques maximaux de
nombre de classe 1, sur les entiers de corps de nombres quadra-
tiques réels.

ABSTRACT. Let K be a totally real algebraic number field whose
ring of integers R is a principal ideal domain. Let f (x1, x2, x3)
be a totally definite ternary quadratic form with coefficients in R.
We shall study representations of totally positive elements N E R
by f . We prove a quantitative formula relating the number of rep-
resentations of N by different classes in the genus of f to the class
number of R[~2014cf N], where cf ~ R is a constant depending only
on f . We give an algebraic proof of a classical result of H. Maass
on representations by sums of three squares over the integers in
Q(~5) and obtain an explicit dependence between the number
of representations and the class number of the corresponding bi-
quadratic field. We also give similar formulae for some quadratic
forms arising from maximal quaternion orders, with class number
one, over the integers in real quadratic number fields.

Manuscrit reçu le 18 juin 1999.
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INTRODUCTION

Let f(zi , z2 , z3) = x) + z) + x3 and let be a square-free positive
integer such that 1, 3. Let S = Gauss proved that the
number of solutions (xi, x2, ~3) E 7G3 to the equation l(x1, X2, X3) = N is

where h(S) denotes the class number of S. 
~ 

In 1940 it was shown by Maass, using analytical means, that the equa-
tion X2, X3) = N can be solved in R = 7G~1 2~~ ] for every totally
positive N E R. Maass also gave a formula for the number of solutions

(see [12]). In the present article, using algebraic methods and some numer-
ical computations, we prove an explicit formula stating that the number of
primitive representations of a totally positive non-unit N E R (that
is, solutions to X2, X3) = N such that GCD(xl, X2, X3) = 1) is given
by

where S = R( and 7a = 12,24 or 32 (see Thm. 4.2). Moreover, we
prove that there is always a primitive representation of N by f . Using
similar methods, we also discuss some other results on representations of
integers by totally definite ternary quadratic forms with integer coefficients
in totally real algebraic number fields.

Similar algebraic methods in connection with studies of representations
by sums of three squares and some other ternary quadratic forms are al-
ready known from several papers (see [2], [4], [5], [15], [17], [18]). Following
[2] and [4], where these questions were considered in the case of rational in-
tegers, we describe a strategy, which can be used for totally definite ternary
quadratic forms over the integers in totally real algebraic number fields.

Let R be a principal ideal domain whose quotient field K is a totally
real algebraic number field. Let X2, X3) be a totally definite ternary
quadratic form over R and let N E R denote a totally positive number.
In Section 1, we introduce some notation used in the paper. Section 2
contains a quantitative formula relating the number of representations of N
by different classes in the genus of f to the class number of S = 
where c f E R is a totally positive constant, which only depends on f . In
the case of primitive representations, the right hand side of the formula
is a product of the class number of S by a coefficient 7(~). The results
of this section are direct generalizations of the results in [2] from the case
of rational integers to the class number one case of the integers in totally
real algebraic number fields. Therefore, we only modify some statements,
and their proofs when necessary. In Section 3, we examine the stability
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for the embedding numbers of commutative quadratic orders into some
quaternion orders. As a consequence we show that q(N) has a certain kind
of periodicity. Finally, in Sections 4 and 5, we consider applications of our
results obtaining a number of quantitative formulae for numbers of integral
representations by specific ternary quadratic forms.

I would like to express my thanks to Juliusz Brzezinski for many valuable
comments on this paper.

1. PRELIMINARIES

Throughout this article, R will denote a principal ideal domain whose
quotient field K is a totally real algebraic number field and f : R3 -~ R will
be a totally positive definite quadratic form. We denote by N » 0 that N
is totally positive. We let Rp denote the completion of R with respect to
a non-zero prime ideal p C R. A will denote a quaternion algebra over K
i.e. a central simple K-algebra of dimension four.
An R-order A is a subring of A containing R, finitely generated and

projective as an R-module and such that KA = A. We let Ap = Rp 0~ A
denote the completion of A at p. Two R-orders A and A’ in A are in the
same genus if l1~ and Ap are Rp-isomorphic for each prime 0 in

R.
If L is a free R-lattice with basis and q is a quadratic form,

then the Clifford algebra, which we denote by C(L, q) or C(q), is 7-(L) /-E
where T(L) is the tensor algebra of L and I is the ideal in T(L) generated
by x 0 x - for x E L. The even Clifford algebra is defined to be

where ’ is the even part of the tensor algebra of L.
The matrix

is called the matrix of f and d( f ) = 1 det Mf is called the discriminant of f .
We denote by the greatest common divisor of the elements in the adjoint
matrix of Mf. With q non-degenerate, Co(L,q) (j!)R K is a quaternion K-
algebra. Furthermore, the square-root of the discriminant of the R-order
A = Co(L,q), called the reduced discriminant and denoted by d(A), has
dA = 1 det Mf as a generator (see [14], Satz 7).
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Recall that an R-order A is called hereditary if every ideal of A is pro-
jective as a A-module and this occurs if and only if its discriminant dA
is square-free (see [16], Prop. 39.14). A is called Gorenstein if its dual
A# = {~ E A : g R} is projective as a left A-module (tr A/K
denotes the trace function). A is called a Bass order if each R-order A’
such that A C A’ C A is Gorenstein. For a quaternion order A there is a
Gorenstein order G(A) containing A such that A = R + b(A)G(A), where
b(A) is an R-ideal. G(A) and b(A) are unique (see [3], p. 167).
We also recall that for an R-order A in a quaternion algebra over K the

Eichler symbol, denoted by ep (A), is defined according to the following:

where J(A) denotes the Jacobson radical of A and m denotes the maximal
ideal in Rp.
We denote by H(A) the two-sided class number of A, that is, the order of

the group consisting of the locally-free two-sided A-ideals modulo the prin-
cipal two-sided A-ideals. Aut(A) will denote the group of automorphisms
of A , that is, the group of (inner) automorphisms of A, which map this
order onto itself.

Let A be an R-order in the quaternion algebra A over K and S an R-
order in a separable quadratic K-algebra B. An R-embedding cp : S --&#x3E; A
is called optimal if is R-projective. We write e(S, A) to denote the
embedding number of S into A, that is, the number of optimal embeddings
S -3 A if this number is finite. A* acts on the set of embeddings cp : S -&#x3E; A

by inner automorphisms, that is, for a E A*, (a o cp)(s) = acp(s)a-1, s E S.
We denote by e*(S, A) the number of A*-orbits on the set of embeddings
of S in A.
Two quadratic forms f and g are equivalent over R if there exists a

matrix M in GL3(R), such that, Mf = M’MGM. The quadratic forms f
and g are in the same genus if they are equivalent over Rp for each prime
ideal p # 0 in R.

Let (L, q) and (L’, q’) be two quadratic R-lattices. They are similar,
which we denote by (L, q) - (L~, q’), if and only if there is an R-linear

bijection p : L - L’ and an element c E R* such that q’(cp(x)) = cq(x) for

2. REPRESENTATIONS BY TERNARY QUADRATIC FORMS

In this section, we gather some results on representations of totally pos-
itive integers by ternary quadratic forms with coefficients in the rings of
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all integers in totally real algebraic number fields. We follow the presenta-
tion in [2], where the corresponding results were obtained for the rational
integers. In fact, we only have to change a few details related to the unit
groups. For convenience of the reader, we gather the necessary results for-
mulated for arbitrary rings R under consideration and, occasionally, we
give the proofs when they have to be modified to this new situation.

Let Aut+( f ) denote the group of integral automorphisms of f with de-
terminant 1 and the number of integral representations of N » 0
by f, where N E R. It can be checked, without difficulty, that IAut+(/)1 [
is finite.
The following proposition describes a relation between representations

of integers by ternary quadratic forms and solutions to quadratic equations
in quaternion orders.

Proposition 2.1. Let f be a totally positive definite ternary quadratic
form over R. There is an R-order A in a quaternion algebra A over K
and a totally positive constant cf E R, such that the integral representa-
tions of N E R, N » 0, by f are in one-to-one correspondence with the
solutions A E A to x2 = 

A proof can be given along the same lines as in the proof of Prop. 3.2
in [2] (which treats the case of the rational integers). We will only give a
description of A and Let

l(x1, X2, X3) = allx 2+ a22~2 -~ a33X2 + al2XlX2 ~- a13X1x3 + a23X2X3,
where a~~ E R. Let V = Kel + Ke2 + Ke3, !(X1, X2, X3)
and T(x, y) = q(x + y) - q(x) - q(y). Let L = Re, + Re2 + Re3 and

L* = {v E V : T(v, L) C R}. Then A = and 

where Co = °

The relation between f and the corresponding order A in the proposition
leads to the following main result of this section, which can be used for
computations of the representation numbers by f :

Theorem 2.2. Let f be a totally positive definite ternary quadratic form
and A the quaternion order corresponding to f according to Prop. 2.1. Let
fl = f, ... , ft represent the classes in the genus of f . Then

were I the sum is taken over all R-orders S such that

and S is a maximal commutative suborder
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We give a short account of the proof, which needs slight modifications of
the arguments given in [2]. First of all, we have the following well-known
relation between quadratic lattices and quaternion orders (see [14], Satz 8):
Proposition 2.3. Let A be a quaternion and A an R-order in
A with reduced discriminant d(A) = (dA), dA E R. Let

and

Then L = A# n Ao is an R-tattice on Ao. Furthermore,

where an R-basis for L and nr = nrA~K denotes the reduced
norm, is a ternary quadratic f orm such that A ~ Co (L, q) .

Prop. 2.3 and straightforward calculations give the following result:

Proposition 2.4. There is a one-to-one correspondence described in Prop.
2.3 between simitarity classes of quadratic R-lattices (L, q), where q is a

ternary non-degenerate form, and isomorphism classes of quaternion orders
over R.

Let L = ReI + Re2 + Re3 and let q be a quadratic form defined on
L. Define f by = q(x1el + x2e2 + x3e3) and let
A = Co(L#, coq). Let u: L -+ L be R-linear, a(L) = L and = cq(l)
for some c E R* and all 1 E L. Denote by M the matrix representing o,
in the basis el, e2, e3. We have MtMqM = cMq, so (det(M))2 = c3, which
implies that c = j2 for some E E R* . We can now define L --~ L,
where eë-1q(ei), e is 1 if det(M) &#x3E; 0 and -1 otherwise. Let M
be the matrix for ~~. We have = L, det(M) = 1 and = q(l)
for all l E L. Using this, we find that lAut(A)l ( = Also note
that for fj in the genus of f , the determinants of M fs and M f are equal up
to multiplication by a unit in R. Moreover, and flf are defined up to
multiplication by a unit, so can be chosen equal to c f. Now we have:

Lemma 2.5. Let (L1, q1) = (L, q), ... , (Lt, qt) represent all classes in the
genns of (L, q). Then the orders Al = A, ... , At, constructed as in Prop.
2.1, represent all the classes in the genus of A.

Proof. Since (L1, q1 ) = (L, q), ... , (Lt, qt) represent all classes in the genus
of (L, q), we know that (Lf, cOq1),... , (Lf, coqt) will represent all classes
in the genus of (L#, coq). It is clear that the orders Ai = Co (Lf , coqi)
and Aj = Co (Lf , co qj) 7 i will represent different classes in the same

genus. Assume that l~’ and A = C4(L#, coq) are in the same genus . Then



153

d(A) = d(A’). Using Prop. 2.3, we have A’ E£ Co(L’, q’) and A ^--’ Co(L", q"),
where q’ = dA, nrA/K and q" = dAnr A/K. Let Mql and Mqll be matrices
corresponding to the lattices (L’, q’) and (L", q") respectively. We find that
we may choose dA and dA, so that the determinants det(Mq,) and det (Mq« )
only differ by the square of a unit in R*. This implies that (L’, q’) and
(L", q") are in the same genus, so A’ is isomorphic to one of the orders

0

Finally, we need the following result (see [2], p.204):

Proposition 2.6. Let Al = A, ... , At represent all the isomorphism classes
in the genus of A. If S is a maximal commutative suborder of A, then

where H(Ai) is the two-sided class number of Ai, h(S) is the locally free
class numbers Spec(R), p 0 (0).

We are now ready to prove Theorem 2.2:

Proof. Let So = Then the integral representations of N by f ,
where N » 0 and f is as in Prop. 2.1, are in one-to-one correspondence
with all embeddings So - A. Notice that each embedding can be extended
to an optimal embedding of an R-order S such that So C S C 
We have r f(N) _ Ls e(S, A).
The isotropy group for cp under the action of A* by inner automorphisms

consists of all elements a in A* such that that is, those elements
a E A which commute with each element in cp(S) i.e. the isotropy group
is Kcp(S) n A*. Since cp is an optimal embedding Kcp(S) n A* = S* and
the number of elements in each orbit of A* is ~A* : S*]. We know that
~A* : S*]  oo since [A* : R*]  oo, see [7], Satz 2. Thus, we have the
equality

Using (2.7) and the expression ofr/i by e(S, Ai), we get
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Using similar arguments as in [2], Prop. 3.5, we find that the first factor
in this expression is the same for all i. Inter-

changing the summation order in (2.8) and applying 2.6, we get the desired
result. D

We make the following well-known observation:

Lemma 2.9. Let f be a totally positive definite ternary quadratic form and
let A be the quaternion order constructed as in Prop. 2.1. The primitive
solutions correspond to optimal embeddings of S = in A.

Proof. Let A = R + REl + RE2 + RE3. We have an embedding p : S -~ A,
where cp( -c fN) = A, A2 = -cfN and cp(S) = R + RA. Since R + RA C A
and R is PID, there exists an R-basis, ao, aI, az, a3, for A such that 
Rdoao + Rdl al , where do, dl E R and dold1. We have

Hence, is R-projective if and only E R* . Let f (rl , r2 , r3 ) =
N be a primitive solution, that is, GCD (ri, r2, r3 ) = 1. Using Prop. 2.1,
we get A = ro + rl El + r2 E2 + r3 E3 such that A~ We know that
1 = r’doao + rldlal and A = rlldoao + rrd1al. Then since do (di , so
do E R* . We also know that

j ri ri j I 
- - --

We observe that aro - (ro r1 - Then and d1lrg,
since ?CD(ri,r2,r3) = 1, so d1 divides the determinant and we find that
d1 e R*. Hence the embedding of S in A is optimal. Now we assume that
/(~l)~2~3) = N is not primitive. Let d = GCD(r1, r2, r3). Then we know
that dlri, i = 0,1, 2, 3, where rj denote the coefficients of A E A. But then

= R + RA c R + R- that is, is not a maximal commutative

subring of A. Hence is not projective. 0

Denote by the number of primitive solutions to = N.

Using Lemma 2.9, we have a Corollary, which gives us a formula for the
number of primitive representations of N by f when t = 1.

Corollary 2.10. With the same notation as in Prop. 2.2,

where
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3. STABILITY OF THE EMBEDDING NUMBERS

The main objective of this section is Thm. 3.2 which is analogous to
Thm. 3.4. in [4]. Unfortunately, we were not able to eliminate the restric-
tion to quadratic fields Q( ý’d) with d ~ 1 (mod 8). The proof depends on
a stability property of the embedding numbers of some commutative qua-
dratic orders into quaternion orders over complete discrete valuation rings.
We start with the following well-known fact, which we need in the sequel:

Lemma 3.1. Let K = where d E Z, d &#x3E; 0 and d is square-free.
Denote by R the integers in K. Let S = R[~/2013o~ where a E R, a ft. R*
and a » 0. Then S* = R*.

Proof. Let K’ = K( a) and let-: K’ - K’ denote complex conjugation.
Let e E S*. Then the map e 2013~ ~ will send the units in S* to roots of
unity in S* since K’ is a CM-field. So e = Enf, where en denote an n:th
root of unity. Then the minimum polynomial Mln is of degree cp(n), where
cp is the Euler function. In our case, ~(?~4, so the only possibilities are
n = 2, 3, 4, 5, 6, 8, 10, 12. It is then easy to check that I - 1, 11 are the only
roots of unity in S. But en = -1 is impossible since a ft R*. Hence we
have ~ = e so e ~ R*. 0

Theorem 3.2. Let K = where d is a positive square-free rational
integer. Denote by R the ring of integers in K. Let 1 (mod 8) be
such that R is a principal ideal domain. Let f be a totally positive definite
ternary quadratic form over R and let A = A f be the corresponding order
according to Prop. 2.1. Assume that G(A) is a Bass order (see Section 1)
and let

as in Cor. 2.10, and

Then there is a positive rational integer Mo such that ’Y has the following
property: Let c f N = No Nl and c f N’ = be two totally positive non-
units in R, where E R and are square-free, such that
for all we have



156

where vp denotes the p-adic valuation. Then ’Y(N) = y(N’) and further-
more, one may choose Mo to be the positive generator of the ideal (d(A))fl7Z.

is independent of N.
Denote by 0(L/K) the discriminant of the extension K C L. According

to Prop. 2.4 and 2.5 in [4], we have = e* (9§, Âp) if

and the conductors fp and j of 9p and with respect to the maximal

orders in Lp and satisfy

is a given rational non-negative integer such that i(p)  vp(d(A)). Hence
the factor

depends on the conductor f of S with respect to the maximal order in L
and the relative discriminant 0(L/K). Let R’ denote the integers in L.
R is a PID, so R’ = R + Rw, for some w E R~. For a suborder 0 C R’,
we have 0 = R + Raw for some a E R. Then f = (a). Using the relation
D(O) = where D(O) denotes the discriminant of the order
0, and the fact that is a basis for L over K, we find that

(C2N,) and f = (~No) for some c E R such that cl2. We use
Thm. 1 in [20] and the classification of possible cases given in [8] in Tables
A-C to see, that the factor c of the relative discriminant will be the same
for Ni and Ni if Ni - Ni (mod 16).
Assume that the prime p does not divide d(A) and let denote a

maximal order in A such that A C Then p does not divide d(Am) , so
Ap = is split (see e.g. Cor. 5.3 in [21]). Since p does not divide d(A),
we also know that A~ is a maximal order and thereby hereditary (d(Ap) is
square-free). According to Prop. 3.1.(b) in [3], we have e. (Sp 7 AP) = 1.
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Let pid(A). Then (3.3), (3.4) and (3.5) will ensure that the conditions
(3.6) and (3.7) are satisfied. Hence q(N) = "((N’). The choice of Mo as the
positive generator of d(A) n Z is possible since i(p)  

0

Corollary 3.8. With the notation as in Thm. 3.2, there exist positive
rational integers Mo and M1 such that the value of y(N) _ is

determined by the residues of No modulo Mo and N1 modulo Ml.

Proof. Let d1 denote the product of all different primes p in R such that
p divides dA but p does not divide 2. It follows from Thm. 3.2 that it

is possible to choose Mo and M1 as the positive generators of the ideals
d(A) n Z and (4d1)2 n Z respectively. 0

4. THE SUM OF THREE SQUARES

Let K = (Q(-B/5-), R = 7G~1 2~~ ] and let f : R3 -~ R, +

x2 + x 2. Denote by A f the quaternion order Cp(L#, coq) corresponding to
f according to Thm. 2.1 and denote by A the quaternion algebra 
We have c f = 1 and A f = R + RE, + RE2 + RE3, where E2 = E 2
and = -Ek, where i, j, k is an even permutation of 1, 2, 3.
The type number of A j is 1, since the type number of f is 1 (see
Satz 24 in [6] or, for an algebraic argument, (11~, p. 685). It is not difficult
to check that A f is a Bass order using the condition given in [4], p. 315.

It was proved in [12] that every totally positive number N in R = Z[ 2
can be represented as a sum of three squares. We will now give a proof of
this, based on algebraic methods. Moreover, we will prove that there is a
primitive representation for every totally positive element in R.

Theorem 4.1. Every totally positive nuTrtber N in R = 7G~1 2~~ 1 can be
represented by f : R 3-+ R, where

Moreover, there is always (X1,X2,X3) E R3 such that GCD(X1,X2,XS) = 1
and f (xi, ~a~ ~s) = N.

Proof. Let A denote the order corresponding to f , described above. Let

N E R be totally positive with N = Ni N02, where No , Ni e R and Nl is
square-free. Let L = K(ý-N¡) and let w - 1+2 . * It can then be checked

that the discriminant -Ni if -Ni =- 1, w + 1 or (w + 1)2 and
-4N1 otherwise. A is a totally definite quaternion algebra so

it ramifies at both infinite primes. We know that A ramifies at an even
number of primes and that the finite primes where A ramifies divide the
reduced discriminant of the maximal orders (see [21], Chap. II, Cor. 5.3
and Chap. III, Thm. 3.1). Hence, A ramifies only at the infinite primes
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since dA = 4. Furthermore, Ap is maximal for all primes p # 2 in R but
not for p = 2.

Using Lemma 2.9 and Cor. 2.10, all we need to show is that for a

totally positive integer N E R it is possible to embed S = as a

maximal commutative suborder of A, that is, 0. We start by
observing that by Thm. 3.2. in [21], we have = 1, for all p =,4 2
and all orders S in a commutative algebra of degree two over K, since A~
is maximal.

Using Lemma 6 in [10] we find that e(2) (A f) = 0 since the discriminant
6(A) = (tr(A))2 - 4nr (A) = -4(rf + r2 + r3) E 2fi2 for all elements A =

in If 2 divides 0(L/K), then 0,
by 3.14 in [3] if S2 is maximal in L2, since L is ramified over K, and
by 3.17 in [3] if it is not maximal. If 2 does not divide 0(L/K), then
the maximal order of L will be where a = 1 for -Ni * 1,

for -Nl - (w + 1)2 and a = (w + 1)2 for We have

S = R[~/2013~V]. Hence, 92 will not be maximal in L2, so by 3.17 in [3], we
have 0. Hence 0

Finally we shall find a formula for the number of primitive representa-
tions of N by f . We start by observing that if N E R* and N » 0, then
N is a square. It is then easy to check that rf(N) = 6.

Theorem 4.2. Let N be a totally positive non-unit irc R = Z[1+2V5] and
let = X2 + x 2+ x 2 . Let N = where No, N1 E Rand
Nj is square-free. Then the numbers of primitive representations of N by
f , is given by

Proof. Assume that R*. We have = 24. Using Cor. 3.8, we
may choose Mo = 4 and M1 = 16. We also observe that for Nl not divisible
by 2, Ml = 8 suffices (see Tables A-C in [8], Thm. 1 in [20] and Thm. 3.2).
We choose a suitable limited set of numbers N to represent all congruence
classes modulo Mo and Ml. We observe that 0  a, 0  m  a and
-a 

 n  
a for N = °’+2 = X2 + X2 + X2 and 0 # i = "’’+2 (m - n75 for NV = 2 1 2 3 and 0 71 = 2 (m = n
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and a - b (mod 2)). Using this we compute the number of primitive
representations of N by f , by exhaustive search, for this finite set. We
then calculate the class numbers ~(~[~/2013~V]). Let S = and let So
denote the maximal order in A’(B~2013~V). We use the following relation

where f is the conductor for S with respect to So and p denotes prime ideals
in R (see [13], Thm. 12.12 and [19], 3.4). Functions in GP-PARI are used
to calculate the class numbers and the number of roots of unity in So as
well as the behaviour of prime ideals p C R, such that p f, in A’[~/20137V].
We find that the only possible values for ,(N) and 3. 0

5. QUADRATIC FORMS CORRESPONDING TO MAXIMAL ORDERS

In this section, we use a somewhat different method in order to study
the number of integral representations by ternary quadratic forms. We
start with maximal R-orders A in totally definite quaternion algebras over
quadratic real number fields such that d(A) = R and h~ = 1. There
are only four such cases and these are m = 2, 5,13,17, see [21] p. 155. We
will denote the maximal orders by A(m). We have A~’"1~ = with m

and fm as in the following table.

We would now like to find the number of primitive representations of a
totally positive number N by fm. We start with the following observation.

Lemma 5.2. Let A = Co( f ) be an R-order, in A, such that d(A) = R.
Let L = A fl Ao and L# = A# fl Ao, with notation as in Prop. 2.3. Then

L
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Proposition 5.3. Form = 2, 5,13,17 and 1m as in table (5.1), the number
of representations of totally positive number N by f m is given by

where we sum over R-orders S such that C S C and S

is a maximal commutative suborder of A"’’

Proof. For an element X E A~"’r, we have A2 - tr (A) A + = 0, so A2 =

-nr(A) when À E L = A fl Ao. Using the condition tr(A) = 0 to substitute
one of the variables in the expression for + xIE1 -~ x2E2 + X3E3)
we get a ternary quadratic form f : R3 ---7 R. We then have a one-to-one
correspondence between representations of N by f and the embeddings of
So = in A~"z~. We observe that each embedding can be extended
to an optimal embedding of an R-order S, where So g S C so

r/(N) = Es e(S, A(m»). Using (2.7), Prop. 2.6 and the fact that = 1,
we find that

Since A(m) is a maximal order and Ap is split for all finite primes p, we
have = 1 (see [3], Prop. 3.1 b)). Hence

Using the lemma above and observing that 1

We are interested in the number of primitive representations of a totally
positive integer N by f . We have to determine the maximal commutative
suborders S of A~~’"’~ corresponding to primitive representations by f and
also calculate Q to get an explicit formula.s /R 9
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We will describe the calculations for the case m = 13. Calculating the
norm of an element A = ro + r1E1 + T2E2 + r3E3 in Co( f13) and using the
condition tr(A) = 0, we get the quadratic form

When we use the condition tr(A) = 0, we may choose to substitute a dif-
ferent variable (this would give us an equivalent form). Let p = . We

observe that if f (rl,rZ,r3) = N, then A = 
is such that a2 = -N. Using this correspondence and assuming that we
have a primitive representation by f of N = N6N1, where No, Ni E R and
Nl is square-free, we find that S = if 2 GCD(rl,r3), where
a = l,1 + A, 1-i for N1 == 3, p" 1 + 3~ (mod 4) respectively, and S = 
otherwise. We also find that an optimal embedding of S = corre-

sponds to a primitive representation of N by f and an optimal embedding
of S = R[No I gives us a primitive representation of N by f if and
only if 2 f No. Hence, for the cases where 2 and N1 == 3, it, 1 + 3~ (mod
4), we sum over Sl = ] and So = In all other cases

only So = will contribute.

To calculate we start by observing that nr(a) W 0 for A E
A~"’r. Hence, for A E A~’"‘~*, we have nr(A) = e2 E R*. It is then enough to
find the elements A E A(m) such that nr(A) = 1 and consider them modulo
R*. We get ~A(i3)*~R*~ - 12.

Calculations similar to those in the proof of Lemma 3.1 will give us the
value of I for i = 0,1.

Using the formula

and the following table, we have the result for m = 13.
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The values of will be

We have to sum over more than one order only when Ni = 3, JL or 1 + 3A
and 2 f No. We will study these cases more closely in order to find a more
convenient formula for rf(N). Let L denote and let S be the
maximal order in L. Let fo, f 1 denote the conductors for with respect
to S. Using (4.3) we find that h(Si) = h(So)[S* : 8ô]c, where c = 1,1 if
(2) is prime in L and (2) is split in L respectively (2 ~’ ~i since 2 ~’ No). We
find that (2) is split for N1 == 3, 7, 5 + 7p, 1 + 3p, 4 + 5~, 4 + ~ (mod 8) and
prime for N1 == 3 + 4~, 7 + 4p, 5 + 3p, 1 + 7~, 5p (mod 8).
The other cases have been calculated using the same techniques (see [1]).

Proposition 5.4. Let K be a real quadratic nurnber field and R its ring
of integers. Let A = Co( f ) be an R-order with d(A) = R and hA = 1, in a
totadly definite quaternion algebra over K. Then f can be chosen as one of
the forms in (5.1) and the number of primitive representations of a totally
positive number N E R by f is given by the following formulas:
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