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Topological Properties of Two-Dimensional
Number Systems

par SHIGEKI AKIYAMA et JÖRG M. THUSWALDNER

RÉSUMÉ. Pour une matrice réelle M d’ordre 2 donnée, on peut
définir la notion de représentation M-adique d’un élément de ]R2.
On note F le domaine fondamental constitué des nombres de R2
dont le développement "M-adique" ne commence pas par 0. C’est
l’analogue dans R2 des nombres q-adiques, où la matrice M joue
le rôle de la base q. Kátai et Környei ont démontré que F est com-
pact, et que R2 s’écrit comme la réunion dénombrable de certains
translatés de F, l’intersection de 2 quelconques d’entre eux étant
de mesure nulle. Dans cet article, nous construisons des points
qui appartiennent simultanément à trois translatés de F, et nous
montrons que F est connexe. Nous donnons aussi une propriété
sur la structure des points intérieurs de F.

ABSTRACT. In the two dimensional real vector space R2 one can
define analogs of the well-known q-adic number systems. In these
number systems a matrix M plays the role of the base number q.
In the present paper we study the so-called fundamental domain
F of such number systems. This is the set of all elements of R2

having zero integer part in their "M-adic" representation. It was
proved by Kátai and Környei, that F is a compact set and certain
translates of it form a tiling of the R2. We construct points, where
three different tiles of this tiling coincide. Furthermore, we prove
the connectedness of F and give a result on the structure of its
inner points. 

1. INTRODUCTION

In this paper we use the following notations: R, Q, Z and N denote
the set of real numbers, rational numbers, integers and positive integers,
respectively. If x e R we will write Lx J for the largest integer less than or
equal to x. A will denote the 2-dimensional Lebesgue measure. Further-

more, we write 8A for the boundary of the set A and int(A) for its interior.

Manuscrit re~u le 15 janvier 1999.
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diag(al, a2) denotes a 2 x 2 diagonal matrix with diagonal elements À1 and
À2.

Let q &#x3E; 2 be an integer. Then each positive integer n has a unique q-
adic representation of the akq k with ak E {0,1, ... , q - 1}
(0  k  H) and 0 for 0. These q-adic number systems
have been generalized in various ways. In the present paper we deal with
analogs of these number systems in the 2-dimensional real vector space,
that emerge from number systems in quadratic number fields. The first

major step in the investigation of number systems in number fields was
done by Knuth [13], who studied number systems with negative bases as
well as number systems in the ring of Gaussian integers. Meanwhile, Katai,
Kovacs, Peth6 and Szab6 invented a general notion of number systems in
rings of integers of number fields, the so-called canonical number systems
(cf. for instance [10, 11, 12, 15]). We recall their definition.
Let K be a number field with ring of integers ZK. For an algebraic

integer b E ZK define N = {O, 1,... , IN(b)1 - 1}, where N(b) denotes the
norm of b over Q. The pair (b, N) is called a canonical number system if
any y E ZK admits a representation of the shape

where ck E JV (0  k  H) and 0 for 0.
These number systems resemble a natural generalization of q-adic num-

ber systems to number fields. Each of these number systems gives rise to
a number system in the n-dimensional real vector space. Since we are only
interested in the 2-dimensional case, we construct these number systems
only for this case. Consider a canonical number system in a qua-
dratic number field K with ring of integers ZK. Let + Ax + B
be the minimal polynomial of b. It is known, that for bases of canonical
number systems -1  A  B &#x3E; 2 holds (cf. [10, 11, 12]). Now consider
the embedding 4P : K - Jae2, al + a2b H (al, a2), where a,, a2 E Q. Ko-
vacs [14] proved, that {1, b} forms an integral basis of ZK. Thus we have
4l(ZK) = Z2 . Furthermore, note that = with

Since the elements of .N are rational integers, for each c E N, 4l (c) = (c, 0)T .
Summing up we see, that (M, 4l(N)) forms a number system in the two
dimensional real vector space in the following sense (cf. also [8], where
some properties of these number systems are studied). Each g E Z~ has a
unique representation of the form
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with dk E (0  k  H) and (0,0)T for 0. These number

systems form the object of this paper. In particular, we want to study the
so-called fundamental domains of these number systems. The fundamental
domains of a number system (M, is defined by

Sloppily spoken, 7 contains all elements of R , with integer part zero in
their "M-adic" representation. In Figure 1 the fundamental domain corre-
sponding to the M-adic representations arising from the Gaussian integer
-1 + i is depicted. This so-called "twin dragon" was studied extensively
by Knuth in his book [13].

FIGURE 1. The fundamental domain. of a numbers system
Fundamental domains of number systems have been studied in various

papers. Kitai and K6rnyei [9] proved, that T is a compact set that tesse-
lates the plane in the following way.

Furthermore, we want to mention, that the boundary of ~’ has fractal
dimension. Its Hausdorff and box counting dimension has been calculated
by Gilbert [4], Ito [7], MiiHer-Thuswaldner-Tichy [16] and Thuswaldner [17].
In the present paper we are interested in topological properties of Y. Before
we give a survey on our results we shall define some basic objects. Let S
be the set of all translates of Y, that "touch" ~’, i.e.
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Then by (1) the boundary of F has the representation

., -

Hence, the boundary of Y is the set of all elements of F, that are contained
in F + g for a certain g 0 (0,0). Of course, 8J’ may contain points, that
belong to F and two other different translates of 7. These points we call
vertices of F. Thus the set of vertices of F is defined by

In Section 2 we study the set of vertices of ~. It turns out, that, apart
from one exceptional case, J’ has at least 6 vertices. In some cases we derive
that V is an infinite or even uncountable set. In Section 3 we prove the
connectedness of J’ and show that each element of T, which has a finite
M-adic expansion, is an inner point of T.

2. VERTICES OF THE FUNDAMENTAL DOMAIN T

In this section we give some results on the set of vertices V of F. For
number systems emerging from Gaussian integers, similar results have been
established with help of different methods in Gilbert [3]. We start with the
definition of useful abbrevations. Let

be the M-adic representation of g. Note, that the digits dj (-Hl  j  H2)
are of the shape dj = E Thus for the expansion (3) we will
write

If the string cl ... cH occurs j times in an M-adic representation, then we
write [ci ... cH]j . If a representation is ultimately periodic, i.e. a string
cl ... cH occurs infinitely often, we write [Cl ... First we show, that
for A &#x3E; 0 any fundamental domain F contains at least 6 vertices.

Theorem 2.1. Let (M, ~(,IU)) be a number system which is induced

by the base b of a canonical number system. Let Pb(x) = x 2 +Ax+B with
A &#x3E; 0 be the minimal Polynomial of b. Then the set of vertices V of the
fundamental domain F of this number system contains the points

Depending on the cases A = 1, 1  A  B and A = B, the points Pi
(1  j :5 6) belong to the following translates .~ + w of .~.
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The case A = 1 is very similar to the case 1  A  B; just replace the
representation 1(A - 1)(B - A+ 1) by 11(B - 1)0 in the above table.
Remark 2.1. Note, that we have 0  A  B &#x3E; 2. Hence the digits of the
6 points indicated in Theorem 2.1 are all admissible.

Proof of the theorem. We will prove that each of the 6 points Pl, ... , P6 is
contained in three different translates of 7, as indicated in the statement
of the theorem. First we consider the point Pl. Write a? = -~. By using
b2 + Ab + B = 0, we see that

are formal representations of zero. Adding the second representation for 0
given in (4) twice, we have

For A  B this yields

For A = B the last expansion lA.((B -1)0(A -1)~~ is not admissible since
A &#x3E; B - 1. In order to settle this case we use the first representation of
zero given in (4) to get 1A = 1B = 1B + 1(B - 1)OB = 1(A - 1)10. As a
result, we have

for A = B. Since P2 = MP1, we get the desired results also for P2. Now
we treat

In the same way as before, we get, using both representations of zero in (4)
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which implies

for A  B and

for A = B. Since F permits an involution i

J’ is symmetric with respect to the center
~ this map sends each 1 . Thus we have

for A  B and

for A = B. Furthermore, it is easy to see, that cp(P1) = P4, p(P2 ) = P5 and
P6 Thus also P4, P5 and P6 are vertices of F that are contained

in the translates of F indicated in the statement of the theorem. C1

In the case A = 0 it is easy to see that J’ is a square. It has exactly 4
vertices. These are the "usual" vertices of the square. Thus we only have
to deal with the case A = -1. We will folmulate the corresponding result
as a corollary.

Corollary 2.1. Let the same settings as in Theorem 2.1 be in force, but
assume rtow, that A = - 1. Then the following table gives 6 points Pi
(1  j  6), that are contained in the set of vertices V of ~’. Furthermore,
we give the translates T + w, to which Pj belongs.

Proof. Let be bases of number

systems in Jae2 and let :1=1 and ~2 be the fundamental domains corrresponding
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to M1 and Mz, respectively. We know the vertices from Theorem 2.1

and will construct the vertices of .~2 from it. To this matter let M1 =

easy to see, that then M2 = 

with G2 = diag(-I, I)Gi. Now suppose, that M1kaj E F1 n F1 +
fl (Wl, W2 )T with V1,V2,W1,W2 E Z is a vertex of Fl. Using

the fact, that for ak E .M and setting d = 0.[O(B - 1)]00
we easily derive that

Observe, that by the selection of d, Q has an admissible M2-adic rep-
resentation with integer part zero. Thus Q E ~2. Since any ele-

ment of T2 can be constructed from elements of 1=1 in the same way
we conclude, that T2 = + d. But with that (5) reads

Q E + (-vl, v2)T n T2 + (-W1,W2)T. Thus Q is a vertex of .~2.
The representations in the table above, can now easily be obtained from
the results for A = 1 in Theorem 2.1. D

The following corollary is an immediate consequence of Theorem 2.1 and
Corollary 2.1.

Corollary 2.2. For 1  A  B we have

while for A = 1

holds.

Remark 2.2. Note, that "~" may be replaced by "=" in Corollary 2.2 if
2A  B + 3. This is shown for the Gaussian case in [16]. For arbitrary
quadratic number fields this fact can be proved in a similar way.

Theorem 2.2. Let the same settings as in Theorem 2.1 be in force. If
2A = B -f- 3 then T has infinitely many vertices.
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. Then, using i

Here we set a? = -x, as before. We will show, that the points

are vertices of F. Therefore we need the representation (6). With help of
this representation we define the following representations of zero.

J ...JJ ,- - , i

In the sequel we write kXj (k E Z) if we want to multiply each digit
of the representation Xj by k. Furthermore, addition and subtraction of
representations is always meant digit-wise. After these definitions we define
the following, more complicated representations of zero.

, , , _ ..

Finally, we observe, that for j E N

and this implies Qj E V. It remains to show, that the elements 1,
are pairwise different. This follows from the following observation. Select

k E N arbitrary and let j1, j2  k. Suppose, that Qj, and Q~2 are repre-
sented by the representation (7) for j = jl and j = j2, respectively. Then
Qj, = and only if M6k+2Qj¡ = For k &#x3E; max(ji, j2),
M6k+2Qj¡ and M6k+2Qj2 have the same digit string [O(B - after the
comma. Hence, they can only be equal, if their integer parts are equal.
But since (M, 4l(N)) is a number system, this can only be the case, if the
digit strings of their integer parts are the same. This implies j, = j2. So
we have proved, that the points Qj are pairwise different for j  k. Since k
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can be selected arbitrary, the result follows. Thus we found infinitely many
different vertices of J’. D

Theorem 2.3. Let the same settings as in Theorem 2.1 be in force. If
2A &#x3E; B + 3 then Y has uncountably many vertices.

using (6), we see that

Thus is a vertex of .F’. Fix an integer k, such that all eigenval-
ues of Mk are greater than 2 (such an integer exists, since the eigenval-
ues of M are all greater than 1). This implies, that the representations

cj E ~0,1} (j &#x3E; 1) represent pairwise different el-
ements ofIae2 for different {O, 1} sequences Because g + K  B-1,
each of the uncountably many representations

corresponds to a vertex Since they are pairwise different, the theorem
is proved. 0

3. CONNECTEDNESS AND INNER POINTS OF THE FUNDAMENTAL
DOMAIN 0

In this section we will show, that the fundamental domain F is arcwise
connected. To establish this result, we will apply a general theorem due
to Hata (cf. [5, 6]) which assures arcwise connectedness for a large class
of sets. The second result of this section is devoted to the structure of
the inner points of ~’. In particular, we prove, that each point with finite
M-adic representation is an inner point of Y. In this section we will use
the notation

We start with the connectedness result.

Theorem 3.1. Let (M, 4l(N)) be a nurnber systems which is induced

by the base b of a canonical numbers system in a quadratic numbers field.
Then the fundamental domain 7 of (M, is arcwise connected.

Proof. It is an easy consequence of the definition of J’, that
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Furthermore, Theorem 2.1 implies that .
sets contained in the union of (8) form a chain in the sense that (T +
g) fl (:F + (g + (1, O)T)) 0 0 for g E 4l(N) ) (B - 1, 0)T . Thus T fulfills the
conditions being necessary for the application of a theorem of Hata, namely
[5, Theorem 4.6~. This theorem yields the arcwise connectedness of T. D

Now we prove the result on the inner points of T. Note, that the existence
of inner points is an immediate consequence of [9, Theorem 1].
Theorem 3.2. Let (M, (k(AO) be a number systems in }R2, which is induced
by the base b of a canonical numbers system in a quadratic number field.
Then for each k E N we have

Proof. First we will show, that 0 is an inner point of T. Suppose, that 0 is
contained in the boundary of T. Then by (2) there exists a representation
of zero of the shape

This representation implies 0 + If we multi-

ply (9) by Mj for j E N arbitrary, we conclude, that 0 E :F +

CHiCHI-1 ... ClCOC-1 ... C_j for each j E N. Hence, 0 is contained in in-

finitely many different translates of ,~’. But since T is a compact set this
is a contradiction to (1). Thus 0 E int(.F).
Now fix k E N‘ and g E Tk. Then 0 E int (.F) implies, that g E

int(M-k.F + g). The result now follows from the representation

There is a direct alternative proof of this theorem by using the methods
of [1] and [2]. In these papers a similar result for the tiling generated by
Pisot number systems is shown.
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