On montre plusieurs résultats à propos de la longueur minimale d’un arc de l’hyperbole contenant points entiers.
We include several results providing bounds for an interval on the hyperbola containing lattice points.
@article{JTNB_2000__12_1_87_0, author = {Cilleruelo, Javier and Jim\'enez-Urroz, Jorge}, title = {The hyperbola $xy = N$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {87--92}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {1}, year = {2000}, mrnumber = {1827840}, zbl = {1006.11055}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2000__12_1_87_0/} }
TY - JOUR AU - Cilleruelo, Javier AU - Jiménez-Urroz, Jorge TI - The hyperbola $xy = N$ JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 87 EP - 92 VL - 12 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2000__12_1_87_0/ LA - en ID - JTNB_2000__12_1_87_0 ER -
Cilleruelo, Javier; Jiménez-Urroz, Jorge. The hyperbola $xy = N$. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 1, pp. 87-92. http://archive.numdam.org/item/JTNB_2000__12_1_87_0/
[1] Trigonometric polynomials and lattice points. Proc. Amer. Math. Soc. 115 (1992), 899-905. | MR | Zbl
, ,[2] Divisors in a Dedekind domain. Acta. Arith. 85 (1998), 229-233. | MR | Zbl
, ,[3] The least common multiple and lattice points on hyperbolas. To appear in Quart. J. Math. | MR | Zbl
, ,[4] Introduction to the theory of numbers. Clarendon Press. 4th ed., Oxford, 1960. | MR | Zbl
, ,