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On extremal additive F4 codes of length 10 to 18

par CHRISTINE BACHOC et PHILIPPE GABORIT

A Jacques Martinet,
Grace a qui les empilements deferlent,

Les kissing numbers montent,
Et qui nous donna le nom de d6codeurs.

Merci.

RÉSUMÉ. Dans cet article nous considérons les codes F4-additifs
autoduaux pairs et extrémaux. Nous en donnons une classification
complète en longueur 10. Avec l’hypothèse qu’au moins deux
mots de poids minimal ont le même support, nous classifions les
codes de longueur 14, et montrons en longueur 18 qu’un tel code
est équivalent à l’unique code F4-linéaire hermitien autodual de
paramètres [18,9,8].

ABSTRACT. In this paper we consider the extremal even self-dual

F4-additive codes. We give a complete classification for length 10.
Under the hypothesis that at least two minimal words have the
same support, we classify the codes of length 14 and we show that
in length 18 such a code is equivalent to the unique F4-hermitian
code with parameters [18,9,8]. We construct with the help of
them some extremal 3-modular lattices.

1. Introduction
’ 

An additive code C over IF4 of length n is an additive subgroup of IE4.
We will denote by C an (n, 2~) additive code of length n with 2~ codewords.
Additive codes over F4 were introduced in [4] as a way to describe a cer-
tain subclass of quantum codes. Such codes can also be used to construct
modular of level 3 lattices, as it will be discussed in Section 5.

Let F4 = ~0, l, cv, where w- = w2 = 1 +úJ. The trace map Tr : F4 - F2
is defined by
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The space IF4 is endowed with the trace inner product defined for two vectors
X = XlX2 ... Xn and y = Y1Y2 ... yn in 1F4 by:

If C is an additive code, its dual is defined by = {x E IF4 1
x.C = 01. If C is an (n, 2k) code, then Cj- is an (n, 22n-k) code. As usual,
an additive code C is self-orthogonal if C C and self-dual if C = C.l..
In particular, a Hermitian self-dual F4-linear code is also self-dual for the
trace inner product, when considered as an additive code.
The weight wt(c) of c E C is the usual Hamming weight over IF4 which

counts the number of nonzero components of c and the minimal weight d
of C is the smallest weight of any nonzero codeword in C. We shall often
make use of the following identity linking the weight and the trace inner
product:

(meaning that the weight modulo 2 is a quadratic form on IF4 viewed as a
binary space with associated symplectic form u.v.)
Two additive codes 01 and C2 are equivalent provided there is a map

from S’n sending C1 onto C2, with Sn the permutation group of the n
coordinates and S3 the permutation group on the The

automorphism group of C, denoted Aut(C), consists of all the elements of
which stabilize C.

An additive self-dual code is Type II if all its codewords have even weight
and Type I else. Type II codes are known to exist only in even lengths. A
bound on the minimal weight of an additive self-dual code was given by
Rains in [12, Theorem 33]. If we let dj or djj be the minimal distance of
an additive self-dual Type I or Type II code, then:

A code that meets the appropriate bound is called extremal. Type II codes
meeting the bound dlr have a uniquely determined weight enumerator.
The classification of self-dual additive codes was done by Hohn in [7] up

to length 7 for Type I-II codes and up to length 8 for Type II codes. In

[6], Gaborit, Kim, Huffman and Pless pushed the classification of extremal
Type I codes to the lengths 8, 9 and 11. They also gave a written proof
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of the uniqueness of the extremal Type II code of length 12, the so called
dodecacode.
The computation of the mass of Type II codes (see [7]) shows that the

number of classes of such codes is greater than 1.72 times 106 for length
14, greater than 1.02 times 101° for length 16 and greater than 8.9 times
1016 for length 18, so that a complete classification is unrealistic.

In this paper we only consider extremal Type II codes and we extend
the classification to length 10, for which we find 19 inequivalent extremal
codes. Under the restrictive hypothesis s (C) &#x3E; 0 that we shall explain in
Section 2, we find 490 inequivalent extremal codes for length 14 and only
one extremal code for length 18, the unique F4-linear hermitian [18,9,8]
code. We did not consider length 16 since the number of extremal Type II
codes will be even larger than for length 14. Section 2 explains the method
we used, Sections 3 and 4 list the numerical results we obtained, eventually
we give in the Appendix the complete list of the 19 extremal Type II codes
of length 10 and also 5 particular codes of length 14. Section 5 examines
the lattices constructed from these codes. All the computations were done
with the Magma system ~3~ .

2. The method

In this section, C denotes an extremal, Type II code of length n and
minimal weight d. Let u be a codeword of weight d. Let ,5’ = S(u) denote
the support of u. Two cases arise: either u is the only word in C with
support S, or exactly three words in C have ,S’ as support. In this last

case, we can assume up to equivalence that these three words are 1 don-d,
wdon-d, (This is clear from the following observations: If the code
C contains another element v with the same support as u, then the nonzero
coordinates of u and v are pairwise different otherwise u + v would be of
weight strictly lower than d. And u + v itself is also a weight d codeword
with the same support as u and v.) It is worth noticing that, if C is

equivalent to a linear code, then the first case never happens since wu and
w2u provide codewords with the same support as u. Hence the following
invariant of C measures how far the code is to be linear:

We shall see later that it is much more difficult to classify the codes with
s(C) = 0. Note that, when the code C is F4 linear, s(C) E

Clwt(x) = d}.
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Again, let ~c E C be a minimal word. Let

This is a subcode of C. The classification of the possible Co(u) for the
lengths under consideration will be discussed in next section. We can then
describe a general form for a generating matrix of an extremal code.

Lemma 2.1. The extremal code C has, up to equivalence, a generating
matrix of the form:

1. If s(C) = 0

where Co is an additive code of length n - d and dimension n - 2d + 1.
Here si denote matrices of size (d - 1) x (n - d).

2. If s(C) &#x3E; 0

where Co is an additive code of length n - d and dimension n - 2d + 2.
Here si denote matrices of size (d - 2) x (n - d) .

Proof. See [6]. D

In order to enumerate the extremal codes, we have then to fulfil two
steps: The first step is the enumeration of the possibilities for the subcode
Co. It is an additive code with parameters (n - d, 2n-2d+l, d) if s(C) = 0,
or (n - d, 2n-2d+2, d) if s(C) &#x3E; 0. This is left to next section, where we
shall make use of the fact that in some cases (n = 14,18 and s(C) &#x3E; 0),
its weight enumerator can be computed. The Second step is to run over
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the possibilities for (sl, s2). Therefore, we discuss some properties of these
matrices.

Let V := Co /Co. This F2-vector space is endowed with a weight wv
defined by

and with a non degenerate binary quadratic form qv

We denote by bv the associated symplectic form, which is nothing else
than the bilinear form induced by the inner product on Co. Note that
the isomorphism class of the symplectic space (V, bV) and of the quadratic
space (V, qv) are determined by dim(V) since the quadratic space has index
dim(V)/2 as will be proved in Lemma 2.2. Clearly, the rows of the matrices
si are defined modulo Co and belong to Co since C is assumed to be self-
dual. For i = 1, 2, we denote by Si the subspace of V spanned by the rows
of si. These rows are specific vectors of Si and must satisfy certain weight
conditions, so that the whole row of the generating matrix has weight at
least d. Hence we take the following notations: a set es} c V is
said to satisfy condition (Cl), respectively (C2), (C3) if

where Ek ei means any sum over k distinct indices i.
We denote by I the unit matrix and by J the matrix

Lemma 2.2. ~ If s(C) = 0 and for a generating matrix as in 1. of
Lemma ~.1, the quadratic space V has dimension 2(d - 1), the sub-
space S2 is maximal and totally isotropic for qv, while 81 is maxi-

mal and totally isotropic for bv. Moreover, 51 n 52 = fOl, Sl has
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a basis b1 = (ei, ... , ed-i) satisfying (C2) and S2 has a unique ba-
sis b2 = ( f l, ... , f d-1 ) such that (by (e2, = I , and both b2 and
(el + f l, ... , ed-1 + f d_1) satisfy (C3).

. If s (C) &#x3E; 0 and f or a generating matrix as in 2. of lemma ~.1, the
quadratic space V has dimension 2(d - 2) and the subspaces Si are
maximal and totally isotropic for qv. Moreover, 81 fl s2 = 101 and
one can find in S1 a basis bl - (el, ... , ed-2) such that S2 has a
unique basis b2 = ( f l, ... , f d-2) with (bv (ei, = J, and bl, b2
and (el + f i, ... , ed-2 + fd-2) satisfy (Cl).

Proof. We assume s(C) &#x3E; 0 and we consider a generating matrix as in 2.
of lemma 2.1. The dimension of the quadratic space V follows from the
dimension of Co. If the sum of some rows of si was zero, it would give rise
to a word in C with support strictly contained in ~ 1, ... , d} which would
contradict the hypothesis. So dim(5i) = d - 2. Clearly the rows of s2
are pairwise orthogonal for bv and isotropic for qv, so the Si are maximal
totally isotropic subspaces of V. In the same way, a sum of some of the
rows of si or s2 cannot be 0, which means that Sl n s2 = fol.
The conditions satisfied by wV(¿k ei) follow easily from the fact that d

is the minimal weight of C. The computation of bv (ei, fj) where ei are the
rows of s, and f i are the rows of s2 follows from the form of the generating
matrix. The basis (el + f l, ... , ed_2 + f d-2) corresponds to the subcode
with matrix

and hence has the same properties as the other two.
The arguments in the case s(C) = 0 are similar. D

Let us assume that s(C) &#x3E; 0. The method that we have followed to

classify the extremal codes goes through the following algorithmic steps:
Step 1: List the possible Co. There are few possibilities in each case; see
next section for the explicit list of possibilities for rt =10,14,18.
Step 2: Fix Co. List the maximal totally isotropic subspaces in V. This
can be easily done by applying the orthogonal group of the quadratic form
to a specific one, as long as the number of such spaces is not to large.
Compute the orbits of this set under the action of Aut(Co).
Step 3: List the subset Sl of the representatives of these orbits which
contain at least one basis satisfying (Cl). For all S1 E Si, list the set

B(Sl) of the basis of Si satisfying (Cl). Therefore, we make use of the
joint action of the symmetric group on the first d coordinates and of the
stabilizer of Sl in Aut(Co) on the set of ordered basis of 81.
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TABLE 1. The number of totally isotropic spaces

Step 4: For each Sl E Sl, compute the set S2 = I s2n Sl = foil
where S2 is maximal totally isotropic for qv. For each basis (el, ... , ed-2) E
B(Si), compute the unique basis ( fl, ... , fd-2) of S2 such that

= J. Test if (fl, ... , fd-2) and (el + 11’...’ ed-2 + fd-2)
satisfy (C1). If so, store the matrix

Step 5: Test equivalence between the codes with generating matrices stored
in Step 4.

In the case when s(C) = 0, the modifications are :
Step 2: Note that, the dimension of V is increased by 2. Moreover, we
need to list the larger set of maximal totally isotropic subspaces for bv.
Step 3: Replace condition (01) by (C2).
Step 4: Replace J by I and condition (C1) by (C3).

Remark 2.3. One of the limits of the method is that it requires the exhaus-
tive list of all the maximal totally isotropic subspaces of V for respectively
the quadratic form or the symplectic form. We give in Table 1 their number
as a function of dim(V); it explains why we have limited our search to the
case s(C) &#x3E; 0 for n = 18.
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3. The subcode Co

In this section, we discuss the classification of the subcode Co. We first
assume that Co = Co (u) where u is a minimal weight word in C of the sec-
ond type, i.e. such that its support is shared by two other codewords.
Then, Co has parameters (n - d, 2n-2d+2, d). In the case n = 18, the weight
enumerator of Co has the form Wco + (15 -1~)x2g8 + kyl0; applying
MacWilliams transform to it shows that k = 0. In the case n = 14, the
same argument shows that Wco = xg + (15 - + ky8 with k =1, 3.
The computations on the harmonic weight enumerators of C worked out in
[1] show that k = 3 is the only possibility. In the case n = 10, we have again

= x~ + (15 - k)x2y4 + k y6 with k = 0, 2, 4, 6. When s(C) = 0, there
is no support of minimal weight word shared by two other codewords. We
then consider a code Co of the first type with parameters (n-d, 2 n-2d+l d).
Both cases have to be considered to complete the classification.

Proposition 3.1. ~ Let Co be an even (6, 24) quaternary additive code
with minimale weight 4. Then Co is equivalent to one of the seven
following codes:

The automorphism groups of these codes are of order 12, 96, 72, 16,
64, 288, 2160 respectively, and the last two are the only ones which
are equivalent to IF4-tinear codes.

. Let Co be an even (~, 23) quaternary additive code with minimal weight
4. Then Co is equivalent to one of the seven following codes:

The automorphisms groups of these codes are of order 48, 24, 192, 128,
32, 768, 288 respectively, and since these codes have 23 codewords, they
are not F4-linear.

Proof. The codes were obtained by exhaustive search. D
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Proposition 3.2.. Let Co be an even quaternary additive code with
weight enumerator WCo = x8 -+- 12x2y6 + 3y8. Then Co is equivalent
to one of the following five codes:

The automorphism groups of these codes are of order 1152, 72, 48, 4,
24 respectively, and the first one is the only one which is equivalent to
a F4-linear one.

. Let Co be an even quaternary additive code with weight enumerator
W Co = x’o + 15x2y8. Then Co is equivalent to one of the following
five codes:

The automorphism groups of these codes are of order 11520, 24, 120,
288, 96 respectively. The first one is the only one which is equivalent
to a IF4-linear one.

Proof. The codes were obtained by exhaustive search. D

Remark 3.3. It is worth noticing that the last four codes of length 10 that
appear in previous proposition are not linear and not equivalent to constant
weight codes. Hence Bonisoli result [2] on constant weight codes over fields
does not extend to quaternary additive codes.

4. Numerical results

4.1. Length 10. Here d = 4 and the extremal even self-dual codes have
weight enumerator
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Applying the algorithm described in Section 2, for the two possible types
of Co, we obtain:

Proposition 4.1. There are exactly 19 non equivalent even self-dual, ex-
tremal quaternary additive codes C of length 10.

Two of these codes (QC-10r and QC-10s) are linear and were already
classified as F4 linear self-dual hermitian codes in [9] and five non-linear
codes (QC-10a, b, c, d, e) were found in [6], the 12 others are new. Table
2 lists the 19 codes with their automorphism group orders and the value of
s(C). The generator matrices of the codes are listed in the appendix.

TABLE 2. Extremal Type II codes of length 10

4.2. Length 14. Here d = 6 and the extremal even self-dual codes have
weight enumerator
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TABLE 3. The number of codes C of length 14 with

= k

TABLE 4. The number of codes C of length 14 with s(C) = k

Applying the algorithm described in Section 2, we obtain:

Proposition 4.2. There are exactly 490 non-equivalent even self-dual, ex-
tremal quaternary additive codes C of length 14 with s(C) &#x3E; 0.

Only one of them is equivalent to a F4-linear one, as was previously
known from [9]. It has an automorphism group of order 6552.

Because of the huge number of codes found in this case, we have not
explored the other case s(C) = 0, although it should be possible to do it
(see Table 1).
We give in Table 3 the number of codes found with the corresponding

number of automorphisms, and in Table 4 the number of codes found with
the corresponding value for the invariant s(C). Matrices for the five new
codes which are characterized by the number of their automorphisms (re-
spectively 18, 28, 36, 48, 84) are given in the Appendix. The others can be
found at http://www.math.u-bordeaux.fr/‘bachoc.

4.3. Length 18. Here d = 8 and the extremal even self-dual codes have
weight enumerator

There is up to equivalence only one extremal F4-linear Hermitian code
([8]), denoted by S18- Our search seems to indicate that it is also unique
as a quaternary additive code, but we could not handle the case s(C) = 0
because of the huge number of totally isotropic spaces in dimension 14 (see
Table 1).

Applying the algorithm described in Section 2, we obtain:
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Proposition 4.3. Up to equ2valence, the code sl8 is the unique even self-
dual, extremal quaternary additive code C of length 18 with s(C) &#x3E; 0.

5. From codes to lattices

In this section, we discuss the lattices that can be constructed from
the codes previously studied. Let A2 denote as usual the 2-dimensional
hexagonal lattice. The quadratic space (A2/2A2, q) where q(x) := (x.x)/2
and x.x denotes the inner product of the underlying Euclidean space, is

clearly isomorphic to (F4, Tr(xy)). Hence the F4-additive codes of length
n can be lifted into A2; this construction is usually called "Construction
A" from [5]. The lattice A2 is modular of level 3 in the sense of (11~, which
means that there exists a : A2 -~ A2 a similarity of rate 1/)3 between
A2 and its dual. Hence, even self-dual codes give rise to 2n-dimensional
lattices which are also modular of level 3. We explicit this construction
in the next proposition. We again denote by a : (A2)n the map

’- , /" , , 2

Proposition 5.1. Let C be a F4-additive code of length n, with C C C1
and C even. Let Lc be the lattice defined by

Then, (Lc’,1/2~~~~.~) ~ an even lattice of dimension 2n. Its dual
lattice is (Lc)* = (1 (Lc1- ). In particular, if C is a self-dual code, then Lc
is modular of level 3. As a consequence, its determinant is equal to 3n . Its
minimum is given by

(12) min(Lc) = min(4, wt(C)).

Proof. The formula (Lc)* = is clear from the fact that the inner

product on F4 is the one induced by the scalar product on A2. The com-
putation of the minimum of the lattice follows from the two observations:

1/2 En 1 = 4 and, if u denotes the image of (.ri,..., xn)
in A2/2A2 identified with F4, min((xl, ... , xn) + (2A2)n,1/2 
wt(u). This last property follows from the fact that the roots of A2, i.e.

the vectors x with x.x = 2 are representatives of the non zero classes of A2
modulo 2A2- D

The study of the theta series of modular lattices of level 3 leads in [11]
to the definition of extremal lattices. These are the lattices meeting the
bound

See [13] for a survey on the notion of extremal lattices. From Proposi-
tion 5.1, the lattices Lc are extremal only up to dimension 20 (i.e. length
10 for the codes). For higher dimensions, it is usual to proceed to Kneser



267

neighborings to get rid of the norm 4 vectors arising from the sublattice
( (2A2 ) n,1 /2 ~Z 1 Clearly two neighborings are necessary to do so;
however, this procedure fails to produce an extremal lattice from the dode-
cacode of length 12. Nevertheless, it is known that such a lattice exists since
a 24-dimensional lattice, extremal and modular of level 3 is constructed in
[10] from matrix groups. The genus of modular lattices of level 3 is com-
pletely classified up to dimension 16. Computations in the Magma system
allow us to prove the following:

Proposition 5.2. The 19 extremal type II codes of length 10 give rise to
19 non isometric 20-dimensional extremal modular lattices of level 3.

Proof. Direct verification. Among these lattices, 13 are generated by their
minimal vectors, for one of them the minimal vectors span a sublattice of
index 2 and for other five, the index is 4. The automorphism groups have
non-equal orders, except for the lattices obtained from the codes QC_10 f
and QC-10g. The two codes have an automorphism group of order 48 and
the two lattices have an automorphism group of order 214.32 but are not
isometric. D

Appendix
~ The 19 extremal Type II codes of length 10.
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~ The 5 extremal Type II codes of length 14 with the highest automor-
phism group orders among the 490 found (respectively 28,36,48,84 and
6552).
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