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On the cokernel of the Witt decomposition map

par GABRIELE NEBE

Dedicated to Jacques Martinet

RÉSUMÉ. Soit R un anneau de Dedekind et K son corps de frac-
tions. Soit G un groupe fini. Si R est un anneau d’entiers p-
adiques, alors l’application 03B4 de décomposition de Witt entre le
groupe de Grothendieck-Witt des KG-modules bilinéaires et celui
des RG-modules bilinéaires de torsion est surjective. Pour les

corps de nombres K, on demontre que 03B4 est surjective si G est un
groupe nilpotent d’ordre impair, et on donne des contre-exemples
pour des groupes d’ordre pair.

ABSTRACT. Let R be a Dedekind domain with field of fractions
K and G a finite group. We show that, if R is a ring of p-
adic integers, then the Witt decomposition map 03B4 between the
Grothendieck-Witt group of bilinear KG-modules and the one of
finite bilinear RG-modules is surjective. For number fields 
is also surjective, if G is a nilpotent group of odd order, but there
are counterexamples for groups of even order.

1. Introduction

In [Dre 75], A. Dress defines Grothendieck-Witt groups GW (R, G) for
finite groups G and Dedekind domains R. If K is the field of fractions of

R, then there is an exact sequence

where p runs through all maximal ideals of R. The map 6 is called the
Witt decom position map. In the first section of this paper, the necessary
terminology is introduced, to define these and more general Witt groups
for orders with involution. In our terminology the groups GW(R, G) are
denoted by W(RG, ° ), where ° is the R-linear involution on the group
ring RG defined by g° = g-1 for all g E G.

Dress asked to calculate the cokernel of 6. This paper is intended to
answer this question in some cases. Section 4 shows that 6 is surjective for
all finite groups G, if K is a finite extension of the p-adic numbers. This
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can be used to show that in the case of number fields K, the composition
6. of 6 with the projection onto °) is surjective for all prime
ideals p of R (Theorem 4.6). The example R = Z, G = C4 and p = 5 shows
that this is not true for the classical decomposition map of Brauer.

J. Morales ([Mor 90]) investigates the sequence (*) for p-groups G, where
p is an odd prime, and number fields K. He shows that in this situation the
cokernel of ð is isomorphic to the exponent-2-subgroup of the ideal class
group of K as in the classical case G = 1. This theorem can be easily
generalized to nilpotent groups G of odd order (Theorem 5.2). Using an
induction theorem [Dre 75, Theorem 2] (cf. Theorem 4.1), one immediately
gets that 6 is surjective for groups of odd order, if the class number of K
is odd (see Theorem 5.3), which is shown in [Miy 90] for K = Q. But in
general 6 is not surjective for K = Q as one sees by looking at dihedral
groups of order 2p (see Section 5.2). The methods to investigate the se-
quence (*) in Section 5.1 heavily depend on Morita theory for hermitian
forms. Therefore this theory is revisited in Section 3.

2. Hermitian and covariant forms

Throughout the paper let R be a Dedekind domain with field of fractions
K. Let A be a K-algebra with K-linear involution ° and A = A° an R-order
in A that is invariant under the involution °. Let V be a right A-module
and L C V be a A-lattice in V, i.e. a finitely generated R-module that
spans V as a vector space over K such that LA = L.

Definition 2.1. (h) An R-bilinear form h : L x L -~ A is called hermitian,
if = h(l2, 11)’ and h(ll, l2~) - h(ll, 12)A for all ll, 12 E L,
A e A.

(c) An R-bilinear form b : L x L -~ R is called covariant, if b(ll, 12) =
b(l2, 11) and b(lIÀ, 12) = b(ll, 12A-) for all ll, 12 E L, A E A.

For a right A-module M let M* := HomA(M, A). Then M* is naturally a
left A-module and becomes a right A-module by letting = A° f (m)
for all m E M, A E A and f E M*. The hermitian forms correspond
bijectively to the symmetric A-homomorphisms h - h E HomA(M, M*)
defined by h(m)(m’) := h(m, m’). Similarly covariant forms correspond
to symmetric elements of M#), where M# := R) is a
right A-module by letting ( f ~ a)(m) := f (ma°), for all m E M, A E A and
f

In particular if there is a functorial isomorphism M* for all A-
lattices M, then the categories of hermitian and covariant forms are equiv-
alent. One can show that this is true if A ^-_’ R) as a bimodule
(see [ARS 97, Proposition IV.3.8]). Since the isomorphism M# E£ M* is
functorial, this is also a necessary condition. Here, the most important case
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is that A = RG is a group ring of some finite group G. Then the concepts of
hermitian and covariant forms are equivalent and are used simultaneously,
according to which notion is more convenient to work with.

In [Dre 75] a sequence of equivariant Witt groups is investigated. To in-
troduce this sequence naturally, one also needs hermitian and

covariant A-torsion modules. If M is a A-torsion module, then define
M* := A /A) and M# := HomR (M, K/R) . Also hermitian resp.
covariant forms on a torsion module take values in A/l1 resp. K/R.
Definition 2.2. Let M be either a A-lattice or a A-torsion module and let
h resp. b be a hermitian resp. covariant form on M. Then h resp. b are
called regular, if h : M 2013~ M* resp. b : M 2013~ M# are isomorphisms. A
regular hermitian or covariant module is called meta bol ic, if it contains a
A-submodule U with U = U 1 .

The set of isometry-classes of regular hermitian resp. covariant modules
forms a semi group with respect to orthogonal sums. Introducing the rela-
tions [M, h) - 0 for all metabolic hermitian resp. covariant modules, one
obtains a group, called the equivariant Witt group of hermitian resp. covari-
ant (torsion) modules, denoted by Wh(A, °) resp. W (A, °) (WTh(A, °)
resp. WT(A, °) for torsion modules).

Let (Y, h) be a hermitian A-module. For any A-lattice L in V, the
hermitian dual lattice Lh := Iv E V I h(v, 1) E A for all 1 E L} is a A-
module isomorphic to L* . Note that (L, h) is regular, if and only if Lh = L
(i.e. L is a unimodular R-lattice). The lattice (L, h) is called i ntegra I, if

L C Lh. For any integral A-lattice (L, h), the hermitian form h induces a
hermitian form h on the A-torsion module by

Analogous notations are used for covariant A-modules (V, b). In par-
ticular Lt := f v E V I b(v, l) E R for all I E L} is the dual lattice of L
with respect to b and the covariant form b induced on the A-torsion mod-
ule for any integral lattice L is b(v + L, w + L) := b(v, w) + R E
K
Lemma 2.3 ([Tho 84]jDre 75], [Mor 88]). Let (V, h) resp. a her-
mitian resp. covariant A-module and L an integral A-lattice in V . Then

[~/L~] = E WTh(A, °) resp. = E

WT(A, °) for all integral M in V.

Since the mapping in the lemma maps metabolic modules to metabolic
torsion modules, one obtains a well defined map

where L is any integral A-lattice in V.
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Definition 2.4. 6 is called the Witt decomposition map

Putting t([L, b]) = [L 0 K, b], for any regular A-lattice (L, b), it is clear
that 6 o t = 0. One gets an exact sequence

(cf. [Dre 75, Theorem 5]). Working with hermitian modules, one obtains
an analogous exact sequence (*h).

3. Morita theory for hermitian modules

Let A = A° be an R-order in the separable K-algebra A with involution
o. Let (L, h) be a regular hermitian A-lattice with endomorphism ring
O := Endn(L). Then L is a left O-module and h induces an involution -
on 0 by

Lemma 3.1 (cf. [Mor 90, §3], [Miy 90, §3], [Knu 91, §I.9j). Let (V, h) be a
regular hermitian A-rrtodule and L C V be a projective A-lattice such that
(L, h) is regular. Let D := EndA(V) and O := EndA (L) and assume that
L* 00 L ~ A and L OA L* = 0 as bimodules. Then there are isomorphisms
ol 0’, 0" such that

commutes, where - is the involution on D (and on 0) induced by h.

Proof. Let 0, ~’, 0" be the mappings defined on [Mor 90, p. 214,215]: For
any hermitian A-lattice let := (O(M), 0(o)) where O(M) =
Hom A (L , M) is an O-right module via ( f ~o)(l) := f (ol) for all f E 0 (M), 1 E
L, o E O. To define the hermitian form let EndA(L) =
O for f, 9 E Homn(L, M) be the composition

where ~ : M ~ M*, m ~ ’ljJ( m, .) is the isomorphism induced by 0. One
easily checks that Ø( 1/J) is an O-hermitian form.
The inverse of 0 is defined by ~-1 (N, -y) = (~-1 (N), ~-1 (-y) ), where

If (M, 0) is a hermitian A-lattice then by [CuR 81, Proposition (2.29)]
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because L* 00 L ~ A by assumption. If , I
then

Similarly one shows that 0 04&#x3E;-1 = id.
The mapping 0’ is defined analogously and also 0" is similarly defined by:

is the composition

One easily sees that these maps map metabolic modules to metabolic
ones and that the diagram is commutative. 0

The next (trivial) rule says that the sequence (*) (or (*~)) is a direct sum,
if the R-order A decomposes as a direct sum of two involution invariant
orders:

Lemma 3.2. Let E =,E’ E A be a central idempotent. Then any (hermitian
or covariant~ A-module (L, h) decomposes as the orthogonal sum (LE, h) 1
(L(1 - E), h) yielding a direct sum decomposition

such that

commutes.

Recall that a regular hermitian or covariant A-module M is called

anisotropic, if the only A-submodule U  M with U C is U = fol.
If U  TJ1  M is a submodule of M, then one easily sees that M is equiv-
alent to (with the induced regular hermitian or covariant form) in
the corresponding Witt group (see e.g. [Scha 85, Lemma 5.1.3]). Therefore
each element of the Witt group has an anisotropic representative. Since
the different primary components of hermitian or covariant A-torsion mod-
ules are orthogonal to each other and any p-primary component of an
anisotropic A-torsion module is annihilated by the prime ideal p  R, the
anisotropic A-torsion modules are orthogonal sums of 0R A-modules
with a hermitian or bilinear form that takes values in respectively

Identifying with this reduces the study of the Witt
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group of torsion A-modules to the one of covariant or hermitian modules
over Artinian algebras.

Remark 3.3. There is a (non canonical) isomorphism

where p runs through the maximal ideals of the Dedekind domain R.

For algebras (A or R/p 0R A) over fields, the anisotropic modules are
semisimple, because for every submodule U of an anisotropic module V one
has U n = 0 and hence V = U Q3 This shows the following lemma.

Lemma 3.4 (see e.g. [Dre 75, Lemma 4.2]). Let ~4R be a maximale ideal.
Then any anisotropic RIP 0R A-module is an orthogonal sum of simple
regular hermitian or covariant R/ p 0~ A-modules.

4. The surjectivity of 6 for local fields.

A. Dress proves in [Dre 75] an analogon to a theorem of Brauer on in-
duced characters: Let G be a finite group and let

and

1t2 := 1t2 := {U  G U has a cyclic normal subgroup of 2-power index}.
Theorem 4.1 ([Dre 75, Theorem 2]). For any Dedekind domain R the in-
duction yields a surjective mapping

- , - , __1- - - ,

The theorem of Brauer can be used to show that for a finite extension
K of Qp with valuation ring R and residue class field k := where

p = 7rR is the maximal ideal of R, the decomposition map from the ring of
generalized characters of G over K to that over k is surjective (see [Ser 77,
Chapter 17~).
The same method, using Theorem 4.1 also shows that the sequence

is exact. Most of the exactness is already shown in [Dre 75, Theorem
5]. The only missing ingredient is the surjectivity of the composition
ð7r : W(KG, °) -j W(kG, °) of 6 with the isomorphism WT(RG, °) =
W(kG, °) (Remark 3.3) given by multiplication with 7r, i.e. b~~(V, B)~ _
BIL, B)] for any maximal integral A-lattice L in V, where
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If the group order is invertible in R, then this surjectivity follows by
the general Morita theory in the last section. But it is easy to establish a
slightly stronger result:

Lemma 4.2. Assume that IGI is invertibl e in R. Let M be a simple
kG-module and (bl, ... , bn) a k-basis of the space of covariant forms on
M. Then there is a simple KG-module V, a lattice L C V, and an R-
basis (Bl, ... , Bn) of the space of integral covariant forms on L, such that

(M, bZ) for i = 1, ... , n.

Proof. [Ser 77, 15.5] shows that there is a KG-module V such that M E£
L/7rL for any RG-lattice L in V. Let B~ be any symmetric bilinear form
on L such that bi (mod 7r) and define Bi := 1 (i =
1, ... , n) . Since = bi (mod 7r) for all g E G, the forms BZ are G-
invariant forms lifting bi (i = l, ... , n). They form an R-basis of the lattice
of all integral covariant forms on L since their reductions modulo 7r form
such a k-basis for L/7rL. Moreover LB. - L for all the forms Bi. Therefore2

and (M, bi) for i = 1, ... , n. 0Z Z I

For elementary subgroups the surjectivity of 6 in (*) can be seen by
number theoretical arguments:

Theorem 4.3 ([Neb 99, Satz 4.3.6]). G : = C : P be the semidirect product
of a cyclic group C of order not divisible by the prime l and an 1-group P.
Then is surjective.
More precisely, for every simple regular kG-module (M, b) there is a

regular RG-lattice (L, B) such that (M, b).
Proof. The first part of the proof follows closely the one of [Ser 77, Theorem
41]. Let p := char(k) .
By Remark 3.4 it suffices to show that all simple kG-modules M that

have a regular G-invariant symmetric bilinear form b are in the image of 6.
So let (M, b) be such a simple orthogonal kG-module.
. Assume first that 10 p. Then the Sylow-p-subgroup S of G is normal in
G and therefore acts trivially on M, so M can be viewed as a kG/S-module.
Since lllG/SI the theorem follows from Lemma 4.2.
0 We now assume that 1 = p. By induction we assume that M is a faithful

kg-module. Since the centralizer of C in P is a normal p-subgroup of G and
hence acts trivially on M, we assume that Cp (C) = 1 so P acts faithfully
on C. Now implies that M is a semisimple kC-module. Let
M = Ma be a decomposition of M into kC-isotypic components. Since
M is an irreducible kG-module, G permutes the Ma transitively. Let Ga =
C : Pa be the stabilizer of Ma . Then M = Ind8o: and Ma is an
irreducible Ga-module. Since Ma is a homogeneous kc-module, the image
of the representation End(Ma) is a field 1~~~), where ( is a
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primitive root of unity. Since char(k) = p and Pa is a p-group,
there is 0 =I vEMa such that vg = v for all g E P,. Then Ma is
a Ga-invariant subspace of Ma, because C is normal in Ga, and therefore
Ma = kv. Identifying v with 1 E k, we identify Ma with l. Then P, acts as
Galois automorphisms on Ma. Let k = K( be the unramified extension

N N N

of K with residue class field k ^-_’ fil/ j5 where R = R[(] is the ring of integers
in K and j5 = the maximal ideal of R. The homomorphism C -~ k*
lifts uniquely to a homomorphism C R*, which makes R into a RC-
module. Since the Galois groups Gal(K/K) and Gal(k/k) are canonically
isomorphic, the group P, acts naturally on R as Galois automorphisms.
This make R into an RG,-Iattice, with M~.
We now consider the invariant form b on M. To this purpose let M: =

be the dual kC-module. Distinguish two cases:
a) M: as kc-modules.
b) M: as kC-modules.
If one also identifies M: with k, then - : ~-4 C-1 is a k-linear

Galois automorphism of k in case a) but not in case b).
In case a) the module Ma has a kGa-invariant regular symmetric bilinear

form b’ : Ma x Ma -~ k, b’(x, y) := Since the diff erent isotypic
components are orthogonal in this case, the module (M, b) is induced from
(Ma, By induction on ~G~ we may assume that M = Ma and G =

G~. Let 1~+ := Fix(-) be the fixed field of - in k. Then the symmetric
C-invariant bilinear forms are the forms bz : (x,y) H tracek/k(xzy) with
z E k+. Clearly bz is P-invariant, if and only if z E k+ lies in the fixed field
k+ of P in 1~+. In particular the form b = bz’ for some z’ E 1~+.

Since - is a Galois automorphism of k fixing 1~, the map - : K -~ K,
( H (-1 defines a Galois automorphism of K/K. Let K+  K be the
fixed field of (P, -~  Gal(K/K) with ring of integers R+ and maximal
ideal pR+ =: ~+. Then the G-invariant symmetric bilinear forms on k are
the forms Bz : (x, g) H tracek/K(xzy) with z E K+. Let Z’ E R+ be a
preimage of z’ E R+/~+ _ ~+, Then Z’ E (R+)* is a unit and (R, Bz~) is
a regular covariant RG-module with (M, b).
Now consider the case b), that Mf . Since M is self dual, the

module Ma is isomorphic to some other isotypic component Mo.’ of M. As
above we may assume by induction that M = Ma + Then m k + k
where the action of a generator g of C is (x + g)g := x( + yç-l. Now
the C-invariant symmetric bilinear forms on M are of the form bz : (xl +
gl, x2 + y2) H trace(xlZY2 + YlZX2) with z E 1. One also checks that bz
is G-invariant, if and only if z E k+ := Fix(Pa). Similarly as in the case
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a), these invariant forms can be lifted to invariant forms on R + R and one
finds a preimage of (M, b). 0

With Theorem 4.1 this allows to conclude the surjectivity of 6 for arbi-
trary groups G.

Corollary 4.4. Let R be the vaduation ring in a finite extension K of Qp
with maximal ideal and residue class field k = R/ 7r R. Let G be a finite
group. Then there is an exact sequence

Proof. The proof is based on the following commutative diagram:

The vertical arrows are surjective by Theorem 4.1, so it is enough to
show the claim for the elementary subgroups U E 9 U ? C2. In particular
it suffices to prove the corollary for such groups G that contain a cyclic
normal subgroup of 1-power index for some prime i. But such a group is

isomorphic to C : P for an 1-group P. Therefore the corollary follows from
Theorem 4.3. 0

Here it is essential that A is a group ring. For arbitrary symmetric orders
one easily constructs counterexamples to the surjectivity of ð7r:

where R := Z2. Let A be the sublattice of Q3 R2 x 2

with R-basis

Then A is symmetric with respect to where T r2 is the reduced
trace of the i-th component R2 x 2 . Taking the transpose in each component
defines an involution ° on A. If (V, B) is a simple regular covariant Q2 0 R A-
module, then S2(Y, B) = 0 or 62(( B) = (8,1) 1 (S,1), where S is the
simple A-module. Therefore 62 is not surjective.

The surjectivity of 6 for p-adic fields has the important consequence,
that for number fields K, the composition of 8 with the projection on one
component W(KG, °) °) is surjective. This is in general not
true for the classical decomposition map: Let G ^--’ C4. Then G has only
3 irreducible representations over Q, but 4 irreducible representations over
F5. Therefore the 5-modular decomposition map over the rationals is not
surjective.
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Theorem 4.6. Let G be an arbitrary group and R the ring of integers in
a number field K. Let p a R be a prime ideal of R. Then the composition
7rp o 6 =: 6p : W(KG, °) °) is surjective.

Proof. As above it suffices to prove the theorem for the groups G = C : P as
in Theorem 4.3. Let k := R/p and G be such a group and (M, b) a simple
regular kG-module. Let Rp be the completion of R at p with maximal
ideal 7rR. = Rp OR p. Then Theorem 4.3 yields a regular RpG-lattice
(L" B,), such that (M, b) = ((L,) B/L" rB,). Let V be the irreduciblep p p irB. pKG-module such that Wp L is a constituent of Vp = V.
Then there is a regular G-invariant form Vp x Kp and an 
lattice Lp 9 V. such that (M, b) ^--’ Let L’ := Lp n V._
Then L’ is a lattice for the localization R of R at p (cf. [Rei 75, Theorem
(5.2)(ii)~). Let L be any RG-lattice in V such that R~~,~ 0R L = L’. Then
Rp 0R L = Let IGI = paq with pXq and r E Z with rq - 1 (mod p).
Choose any symmetric bilinear form B’ : L x L ~ R, such that B’ - Bp
(mod pa) and let B(v, w) := for all v, w E V. Then

B is G-invariant and integral on L and B - Bp (mod p). Using the same
--construction for R with any element 7ro E R with,7ro == 1r (mod p 2), one
finds (k 0p B) = (M, b). D

5. The cokernel of 6 for number fields.

In this section let K be a number field and R its ring of integers. If G is
a finite group then one has a forgetful map: W(RG, °) ~ W(R), mapping
an orthogonal RG-lattice (L, b) onto the underlying R-lattice (L, b). Let

Wo(RG, °) be the kernel of this map. Analogously one defines Wo(KG, °)
and ° ) . Then one has an exact diagram

where Co and C are the respective cokernels, W(R), W(K), and WT(R)
are the classical Witt groups of regular symmetric bilinear forms. The
exactness of the last row is shown in [Scha 85, Theorem 6.6.11] (cf. also

[MiH 73, Example IV.3.4]).
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Remark 5.1. For all finite groups G and number fields K, the cokernel of
6 has an epimorphic image C(K)IC(K)2.
5.1. Groups of odd order. This section mainly intends to give a survey
on known results, though most of them are stated more generally as the
ones in the literature.

Theorem 5.2 (cf. [Mor 90, Corollary 3.10] for p-groups G). Let G be a

nilpotent group of odd order and let K be a number field with ring of inte-
gers R. Then the cokernel of 6 is isorrzorphic to the exponent-2-factor group
C(K)IC(K)2 of the class group C(K) of K.

Proof. Let G P, x ... x P,"L where Pi is the largest normal pi-subgroup
of G and pl, - P,,,t are distinct primes. We proceed by induction on m to
show that the restriction 60 of 6 to Wo(KG, °) in diagram (**) is surjective.

If K is not totally real, then Wo(KG, °) = 0 (cf. [Mor 90, Proposition
3.3~) and we are done. So assume that K is a totally real number field.

If m = 0 then G = 1 and the statement is trivial. For m = 1, the
theorem is [Mor 90, Theorem 3.9].
Assume that m &#x3E; 0. Let S := {p 4 R ~ E p, p prime ideal }.

First we show that °) is in the image of 60. To this

purpose let p E S. Then pi E p for some 1  i  m. Since Pi is normal in
G, it acts trivially on all simple So the simple orthogonal
R/pG-modules are modules for G/Pi. By the induction hypotheses these
modules are in the image of 60. Hence the cokernel of 60 is an epimorphic
image of the factor group

Therefore the cokernel of 60 is isomorphic to the corresponding cokernel Cs
in the localized situation defined by the exact sequence

l12 is a maximal order in KG

where Al, ... , are maximal orders in the simple constituent of KG, that
do not correspond to the trivial representation of KG. Moreover Ai = l12
since K is totally real. By Lemma 3.2 °) ° ) .TG-l 1=
As in the proof of [Mor 90, Theorem 3.4 one finds for every simple self dual
KG-module V an G-covariant form on V and an R[£]G-lattice that is selfII
dual with respect to this form. The endomorphism ring of this lattice is
the maximal order in the totally complex CM-field Applying
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the Morita theory of Section 3, one proves Cs = 0 as in [Mor 90, Theorem
3.9]. D

To deduce the surjectivity of 60 for arbitrary groups of odd order, one
has to show the surjectivity of the induction map (Theorem 4.1) also for
Wo and WTO, which I could not establish. So we have to restrict to the
case that the class number of K is odd to show:

Theorem 5.3 (cf. [Miy 90, Theorem C] for K = Q). Let G be a group of
odd order and assume that odd. Then 6 is surjective.

Proof. This follows immediately from the surjectivity of 6 for the elementary
subgroups of G shown in Theorem 5.2 and Theorem 4.1. D

5.2. A counterexample to the surjectivity of 6 for K = Q:
Dihedral groups.

Proposition 5.4. Let p &#x3E; 2 be a prime, G := (.r,?/ ~ I ~p = y2 = 
1) ~ D2p the dihedral group of order 2p and K := Q[(p + ~P 1~ the maximal
real subfield of the p-th cyclotomic field. Then

is exact.

Proof. It remains to show that 
Using the argumentation in [Scha 85, p 176/177] that shows the surjec-

tivity of the Witt-decomposition map for G = 1 and K = Q, one sees that
GW(Fp, G) GW(IFr, G) is in the image of 6 (this follows also from
the surjectivity of 6 for C2 [Mor 90, Theorem 2.3]). Let S := Z[~]. Then
(*) is exact if and only if

is exact. The group ring SG is isomorphic to SC2 s3 R(p~2x2, where R :=
7G~~p -E- ~p 1~ is the ring of integers in K. Hence by Lemma 3.2, the sequence
(*)p is a direct sum of two sequences. One easily sees that the sequence

is exact. So we only have to deal with the other direct summand of SG,
which is Morita equivalent to R(p~. To apply Lemma 3.1 one has to con-
struct a unimodular hermitian SG-lattice in the irreducible QG-module V
of dimension p-1. But V can be identified with Q [(p], where x acts as mul-
tiplication by the primitive p-th root of unity (p and y as the Galois auto-
morphism (p - (~- 1. Then h : V x V - G defined by h( (;, (p3) : := E G
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is an G-hermitian form on V. Let L := S[(p]. Then (L, h) is a regular
SG-lattice. By Lemma 3.1 one can replace by R[] = p p p

if one considers Witt groups of hermitian forms. But the involution on

] is trivial, so by a classical result (see e.g. [Scha 85, Theorem 6.6.11~,
[MiH 73, Example IV.3.4~), the following sequence is exact:

where 7 runs through the prime ideals of the Dedekind domain R[-!]. The
prime ideal of R over p is generated by (~p - (;1)2 and hence principal.
Therefore the class group C(K) of fractional R-ideals in K is isomorphic
to the class group C(R[)] ) of fractional R[)]-ideals and the cokernel of 6 is
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