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Invariants of a quadratic form attached to a tame

covering of schemes

par PHILIPPE CASSOU-NOGUÈS, BOAS EREZ
et MARTIN J. TAYLOR

À Jacques Martinet

RÉSUMÉ. Nous étendons des résultats de Serre, Esnault-Kahn-
Viehweg et Kahn, et nous montrons une relation entre des inva-
riants dans la cohomologie étale modulo 2, qui sont obtenus à par-
tir d’un revêtement modérément ramifié de schémas à ramification

impaire. Le premier type d’invariant est construit à l’aide d’une
forme quadratique naturelle définie par le revêtement. Dans le cas
d’un revêtement de schémas de Dedekind cette forme est donnée

par la racine carrée de la codifférente avec la forme trace. Dans
le cas d’un revêtement de surfaces de Riemann la forme provient
de l’existence d’une caractéristique théta canonique. Le deuxième
type d’invariant est défini à l’aide de la représentation du groupe
fondamental modéré, qui est attachée au revêtement. Notre for-
mule est valable sans restriction sur la dimension. Pour les revê-
tements non-ramifiés la formule est due aux auteurs précités.

Les deux contributions essentielles de notre travail sont de
montrer (1) comment ramener la démonstration de la formule
au cas non-ramifié en toute dimension et (2) comment maîtriser
les difficultés provenant de la présence de points singuliers dans
le lieu de ramification du revêtement, en utilisant ce que nous
appelons "normalisation le long d’un diviseur" . Notre approche
toute entière est basée sur une analyse fine de la structure locale
des revêtements modérément ramifiés.

Nous présentons aussi un survol des notions de la théorie des
formes quadratiques sur les schémas et les techniques simpliciales
de base nécessaires pour la compréhension de notre travail.

ABSTRACT. We build on preceeding work of Serre, Esnault-Kahn-
Viehweg and Kahn to establish a relation between invariants, in
modulo 2 étale cohomology, attached to a tamely ramified cover-
ing of schemes with odd ramification indices. The first type of
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invariant is constructed using a natural quadratic form obtained
from the covering. In the case of an extension of Dedekind do-

mains, mains, this form is the square root of the inverse different
equipped with the trace form. In the case of a covering of Rie-
mann surfaces, it arises from a theta characteristic. The second

type of invariant is constructed using the representation of the
tame fundamental group, which corresponds to the covering. Our
formula is valid in arbitrary dimension. For unramified coverings
the result was proved by the above authors.

The two main contributions of our work consist in (1) showing
how to eliminate ramification to reduce to the unramified case, in
such a way that the reduction is possible in arbitrary dimension,
and; (2) getting around the difficulties, caused by the présence of
crossings in the ramification divisor, by introducing what we call
"normalisation along a divisor" . Our approach relies on a detailed
analysis of the local structure of tame coverings.
We include a review of the relevant material from the theory of

quadratic forms on schemes and of the basic simplicial techniques
needed for our purposes.

CONTENTS
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Introduction

The theory of bilinear and quadratic forms over schemes has experienced a
surge of activity in recent years. Even so, it still seems that little is known
in general (see however the very recent work of Balmer [Bal], [Ba2]). As
an indication that this is the state of affairs, we note that-to the best of
our knowledge-Knebusch’s paper of the seventies [Kne] remains the only
available source on the elements of the theory. Of course, since that time
a lot of progress has been made on the theory of forms on rings, see e.g.
[Knu], and some results and definitions on forms over rings are sufficiently
functorial to work over schemes; but, for instance, the theory of bilinear
forms over the rational integers, has not yet been related to the recent work
in arithmetical algebraic geometry. (For the benefit of the reader we have
collected most of the sources on the theory which are known to us in the
bibliography-the article [Pa] contains a nice survey.) One explanation for
this might be that there is not, as yet, a real need to develop a general
theory, because few concrete examples and problems have been considered.

One of our aims here is to study a very special form, which arises from
the consideration of coverings of connected, regular, proper 
Namely, let

be a covering of such schemes, which is obtained as a sub-covering of a
I N

quotient 1f : X Y = X/G, where G is a finite group acting on the
connected, projective, regular Z[l]-scheme X. That is, we let X = X / H
for H a subgroup of G. Then, under suitable assumptions, among which is
the requirement that the ramification be tame along a divisor b with normal
crossings and that the ramification indices be odd, we are assured of the
existence of a locally free sheaf D-1/2 over X, whose square is the inverseX/Y
different of XIY (see Sect. 3.d). When viewed over Y and equipped with
the trace form this sheaf, defines a non-degenerate symmetric bilinear form
on Y, which we denote
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and which we shall call the square root of the inverse different (see the
Example before Sect. l.c.l).Note that for unramified coverings /y =gs 

 x . In algebraic number theory this form has been studied by two of us
in [E-T] (see also [El]). The aim there was to compare this form with
the natural form on the group algebra, which is a sum of squares. For

coverings of Riemann surfaces it has been studied by Serre in ~52~ . In [S l] ,
Serre had previously given a formula for the Hasse-Witt invariant of the
trace form for étale algebras over fields of characteristic different from 2 (no
ramification and dim 0). The formula in [S2] is an analogue of that formula
in the ramified case of dimension 1 (and characteristic 0). Esnault, Kahn
and Viehweg then provided a result valid for all tamely ramified coverings of
Dedekind schemes with odd ramification, which generalizes both of Serre’s
results (see [E-K-V] and ~K~). In a different direction Lee and Weintraub
have generalized Serre’s formula to ramified coverings of higher dimensional
manifolds, with smooth ramification locus, see ~L-W~ . It was puzzling for
us to see that in higher dimension their formula looked just like Serre’s
and did not involve more terms. We wondered whether this was due to
the smoothness assumption on the ramification locus. It turns out that the
crossing points of the ramification locus do play a major role in our work,
but they do not contribute to the final result.
We will keep to the algebraic set-up and provide a generalisation to higher

dimensions of the work of Esnault-Kahn-Viehweg. We give an expression
for invariants attached to the form E. Our strategy consists in reducing to
the case of an étale cover. This case has been treated in full generality in
[E-K-V] and ~K~. (The proof in this case consists of a sophisticated cocycle
computation generalizing that made by Serre to deal with the trace form
of étale algebras, see Sect. l.h.) The invariants we consider are generalized
Stiefel-Whitney classes. They live in the étale cohomology groups modulo
2 of Y and are obtained by pulling back universal Hasse-Witt classes using
a classifying map corresponding to E (as in [Jl] and [J2], see Sects. l.d
and l.e). Following Snaith and Jardine, we shall call the i-th Hasse- Witt
invariant of E the class in Hi (Yet, Z/2Z) attached to the form E in
this way. Putting all these classes together we obtain the total Hasse- Witt
invariant of E

which is a class in the (abelian) group Z/2Z) of invertible elements
in Z/2Z). To determine this class we shall construct an étale cover-
ing T ~ Z of Y-schemes, and a sequence of locally free sheaves 9(h) on
Z, as follows. Let G2 denote a 2-Sylow subgroup of G and put Z = X/G2,
then T will be the normalization of the fiber product T’ = Z xy X . So we
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have the diagram.

Our first task will be to show that with these definitions 7rz is indeed
étale and that T is regular. We do this by using an explicit description
of the local structure of the cover X ~Y (see Sect. 2). The natural thing
to try then is to compare the pull-back of E along 0 with the form F =

(7rZ*(OT), TrT/z). Note that by our choice of Z the pull-back map induced
by 0 in cohomology is injective. The two forms 0*(E) and F coincide
on the generic fiber of Z and we wish to compare their total Hasse-Witt
invariants. For this, following [E-K-V], we try to show that the orthogonal
sum H := equipped with the difference of forms, contains an
isotropic sub-bundle I, whose rank is half of the rank of H. With the

terminology introduced in Sect. l.c.l, we try to show that H is metabolic
with lagrangian I. Note that hyperbolic forms are an example of metabolic
forms and the reason for trying to show that H is metabolic is that, as with
hyperbolic forms, it is expected that the quadratic~Hasse-Witt invariants of
H should then be determined by the linear/Chern invariants of the maximal
isotropic sub-bundle I. In fact this expectation is justified (see the Main
Lemma 1.15). In dimension 1, which is the situation considered in [E-K-V],
the intersection 0* (E) f1 F gives the required sub-bundle I. In our general
situation, problems appear due to the fact that the branch locus b of the
covering X/Y is not smooth. We show that the form is metabolic

(in a generalized sense), but to exhibit a maximal isotropic sub-bundle
explicitly we are led to introduce a sequence of forms A~h~ which interpolate
0*(E) and F. For this we decompose the normalization map T -~ T’ into
a sequence of Z-morphisms

numbered by the m components of the branch locus b of the covering X/Y
and which are obtained by "normalisation along a component of b" (see
Sect. 3). The form A~h~ is the square root of the inverse different for the
cover and A(°) = ~~ (E), while = F. For 0  h  m - 1 we
have short exact sequences of locally free Oz-modules

where the map on the right is the difference map (see Prop. 3.12). This

shows that the sum is metabolic.
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We need to introduce one last notation before stating our first main
result. For every h define an element of H* (Zet, Z/2Z) by

where Cï(gCh)) = Cï(ICh)) denotes the i-th Chern class of g(h) and n denotes
the rank of gCh) (see the Main Lemma 1.15).
Theorem 0.1. Under the above assumptions the following equality holds
in H*(Zet, Z/2Z)

Remark. It should be noted that if we work with another divisor on Y
which differs from b by the addition of a number of irreducible non-ramified
divisors, then of course the number m of divisors will change and so the
parity of the first term in the right hand side may change; however, it can
be checked that the product of the two terms on the right remains constant
(see the remark at the end of Sect. 4.a).
The proof of Thm. 0.1 is given in Sect. 4.a. The invariants of the form

arising from the étale covering T/Z, have been related
to other Stiefel-Whitney type invariants attached to the covering in [Sl] ,
[E-K-V] and (K). These are what we call the Galois theoretic classes wi(7r),
which can be defined using Grothendieck’s equivariant cohomology theory.
Then, with some further work, in low degree Thm. 0.1 can be reformulated
to give a simple expression for the difference between the second Hasse-
Witt and Galois theoretic invariants. For this let us introduce an element

p(X/Y) in H (%t, Z/2Z) which only depends on the ramification data of
the covering X/Y. We shall denote by the same symbol (the class of) a
line bundle and its image in Z/2Z) under the composition

where the second map is the coboundary induced by the Kummer sequence
(note that under our assumptions we may identify p2 with Z/2Z). We
define p(X/Y) as a divisor class. Let ~h denote the generic point of the
irreducible component bh of the branch locus b and consider the divisor

where the sum runs over the points g§ on X of codimension 1 above the
Çh and where e(g§) denotes the (odd) ramification index of ç~. The divisor
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p(X/Y) on Y is defined as the direct image

where f (~h) denotes the residue class extension degree. Our second main
result can then be formulated as follows.

Theorem 0.2.

a) Let dXjY denote the function field discrirrcinant viewed as an element
in Z/2Z), then

b) The following equality holds in H2(Yet, Z/2Z):

The main effort in proving this theorem, given the preceding work, goes
into a determinantal computation, which again uses in an essential way the
local description of the tame cover X / Y . More precisely in Thm. 4.2 we
show that in Z/2Z):

The origin of the coefficient (e2 - 1)/8 is in the combinatorial Lemma 4.3.
We do not have a conceptual definition of the ramification term p(X/Y).
A word about invariants of forms over schemes might help clarify the

significance of our results. Not all invariants of forms over a field extend
to invariants of forms over schemes, except in degree 2 and smaller. Global
obstructions appear. So for instance the Arason invariant, in degree 3, does
not extend to schemes, see [E-K-L-V]. The Hasse-Witt invariants we study
exist in arbitrary degree, but one should keep in mind that they are not
independent one of the other. So for instance, as might be expected from
the analogies with algebraic topology, if wi (E) and w2 (E) are both zero,
then w3 (E) is zero as well. The formulae in Thm. 0.2 can be viewed as

expressing the difference between the "topological" Hasse-Witt invariant
and the "discrete" Galois theoretic invariant (see ~J1~, p. 84, [J3] Sect. 3 or
[J4] Intro.). They should also be viewed as "twisting formulae" following
Frôhlich’s work ~F~. Yet another interpretation is given by Kahn in terms
of equivariant cohomology (see [K]).

The invariants in degree smaller than 2 have been refined to give invari-
ants in K-theory (see [G1], [0-P-S], [Sz], [G2] and [B-0]; the last two also
deal with invariants in higher degree). These invariants are related to the
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invariants in étale cohomology via Chern class maps; we do not know if our
formula can be lifted to K-theory.
The paper is structured as follows. In Sect.l we fix notation and recall

the necessary definitions and background material used in the rest of the
paper. We offer a rather detailed review of the basic material on forms
over schemes and their invariants as the literature on the subject is rather
scarce and/or quite technical. In Sect. l.h we state and sketch a proof
of the result of [E-K-V] which we use in the proof of Thm. 0.2. Sect. 2,
contains the material on tame covers on which our contribution is based.
There we describe the normalization T locally (see Prop. 2.6). Next, we
analyze the normalisation procedure and decompose it into steps, which
we call "normalisation along a divisor" (see Sect. 3). Sect. 4 contains the

proofs of Thm. 0.1 and Thm. 0.2. The first will follow easily from the
preceding work. As explained above, to obtain Thm. 0.2, we have to make
more explicit the right hand side in the equality of Thm. 0.1 as well as
bring in the Galois theoretic invariants. We have collected in an Appendix,
some material on homotopical algebra which we could not find presented
in compact form anywhere in the literature.
To conclude this Introduction let us mention another related line of re-

search which consists in studying forms on cohomology of (complexes of)
sheaves. This has been pursued by Saito in [Sa] and Chinburg-Pappas-
Taylor in C-P-T1. Saito’s work also has as its starting point Sl, whereas
[C-P- Tl] deals with forms coming from Arakelov metrics. This work sheds
new light on the role that the trace form plays in Galois module theory. We
would also like to indicate that in the future we hope to relate the material
in this paper to the programme developed in [CEPT2] and other papers of
that consortium of authors (see [E2] and [C-P-T2] for a general overview of
that programme). Other developments arising from Serre’s original formula
for étale algebras can be found in [Mo] and the references therein.
We would like to acknowledge initial discussions with G. Pappas and

T. Chinburg and to express our gratitude to Q. Liu for his help and ad-
vice. The second author would also like to thank P. Balmer, J.F. Jardine,
B. Kahn, M-A. Knus and M. Ojanguren for helpful remarks concerning
their work and the literature on the subject.

1. Framework and notation

l.a. Notation and conventions.
Induced algebras. In our local description of the structure of tame coverings
we will need the following construction. Let A be a ring and let B be an A-
algebra equipped with an action of the finite group H, which preserves the
algebra structure. For a group G and a subgroup H of G let MapH(G, B)
denote the B-algebra of all maps f from G to B such that for all g in
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G and all h in H, f (gh) = f (g)h. The group G acts on this algebra by
f9(9~~ _ 
Normalisation. For a ring A which injects into its total ring of fractions

Fr(A) we write A for its integral closure. We will also use a tilde superscript
to denote certain objects related to the cover of schemes X/Y. This should
not cause any confusion.

Coef,ficients. We will work with mod 2 étale cohomology of schemes on
which 2 is invertible, so we will always identify p2 with Z/2Z.

l.b. Tame coverings with odd ramification.
In what follows all schemes will be defined over Let X be
a connected, projective, regular scheme which is either defined over the
spectrum Spec(Fp) of the prime field of characteristic p ~ 2 or is flat over
Spec(Z[~]).
Tameness. Assume X is equipped with a tame action of G, in the sense of
Grothendieck-Murre. In particular the quotient

exists and is a G-torsor outside a divisor b with normal crossings (see
[Gr-M], [CEPT1], [C-E] Appendix and [CEPT2] 1.2 and Appendix).
Once and for all fix a subgroup H of G, and let

denote the quotient map. Let

be the induced map, so that 7r = 1r o A. These maps are all finite.

Regularity and flatness,. If à is flat, then Y is regular (see [EGAIV] IV
6.5.2). Conversely a morphism between equidimensional regular schemes
of the same dimension is flat (see [Ka-M], Notes to Ch. 4 or use [EGAIV]
IV 6.1.5). We will assume that Y and X are regular, or equivalently that
ir and .~ are flat. Note that being quotients of a normal scheme by a finite
group y and X are certainly normal, however it is only under the above
regularity assumptions that we will be able to give a precise description of
the local structure of the quotient maps (see Lemma 2.3). It follows from
these assumptions that ir is flat as well.

Different; branch and ramification loci. The different is the annihi-

lator of (see [Mi] Rem. 1.3.7). The reduced closed subscheme of Xx
defined by the different is the ramification locus of if, which we denote by
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B = B(X/Y). Then b = b(X/Y) is the reduced sub-scheme of Y defined
by the image of B under if. There are decompositions

where the bh are the irreducible components of b and where for any fixed
integer h between 1 and m, the Bh,k are the irreducible components of B
such that = oh.
The tameness assumption on the ramification implies that the ramifi-

cation locus B(X /Y) on X is a divisor with normal crossings. For each
irreducible component bh of b, let Çh denote the generic point of bh, and
let g£ denote a generic point of the branch locus on X above Çh. Put

g§ = ~(~)* Let e(g§) (resp. f (~h)) denote the ramification index (resp.
residue class extension degree) of g§ over ~h.

Parity. We assume that the inertia group of each closed point of X has odd
order, so every point has odd inertia and in particular the integers 
are odd.

The base change. Choose a 2-Sylow subgroup G2 of G and consider the
quotient Z := X/G2. We will show in Sect. 2, that by the parity assump-
tion X is étale over Z, so Z is regular and flat over Y. We give a local
description of Z/Y analogous to that of X/Y, without using the regular-
ity of Z in (2.4). As mentioned in the Introduction our main effort will

go into the construction of Z-schemes which will allow us to reduce our

computation of the invariants to the case of an étale cover.

Mernotechniques. For future reference and to help the reader with book-
keeping, we anticipate some of the notation to come. Components of the
branch locus b will be numbered by h (from 1 to m). We fix points y in
Y and x in X over y. The n components of b which are in the image of a
component of the ramification divisor through x will be numbered by ~ (see
(2.2); of course there might be none of these). Let I(x) denote the inertia
group of x for the covering X /Y, this is a group which is the direct product
of n cyclic groups indexed by the components of b through ~. Let eî denote
the order of the ~-th component. In describing the local structure of our
coverings we will consider the spectrum S = Spec(Ay) of a ring containing
a regular sequence of parameters al, ... , an, providing a sufficiently small
étale neighbourhood of y in Y (see Lemma 2.3). Then, we will construct
coverings
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corresponding to inclusions of algebras

where for a certain divisor of e.l and where te, = a£ (seee Ê

also the diagram just before Sect. 2.a). The index i arises from the double
coset decomposition of G with respect to H and I (x) . Analogously, the
index j (i) arises from a coset decomposition f1 HBH (see (2.b)).
Fixing i and going to the fields of fractions we obtain a sequence of abelian
Galois extensions of the field Ky = Fr (Ay ) . Namely let

and Hi = I(x)/I(x,i), then we have the diagram of fields

There is an analogous description of S - Zs and quite naturally, in the
local description of the normalisation T of T’ = Z x y X, we will consider
algebras indexed by pairs (j, i) (see Prop. 2.6). Moreover the algebras
appearing in the local descriptions will be decomposed according to the
characters of the group Hi, which will be indexed by a set A(i), whose
elements will be a’s (see Lemma 2.5).

l.c. (auadratic forms on schemes.
Quadratic forms on schemes are defined by generalizing the familiar defi-
nitions given for such forms over fields or rings (see e.g. [Kne] and [Knu]
Chapt. VIII). The only definition which is not straightforward is that of
a metabolic form (see below Sect. l.c.l). However, for the definition of
the invariants, it is also good to have an algebraic description of the set of
isometry classes of forms of given rank over a scheme Y. We will recall the
description in terms of non-abelian first cohomology sets, and the descrip-
tion in terms of homotopy classes of maps from Y to a certain classifying
space. For completeness, we briefly go over the basic material on forms
over schemes. As usual, since 2 is invertible over Y, then the theory of
symmetric bilinear forms is equivalent to that of quadratic forms. Here we
will concentrate on the former.

Let Y be a scheme. A vector bundles E on Y is a locally free Oy-module
of finite rank. The dual of a vector bundle E is the vector bundle E’ such
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that, for any open subscheme Z of Y

There is a natural evaluation pairing  , &#x3E; between E and E’ and one
can identify E with the double dual E~" by

such that  a,K,(u) &#x3E;= u, a &#x3E;. A symmetric bilinear form on X is a
vector bundle E on Y equipped with a map of sheaves

which on sections over an open subscheme restricts to a symmetric bilinear
form. This defines an adjoint map

which because of the symmetry assumption equals its transpose:

We shall say that (E, B) is non-degenerate (or unimodular) if the adjoint
cp is an isomorphism. (Note that some authors call non-degenerate forms
spaces.) One can show that a form on a locally free module of rank n over
a ring R in which 2 is invertible is non-degenerate if and only if locally in
the étale topology it is isomorphic to

see [Sw] Cor. 1.2, [Knu] IV (2.2.1), IV (3.2.1) or [M-R] 1.11.5 (In [M-H] 1
(3.4) it is shown how to diagonalize a non-degenerate form over a local ring
in which 2 is invertible.) Morphisms among forms, orthogonal sums and
tensor products are defined as expected.

Example 1.1. Let 1r : X ~ Y be an oddly, tamely ramified cover as in
Sect. l.b. We obtain a non-degenerate symmetric bilinear form on Y by
letting

1 1

and by considering the bilinear form B : E Xy E ~ Oy given by B(x, y) =
tracex/y(x.y) (see [EGAIV] IV 18.2.1). Note that twice the divisor defining
E is isomorphic to the (relative) canonical divisor of X/Y and that if 7r is
étale, then Ox.
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There is a further useful way to view a form over a scheme. For E a vector
bundle over Y, let P(E) -&#x3E; &#x3E; Y denote the associated projective scheme.
Then, giving a symmetric bilinear form on E is equivalent to giving a
section of the invertible sheaf O(2)p(E) over P(E) (a section of S2(E)) (see
[Sw] Lemma 2.1 and [Del]).
l.c.l. Metabolic forms. The notion of a metabolic form was introduced
by Knebusch for his definition of the Witt group of a scheme in [Kne].
Hyperbolic forms are metabolic and the greater generality of the latter
notion is the right one in the global situation of non-affine schemes (see
below). More recently in ~Bal~, [Ba2] Balmer has extended the notion of a
metabolic form in the context of triangulated categories with duality and
he has shown its usefulness. In fact the interpolation procedure which we
will set-up in Sect. 3 shows that even in our very special situation it is

quite natural to consider forms as self-dual complexes (see the remark after
Prop. 3.12).

Let E be a vector bundle over Y. A sub-Oy-module V of E is a sub-
bundle of E if it is locally a direct summand, i. e. for any y in Y, there is an
open Z containing y such that VIZ has a direct summand in Elz. If a V is
a sub-bundle of E, then V and the quotient E/V are both vector bundles.
Let now (E, B) be a form. For a sub-module i : V C E one defines an

orthogonal complement, which is the sub-Oy-module V, whose sections
over the open Z consist of those sections of E which are orthogonal to all
sections of V over any open subset of Z. Alternatively:

If furthermore V is a sub-bundle of E, then i’ is an epimorphism, and if
(E, B) is non-degenerate, then cpB is an isomorphism (by definition). So
under these assumptions we have an isomorphism

is locally free and V is also a sub-bundle. There also is an isomor-
phism

, . ,

(The form (E/V) can be identified with the sub-Oy-module of E whose
sections over Z C Y are the linear forms ~ : Oz which vanish on V,
so V = The maps a and 0 correspond to bilinear maps
which are perfect dualities, obtained by "restriction" from B:

A further duality is
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which gives V = V . We have the following commutative diagrams

and

A sub-bundle V of a non-degenerate bilinear form (E, B) is a totally isotro-
pic sub-bundle (also called a sub-lagrangian) if V C V 1 . If V is a sub-

lagrangian of (E, B), then V /V is a sub-bundle of E/V and the form on
V /V obtained by reducing B modulo V is non-degenerate. A sub-bundle
V of a non-degenerate form (E, B) is called a Lagrangian if it is such that
V = V-L. The form (E, B) is called metabolic if it contains a lagrangian. If
V is a lagrangian in (E, B), then rank(E) = 2 ~ rank(V) and V is in a sense
a maximal totally isotropic sub-bundle. Using the above, we see that V is
a lagrangian in E if and only if one has a commutative diagram

That is a metabolic form is given by a symmetric/self-dual short exact
sequence (see [Kne] Chapt. 3).
Example 1.2. A special case of the notion of a metabolic form is that
of a so-called split metabolic form, which corresponds to the case of a split
exact sequence. Let (U, C) be a form with adjoint cp. The split metabolic
space associated with (U, C) is the form M(U, C), which has as underlying
bundle U EB UV and form B the form with adjoint

1 - - 1

The form H(U) := M(U, 0) is called hyperbolic. For a form (E, B), the
form (ELE, B1 - B) is metabolic. It is shown in [Kne] Prop. 3.1 and 3.2,
that M(U, 2C) = H(U), and that

Since 2 is invertible, a split metabolic form is isomorphic to a hyperbolic
form: just consider the equality

/ _ "1" / - , / - - -" / - - ,

Moreover, for an affine scheme Y, one shows that any metabolic space
is split metabolic (loc. cit. Cor. 3.1) and that for any non-degenerate
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form (E, B) over Y, there is a splitting analogous to the classical Witt
decomposition. Namely (E, B) is isometric to the orthogonal sum of a
form which does not contain any sub-lagrangian (i.e. is anisotropic) and
a form which is split metabolic (loc. cit. Prop. 3.3). (One should be
aware that such a decomposition does not determine either summand. One
obtains a better analogue of the Witt decomposition by working inside the
Grothendieck-Witt ring of Y [Kne] Thm. 4.3.) Over a complex elliptic
curve there exist infinitely many non-isometric metabolic forms which are
not split metabolic (see [Knu] VIII (1.1.1)).
Example 1.3. In our set-up, metabolic forms will be useful in comparing
two forms over an irreducible scheme Z which are isometric when restricted
to the generic fiber of Z. Namely if (E, BE) and (F, BF) are defined over
Z and agree on the generic fiber

then under suitable assumptions (E1F, BE1 - BF) is metabolic (see e.g.
Prop. 3.12). A natural approach is to consider the sub-sheaf 9 of EI,7_, =
Fll1Z defined as

and the exact sequence

where the maps are obtained by restricting to E1F the maps defined at the
level of the generic fibers given by the diagonal map and the map sending
(x, y) to (x - ~)/2. Then, if 9 is locally free, it follows that E fl F is a
sulrbundle of ELF, which is a lagrangian and

The point is that 9 might not be locallg free in general; on the other hand 9
is certainly locally free in the case of Dedekind schemes, which is the case
which was considered in [E-K-V].

l.d. Classifications.
As with forms over fields, non-degenerate, symmetric, bilinear forms of
a given rank n over a scheme Y can be considered as torsors under an
orthogonal group and hence are classified by the non-abelian cohomology
set

Jardine shows in [Jl] how to identify this set with the set of morphisms

from Y to the "classifying space" BO(n) inside the homotopy category of
(étale) simplicial sheaves on Y. This leads to one approach to the invariants
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of forms on schemes which is very close to the approach to characteristic
classes following Borel (see [St] App. 10 and Rem. l .d. 2 below). We think it
is worthwhile to go over Jardine’s description in some detail. The powerful
techniques and ideas he exploits are seldom presented in a form suitable
to the non-specialists. Going over this material also allows us to see how
simplicial schemes arise quite naturally in our set-up (see the Appendix).

1.d.l. Cohorrcology sets. We start by giving precise references for the clas-
sification in terms of first cohomology sets. The orthogonal group of a given
form is a group scheme. It is, however, most easily defined in terms of its
associated functor of points. Let R be a ring in which 2 is invertible. Models
over R are R-algebras. The functor we are interested in is a functor from
models to sets which satisfies some special properties, making it a sheaf
for the (Grothendieck) (fppf)-topology. Let (M, BM), (N, BN) be two qua-
dratic forms over R. Let Isom(BM, BN) denote the functor from models
over R to sets, which sends an extension R’ of R to the set of isometries
between the forms BM and BN extended to R’. If BM = BN, this defines
a sheaf

which is the orthogonal group (functor) of (M, BM) ([D-G] III, Sect. 5, n.2).
This sheaf is representable by an affine scheme, but this property does not
make the discussion any easier. Let us fix a quadratic form (M, BM) over
R. We say that the quadratic form (N, BN) is a twisted form of (M, BM)
if there is a (fppf)-covering R-algebra R’ such that (N, BN) becomes iso-
morphic to (M, BM) over R’. Recall that a torsor X under a (sheaf of)
group(s) G over a sheaf Y (e.g. a scheme) is a sheaf X covering Y, which
is equipped with an action of G such that

under the map given on sets of sections by (x, g) ~ (x, xg). (We are
essentially saying that the action of G on X is simply transitive.) In loc.
cit. one finds a proof that the map

is a bijection between the set of isometry classes of twisted forms of (M, 
and the set ÎI- 1 (R, of isomorphism classes of torsors under 0(BM)
over R. This is a pointed set, pointed by the class of the trivial torsor. All
goes through for a scheme Y in place of the ring R and in our set-up the
torsors X are schemes.

Example 1.4. In view of what we have recalled about non-degenerate
forms, we see that non-degenerate forms of rank n, over a scheme Y over
which 2 is invertible are classified by fIl (Y, 0(n)).
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Example 1.5. One can give a cohomological description of metabolic
forms over a ring R (see [K-02] and [Knu] IV (2.4.2)). If O(2n, n) denotes
the group functor which sends an extension R’ / R to the group of isome-
tries of the hyperbolic space H(R n) = R n 1 R ,nv which stabilize 
then metabolic spaces (with a distinguished lagrangian) are classified by
Hl(R, O(2n, n)).

By the Theorem of Torsor Descent recalled below, one can "compute" the
cohomology set Hl in terms of a set (of orbits) of cocycles, and more
precisely as the cohomology of a cosimplicial group, called the Amitsur
complex. In fact one first identifies the set Hl(Y, O(BM)) with the direct
limit of sets of torsors which are trivialized over a given covering Y’ - Y
(i.e. a sheaf epimorphism). More generally for any (sheaf of) group(s) G
one has

where the limit is taken over the coverings Y’/Y. The sets on the right are
defined by

(Here ker consists of elements in the inverse image of the distinguished
point.) We recall the definition of the Amitsur complex and of the first
cohomology set G) in the Appendix, see (5.4). The Theorem of
Torsor Descent is the following statement (see [D-G] III, Sect. 4, n. 6.5).
Theorem 1.6. Let Y’ ~ Y be a sheaf epimorphism, and let G be a sheaf
of groups. There is a canonical bijection

l.d.2. Morphisms in the homotopy category. Let now [Y, BG] denote the
set of morphisms between the simplicial sheaves Y and BG in the homotopy
category. (see Appendix 5.c for definitions). The next result is due to Jardine
[Jl] Cor. 1.4. We sketch a proof of this in Appendix 5.d.

Proposition 1.7. For any sheaf of groups G on Y, there is a bijection

Remark 1.8. The proposition is an algebraic/combinatorial version of a
result which is quite typical in geometry, where principal G-bundles on a
space Y are classified by maps into a classifying space BG, so that the
bundles are obtained by pull-back from a universal bundle EG on BG (see
[St] Sect. 19). For certain groups G, one has a very explicit description of
the space BG. For instance the classifying space for the real orthogonal
group O(n, R) is given by the Grassmann manifold Gn (see [M-S] 5.6).
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In the first two sections of [Mac-Mo] Chapt. VII, the reader will find how
to identify principal G-bundles over a space Y with G-torsors over Y, in
the case of a discrete group G. For the simplicial version of this see [Cu]
Sect. 6. A version of the proposition for simplicial sets can be found in
[Go-Ja] Thm. 3.9.

l.e. Cohomological invariants I: Hasse-Witt.
Let (E, B) denote a non-degenerate form over a scheme Y on which 2 is
invertible. We recall the definition of the Hasse-Witt invariants at-

tached to (E, B) in Hi(Yet, Z/2Z), following Jardine’s work and [E-K-V].
We begin by defining the invariants in low degree. Then, we give two defini-
tions of the higher degree Hasse-Witt invariants: the first is by pulling back
universal classes, the second is via the decomposition of the cohomology of
the complement of the quadric defined by B inside the projective bundle
associated to E.

l.e.l. Low degree. To a form (E, B) of rank 1 over Y, there corresponds
a class

Let det(-) denote the top exterior power operation. Then the first Hasse-
Witt invariant of a form (E, B) of arbitrary rank, is

where the right hand term is the Hasse-Witt invariant of the rank one
form (det(E), det(B)) as defined above. Thus, under the map induced in
cohomology by the map Z/2Z = p2 - Gm , the first Hasse-Witt invariant
is sent to the first Chern class ci(E):

(see [Knu] 111.4.2). Below we shall view ci as taking values in 
Z/2Z), via the coboundary map coming from the Kummer sequence.

In degree 2 one Let 7r : X -~ Y can define an invariant by a construc-
tion, which generalizes that of the Clifford algebra. Namely, to a form
(E, B) over Y, one associates a sheaf C(E) of algebras over Y, called the
Clifford algebra of (E, B) (see (K-01~, [Knu] IV (2.2.3); in odd rank one
only considers the even part of the full Clifford algebra). The algebra C(E)
is an Azumaya algebra, that is an Oy-algebra which locally in the étale
topology is isomorphic to the Oy-algebra Endo, (W) of endomorphisms of
some Oy-bundle W. The class of this algebra in the Brauer group of Y is
2-torsion and is called the Clifford invariant of (E, B)
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where n’ = n/2, if the rank n of E is even, and n’ _ (n -1)/2, if the rank is
odd. The Clifford invariant can be viewed in Gm) (see e.g. [Mi]
Chapt. 4, Thm. 2.5). The invariant we will be interested in is a lift of this
invariant under the map

In [F], Frôhlich has shown how to construct an extension

which, in the case B is the standard form, gives rise to a map

The second Hasse- Witt invariant of (E, B) is

see also [E-K-V] Sect. 1.9, and [J2] Appendix. (Note that the Pinor exten-
sion constructed in [A-B-S] gives w2+wI.) Further approaches to invariants
in degree 2 are given in [Pat] and [Pa-S].

l.e.2. Universal classes. To obtain invariants in higher degree one has to
work harder. The approach outlined here is that of Jardine ~J1~. It relies
on his computation of the cohomology algebra of the classifying simplicial
scheme BO(n) (over the big étale site of Spec(Z[2]). The computation
shows that this algebra is a polynomial algebra over a finite number of
elements. These elements are the universal Hasse-Witt invariants. We
will use these universal invariants to give one definition of the Hasse-Witt
invariants of forms, but also, in Sect. l.f below, to define invariants of
orthogonal representations. As before let Y be a scheme over Spec(Z [)] ) .
Theorem 1.9. The cohomology ring H*(BO(n)et, Z/2Z) is a polynomial
algebra over the algebra Z/2Z), with n distinguished gen-
erators HWi, where for 1  i  n, deg(HWi) = i.

This allows one to define the Hasse-Witt invariants of a form (E, B)
over Y as follows. Recall from Prop. 1.7 that if (E, B) has rank n, then it
corresponds to an element [E] in the set ~Y, BO(n)~ of homotopy classes of
maps from Y to BO(n). One sets

It can be shown that in low degree these classes agree with those defined
in the previous paragraph (see [E-K-V] Sect. 1.9 and Sect. 1.h below).
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l.e.3. Projective bundles. A further, equivalent, way of defining higher
degree invariants proceeds along the lines indicated by Grothendieck’s defi-
nition of Chern classes in [Gr]. Following Delzant, Laborde has shown how
to use this approach to define invariants in étale cohomology for quadratic
forms over schemes (see [Dz] [La]). His work has been detailed in [E-K-V]
and proceeds as follows.

Given a non-degenerate form (E, B) over Y of rank n, one considers
the complement U of the quadric associated to B in the projective bundle
p : P(E) ~ Y. By identifying the form with a section s : Oy ~ S2(E) (as
in the end of Sect. l.c), one obtains a non-degenerate form on the invertible
sheaf 0(1) := This form defines a class ri in Z/2Z).
The following result is Claim 5.2 in [E-K-V].
Theorem 1.10. Let p’ denote the restriction to U of the bundle map p.
For any integer i &#x3E; 0, one has the decomposition

Corollary 1.11. There exist unique elements wl(E), w2(E), ... , wn(E) in
H*(Yet, Z/2Z) such that

The equivalence of this definition of the Hasse-Witt invariants wi(E)
with the previous one is shown in [E-K-V] Prop. 1.4.

l.e.4. Axiorraatic approach. We give a list of properties characterizing the
Hasse-Witt invariants wi(E) = wi(E, B) in Hi (Yet, Z/2Z).
(HWO) Normalization. wo(E) = 1, wi(E) = ~(det(E), det(BE))~ and

wi(E) = 0 for i &#x3E; rank(E) + 1.
(HW1) Functoriality. For any morphism f : Z - Y,

(HW2) Whitney formuda. Let wt (E) = Zi w2(E)t2 be viewed as a formal
power series. Then for non-degenerate forms (E, BE) and (F, BF) one
has the identity

Remark 1.12. The topological Stiefel-Whitney classes satisfy a list of
properties analogous to the ones above (see [M-S] Chapt. 4). The two
kinds of invariants can be related as follows (see [Ca]). Let Y be a compact,
connected, locally connected topological space and write R(Y) for the ring
of continuous real valued functions on Y. One can compare the Hasse-Witt
invariants and the topological Stiefel-Whitney classes in the context of the
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correspondence between bundles over Y and modules over the ring R(Y).
There is a homomorphism

A non-degenerate form (E, B) over R(Y) determines an orthogonal bundle
E over Y. This defines a homomorphism from the Grothendieck-Witt group
L(R(Y)) to the Grothendieck group KO(Y) of orthogonal bundles over Y.
Let G* (-, Z/2Z) denote the group of invertible elements in the cohomology
ring H* (-, Z/2Z). Then, as shown in [Ca] Thm. 5.18, the Hasse-Witt
invariants w2 and the topological Stiefel-Whitney classes sw2 give rise to a
commutative diagram

l.f. Cohomological invariants II: Galois theoretic.
Let 7r : X ~ Y be a tamely and oddly ramified cover of degree n as in
Sect. l.b, and assume Y is connected. The classes we are going to
define in this section will depend on the natural representation of the tame
fundamental group of Y defined by 7r. In fact we will only need the class
w2, but since it does not cost more effort we give the general definition.

The cover 7r is determined by a homomorphism e1r from the tame-odd
fundamental group 7rl (Y)’,’ into the symmetric group Sn. For étale covers
this is well known: in this case equals the fundamental group of
Y and the homomorphism is described in-say-[Mu] Remark at the end of
Sect. 12. For general tame covers see [Gr-M] 2.4.4. In principle we should
indicate the dependence of 1fl (Y)’,’ upon the choice of a base point and the
fixed branch locus, but we do not need to be so precise.
Let K denote the algebraic closure of the residue field of some point

on Y. By embedding sn into the orthogonal group O(n) (K) by permuta-
tion matrices we obtain an orthogonal representation of the discrete group

which we denote by p~.. We want to use this representation to
pull back universal classes to the cohomology of 7ri(y)~. Consider the

composition c of the map

induced by the change of sites given by Spec(K) -~ Y and of the map

which is induced by a map E on simplicial sheaves defined as follows. View
the simplicial scheme BO(n) as the simplicial sheaf it represents and let
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r*BO(n)(K) denote the constant simplicial sheaf attached to the simplicial
set BO(n)(K) of global sections of the simplicial sheaf BO(n). Here r* is
adjoint to the global section functor and E is the counit of the adjunction:
a map from r*BO(n)(K) to BO(n). To obtain E* one has to use the

isomorphisms

and

where K(Z/2Z, i) is the Eilenberg-MacLane presheaf of simplicial abelian
groups, and then precompose with E (see [J3] Sect. 3 and Appendix 5.c).
Next, from the orthogonal representation p~. we have the map

which is obtained by identifying the first group with the cohomology of the
discrete group 0 (n) (~) . Thus, using Thm 1.9, we let

Note that by a result of Friedlander and Parshall in [F-P] one has an iso-
morphism

and this last group can be identified with the i-th singular cohomology
group with modulo 2 coefficients of the group 0(n)(C) (this is a simplicial
version of the classical comparison theorem between étale and singular co-
homology for algebraic varieties over C, see e. g. [Mi] Thm. 3.12). Hence
the algebra H*(BO(n)/K, Z/2Z) is generated by Stiefel-Whitney classes
SWi over Z/2Z. The image under the first map in the composition above
sends HWi to SWi.
We now want to push the element forward to Z/2Z). This

is achieved by the analysis of the spectral sequences converging to the equi-
variant cohomology H*(Yet, Z/2Z) (see [E-K-V] Sect. 3.1). Be-

cause we are working with oddly ramified coverings, we obtain the canonical
map

We let

Note that there is also a canonical map

compatible with the above map, whose origin is explained for instance in
[K] Proof of Prop. 6.1 (see also [Gil] Lemma 1.16; in [Go-Ja] III Rem. 1.3
a map from a space X to the classifying space of its fundamental group is
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constructed). We shall use a version of this map for the non-abelian Hl in
Sect. l.h.

Remark 1.13. In low degree the Galois theoretic invariants we have de-
fined have interpretations in terms of the properties of the map 7r. So 
is (also) the function field discriminant, and can be interpreted as
giving an obstruction to an embedding problem (see [J2]).

l.g. The main lemma: comparing Chern and Hasse-Witt invari-
ants.

Here we state and sketch a proof of a result from [E-K-V] which is one
of the main tools in calculating the Hasse-Witt invariants. The result can
be viewed as answering the natural question of determining whether these
invariants vanish on metabolic forms. As we have recalled above, such forms
are the right generalization of hyperbolic forms to the setting of forms over
(global) schemes and so one would expect their properties to be determined
by the (linear) properties of the lagrangians they contain. It turns out that
the invariants do not vanish, that is they do not define invariants on the
Witt group. However, they are indeed determined by the Chern classes
of a lagrangian. Note that the Clifford invariant of a metabolic form is

trivial, as can be seen by using the cohomological description of the second
example in Sect. 1.d.1 (see [K-02] and [Knu] IV (2.4)).
As a preparation for the general statement we observe the following. Let

R be a ring in which 2 is a unit. Then, the second Hasse-Witt invariant
of a hyperbolic form H(I) over an invertible R-module I equals the image,
under the coboundary map induced by the Kummer sequence, of the class
of I in the Picard group: that is the first Chern class (see [0] Thm. 19).

For a bundle V of rank n over Y let ci (V) denote the i-th Chern class of
V in H2i(Yet, Z/2Z) (see [Gr]). The following equality holds

Define an element of H*(Yet, Z/2Z) by

Lemma 1.14. Let (E, B) be a rraetabolic form with lagrangian V. Then

In particular

This is Prop. 5.5 in [E-K-V]. We shall use the result in the following
form (see loc. cit. Thm. 6.2, Cor. 6.3).
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Corollary 1.15. Let Y be an irreducible scheme with generic point 1]. Let
(E, BE) and (F, BF) be non-degenerate forms which are isometric when
restricted to 1].

b) As in the example at the end of Sect. l.c.l consider the exact sequence

Assume that 9 (and E n F) is locally free, and that (E1F’, BE1- BF)
is metabolic with lagrangian E fl F = 9’. Then

c) w2(E) ~-w2(F) = cl(G) +cl(E). In particular this sum belongs to the
image of the Picard group modulo 2 in H2(Yet, Z/2Z). --

Part (a) is proved independently (see Sect. 4.b). Part (b) follows directly
from the lemma and (d) follows from the lemma applied to the form

One proves (c) along the lines of [E-K-V] p. 185 and one uses that wl (E, -q)
= n ~ (-1 ) + wl (E, q).
We will apply the Main Lemma to the metabolic forms of Prop. 3.12.

l.h. The étale case.
As mentioned in the introduction, the case of étale covers has been consid-
ered in full generality in [E-K-V] Thm. 2.3. The result is the following.
Theorem 1.16. Let 7r : T -~ Z be an étale cover, with Z connected over

SpecZ[2]. Consider the non-degenerate form (E, BE) = 
over Z. Then

a) = and this also equals the function field discriminant

Kahn has extended this result to the higher degree Hasse-Witt invariants
in [K] Thm. 6.1. The formulation of this more general result requires the
definition of another set of classes attached to 7r, and so we do not go into
this. (Note that the Conjecture 2.4 of ~E-K-V] turns out to be slightly false
as stated.)

Since this theorem is one of the main ingredients in the proof of our
Thm. 0.2, we summarize the main steps for a proof. The strategy for (b)
consists in computing the difference of the classes w2(E) and W2(7r). The
computation is made possible by the fact that these classes are the image of
the same element under two coboundary maps which correspond to locally
isomorphic short exact sequences. More precisely:



621

a) Let Sn denote the symmetric group on n letters. Up to isomor-

phism, the degree n cover 7r : T -~ Z corresponds to an element [e]
in Hl(7rl(Z),8n) and hence under the canonical map of Sect. l.f, to
a class, again denoted [e] in the first étale cohomology set Hl (Zet, Sn)
(see e. g. [Mi] Chap. I, Thm. 5.3).

b) There are two embeddings/sheaf homomorphisms of Sn into orthogonal
groups:

where O(n) is the orthogonal group of rank n and O(n)(K) is the

group of points of O(n) with values in a geometric point Spec(K) of Z
(whose choice is irrelevant).

c) Corresponding to these embeddings, [e] defines classes in the cohomol-
ogy of the orthogonal groups:

One checks that [E] is the class corresponding to (E, BE) by the clas-
sification recalled in Sect. l.d.l (see [Sl] 1.4 or [W] Sect. 6). Because
the signature of a permutation equals the determinant of the corre-
sponding permutation matrix one deduces that wl(E) = det(E~. Also

= det[7r].
d) There are two exact sequences of étale sheaves:

and

where the second is the K-points of the first (see [F] Appendix 1,
[E-K-V] Sect. 1.9 and [J2] Appendix). By pulling back along the em-
bedding of Sn into the orthogonal groups we get central extensions:

and
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..../

Note that in the first of these Sn is not a constant group (see [E-K-V]
Lemma 2.11). However these two extensions are locally isomorphic (see
[E-K-V] Lemma 2.10).

e) The above four exact sequences give rise to coboundary maps A which
fit into the following diagram:

f) Consider the diagram

where the map c was defined in Sect. l.f. The class of HW2 corresponds
to the sequence a and that of c(HW2) to 0. So from [Gir] VIII 6.2.10
(ii), we deduce that

and that

Here we use the fact that HW2 corresponds to the extension a and that
c(HW2) corresponds to /3. So w2(E) - w2(~r) = O~S(~e~) .

g) Now A,s - A, = and the central extensions as and /3s are
locally isomorphic, so the difference of their classes in the equivariant
cohomology group Z/2Z) is locally split and hence defines a
unique element ( f ) in Hl(Zet, Z/2Z) such that

see [E-K-V] Prop. 2.8.
h) One computes that ( f ) = (2), so the theorem follows by using again

the fact that (DTIZ) = det([e]).
Remark 1.17. We give some indications to show how little is known about
invariants of étale algebras over a field F of characteristic 2 (for more details
see [W] and [Deg]). Essentially one only knows how to deal with the first
invariant of such an algebra. An étale algebra E over a field F corresponds
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to a class [e] in Hl (GF, S’n), where GF = Gal(Fs/F) denotes the absolute
Galois group of F and n denotes the degree of E over F. In characteris-
tic different from 2 the image of [e] in F*/F*2 given by
the signature homomorphism equals the discriminant d(E/F). Moreover
in characteristic different from 2, the discriminant can either be defined as
the discriminant of the bilinear trace form on E or, in case E is defined

by a polynomial f , in terms of the roots of f . In characteristic 2 one has
H1 (GF, Z/2Z) - F/P(F), where P(x) = x2 + x. The image of [e] in this
group can be identified with an additive discriminants d+(E/F), which in
the case of an algebra defined by a polynomial has first been considered
by Berlekamp (see loc. cit., [Be] and [Ber-M]). In characteristic 2 one
does not consider the bilinear trace form, given by the first coefficients in
the characteristic polynomial, but rather naturally the second trace form,
which is the quadratic form defined by the second coefficient. This leads
to the definition of another invariant with values in namely the
Arf invariant Ar f (E/F) of this quadratic form. It turns out that this in-
variant differs from the additive discriminant (by a small amount): indeed,
d+(E/F) - Ar f (E/F) equals 0 in case the degree E over F is congruent
to 0, 1, 2 or 7 modulo 8 and equals 1 if not (see loc. cit.).

~ 

2. Construction of the étale cover T/Z
Let 7r : X - Y denote a tamely and oddly ramified cover of projective,
regular schemes over Spec(Z)]), which as in Sect. l.b is obtained as a2 _
quotient cover from a cover 7r : X Y corresponding to a group action
N IV Il,r

(X, G), with X regular and connected and X = X /H for some subgroup
H of G. Let G2 denote a 2-Sylow subgroup of G and let Z := X /G2.

Lemma 2.1. a) The Z is étale. In particular Z is
regular.

b) The base change Z 2013~ Y is flat.

Proof. For (a) we have to show that X /Z is unramified and flat. Let us

begin by showing that Z is normal. This follows from the fact that X is
normal together with the fact that for any open U of Z we have that

By the parity assumption on the ramification, 0 is unramified and because
Z is normal, to show that 0 is flat, it is sufficient to show that for any
in X and z = the morphism is an injection (see [Mi]
Chapt. I, Thm. 3-20). But this is clear, since for any (affine) open U of Z
containing z we have the inclusion Oz(U) -~ (see (2.1)).

Part (b) follows along the same lines used in Sect. l.b.
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Put T’ := Z x y X and let T be the normalisation of T’. Our aim is to
show the following.

Theorem 2.2.

a) The pull-back map H*(Zet, Z/2Z) is an injec-
tion.

b) The natural maP 7rz : T --&#x3E; Z is étale.

c) The scheme T is regular.

Proof. Part (a) is a consequence of the fact that the degree of the cover
Z/Y is odd and the fact that the composition ~* is multiplication by
the degree [SGA4] IX 5.1.4. Part (c) follows from (b) and Lemma 2.1 (a).
The proof of (b) will occupy the rest of this section.
Our strategy consists in exhibiting for any closed point z of Z an étale

neighbourhood Lf of z, such that étale. This will do,
because Tu coincides with the normalisation of Tû := T’ x z U. Our choice
of Lf allows us to exhibit Tu as an étale Kummer cover of Lf in the sense of
[Gr-M]. In fact Lf will be defined as Z xY S, where S is a neighbourhood
of the image y of z in Y. The result will then follow from a study of the
local structure of the tame cover X/Y. The key result is Prop. 2.6 below.
The picture is the following.
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2.a. Local structure of the covering 
Let us introduce some notation. Consider a point x in X . We need to
describe the inertia group at x for the cover X/Y. Because of the

tameness and regularity assumptions, is the product of the inertia
groups of the components of the ramification locus, which pass through ~.
Namely, recall from Sect. l.b the decompositions

where the bh are the irreducible components of b and where for any fixed
/V N

integer h between 1 and m, the are the irreducible components of B

such that = bh. For any h let Ih denote the inertia group of a

generic point of Bh,k. This only depends on h up to conjugacy, because the
action of G conjugates the inertia groups. Write eh for the order of Ih . Let

(after reordering if necessary). Because X/Y is tame, the group I£ is cyclic
and we shall often identify Ie with Z/eeZ. Then

From the results in the appendices of [CEPT2] and [C-E] we deduce our
first auxiliary result for which it is crucial that the schemes X and Y be
regular. Note that the result is stated there for X flat over Z, but the proof
goes through mutatis mutandis for X defined over a finite field Fp. Recall
the notation MapH(G, B) from Sect. l.a.

Lemma 2.3. Let y be a closed point of Y and let x be a closed point such
that 1r(x) = y. There exists an affine étale neighbourhood of y

where Ay is an algebra containing a sequence al, a2, ... , an of regular pa-
rameters, such that

is an isomorphisme of schemes with a G-action, where

and

with each ef prime to the residue characteristic of y and tf = TÊ, so that
té’ = ai. The el are the orders of inertia and the ae are local equations for
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the b~. Moreover the algebra Ay is a domain and it contains enough roots
of unity of order prime to the residue characteristic of y. The inertia group
I (x) acts on Bx through its action on the cotangent space. More precisely,
if the group Ii acts on the cotangent space of the .~-th component by the
character Xi, then h acts on ti by Xi.

2.b. Local structure of the coverings X /Y and Z/Y. 
-

For a Y-scheme V let us write Vs for V xYs. Since by definition X = X/H,
we deduce from the result of the previous section that

A similar result holds for Zs with G2 in place of H, since Z = X /G2. We
now want to obtain an alternative description of XS and Zs (see (2.4) and
(2.4) below). To this end let denote a system of representatives
of For g an element of G, let y denote the class of g in HBG.
The group acts from the right on HBG, and the gi form a system of
representatives for the orbits in H1 G under this action. Let Hgi := y:; 1 HYi.
The stabilizer of g2 is i) := n H9i and the map

which sends f to is an algebra isomorphism. For fixed i, let {h~ ~~ ~ }
denote a system of representatives of where 1  j(i~ 
s(i). Then, for 1  i  r and 1  j(i)  s(i) form a system of
representatives of G/I(x). The map

which sends f to is an algebra isomorphism. These two

isomorphisms fit into the commutative diagram

The vertical map (1) sends the map f to the map g - f (Hg). The vertical
map (2) is given by the diagonal embedding of into Bx.z -3 1 -S i

Again from the results in the appendix of [CEPT2], we deduce the second
auxiliary result. For this result it is vital that X is regular.
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Lemma 2.4. For any (i, f), with 1  i  r and 1  .~  n, there exists a

divisor ei,f of el such that

So for any i we can write

with

We obtain an analogous description of Zs by considering a system of rep-
resentatives for However, since I(x) has odd order
we see that for any j, the intersection i(î) n G;j is reduced to the identity.
So we do not need the previous lemma and the analogue of (2.4) is more

simply

which is a product of s copies of = Bx.

Remark. The two notations and are used in order to emphasize
that the first appears in the decomposition of and the second in
that of Oz(S), and that, as in our big diagram above, "X is on the right"
and "Z is on the left."

2.c. Local structure of the covering T/Z; integral closure.
From the isomorphism of Y-schemes and using
(2.4) and (2.4) we obtain

Let Fr(R) denote the field of fractions of a domain R. In particular write
Ky = Fr (Ay).
We now determine an explicit description of the integral closure 

of Q9Ay Bx,i inside 0Ky Note that the latter is a

product of fields. Indeed it follows from Lemma 2.3 that is

separable, since by tameness the polynomials Tlet - al are separable (el is
prime to the residue characteristic). For i as above, let
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The group Hi is the Galois group of the extension From
Lemma 2.4 we deduce a group isomorphism

Let H2 denote the group of characters of Hi and let A(i) be the set of
sequences a = (ai,/’) such that for every f in J(x), we have 0   

Define a character Xt : ~ Ay by the requirement that for all u in

The next result is clear. 
’

Lemma 2.5. Every character x in Ji can be written uniquely. in the form

with 0   ei,i. This establishes a bijection between HZ and A(i) .

Proposition 2.6. The integral closure Cj,x,i of Bj,x OAY Bx,i inside the

product of fields 0Ky Fr (Bx,2 ) admits the following description as
a 

Proof. Let us consider the morphism of Fr(Bx)-algebras

which sends a 0 b to the map h - abh . This is an isomorphism. To see
this, it is suficient to show that it is an injection, because the dimension
of the range and the source over both equal the order of The

injectivity is a standard result (see e. g. p. 132).
Let us now pass to the integral level. We know that = Bx and hence

/V /V N

Map(Hi, are integrally closed, because X is regular and Xs/X is étale,
so that Xs is also regular (hence normal). So t restricts to an injection
Cj,x,i ~ Map(HZ, For all i and Ê, we have that = 1, so
we obtain one inclusion for the proposition: 

’

It will thus be sufficient to show that

We first show that the characters X form a basis of Map(Hi, We
know that Map(Hi, is a free of rank one, with a
basis given by the map d such that d(g) = 8g,1 (Kronecker delta). Since
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contains the roots of unity and since the order of H2 is prime to
residue characteristic of x, it is known that the idempotents ex, for X in Hi
form a basis of over Bj,x. 80 the set of (dlX) = X(g)dg-1
for X in H2, is a basis of Map(Hi, Bj,x) over Bj,x. Now, (dix) = x, so
the characters X in Hi indeed form a basis of Map(Hi, Bj,z). Hence to

prove (2.6), it sufhces to show that for in J(x), the character Xl belongs
to This is clear, since by definition, we
have

This concludes the proof of the proposition.

Remark 2.7. Prop. 2.6 also shows that for every (i, j ) the algebra Cj,x,i
(obtained by normalisation) is a Bj,,,-aJgebra and a free Bj,,,-module of
finite type with a basis given by the set of 9i(a), for a = sequence in

A(i), defined by

We shall write = EBaEA(i) This will be generalised below,
see Prop. 3.6.
2.d. Proof that T/Z is étale.
We now come back to the proof Thm.2.2 (b) . Let t be a closed point of T,
such that 7rz (t) = z, with z lying over y. Let S be defined as in Lemma 2.3.
Put LI = Zs = Z Xy S. Then U is an étale neighbourhood of z and Tu = Ts
is an étale neighbourhood of t. We have shown that

Prop. 2.6 shows that Cj,x,i is a polynomial algebra over and that the
variables raised to a power prime to the residue characteristic are units in
the ground ring, hence Tu - Ll = Zs is étale, and this concludes the proof
of the theorem. (Note that indeed = 1.)

3. Normalisation along a branch divisor

Recall the notation introduced in Sect. 1 and the diagram used in the
proof of Thm. 2.2. The aim of this section is to first construct a sequence
of schemes T ~h~ over T’ indexed by the m components of the branch locus of

X -~ Y, such that T(o) = T’ and such that = T, the normalisation
of T(°) (see the definition after Prop. 3.3). Then we define forms 
over Z, where := (7ih)*(D-lh 2 ) is equipped with the trace form (see
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Lemma 3.8). These forms all agree on the generic fiber of Z and are such
that

Moreover for 0  h  m - 1 there are short exact sequences of locally free
Oz-modules

and as we will see in Prop. 3.12 the form

is metabolic, with lagrangian 7~. The point is that the maps in the

sequence (3.0) are explicitly given. This will allow us in the next section
to apply the Main Lemma (Cor. 1.15) and complete the proof of Thm. 0.1.
One could try to obtain a sequence analogous to (3.0) for A(°) E9 A(m),
however the resulting "kernel sheaf" would not be locally free in general.
To deduce the properties of the forms (A~h), Tr) we analyze the structure
of the schemes T ~h) over an étale neighbourhood, generalizing the results
of the previous section (see Sects. 3.c and 3.d).

One can view the normalisation T as the "normalisation along (the in-
verse image of) bm" (see below). For 1  h  m we will define
T(h) to be the normalisation along bh. More precisely T(h) will
be defined as Spec(N(h)) for a certain coherent Oy-algebra N (h) obtained
by partial normalisation, namely by "gluing" algebras N~h) (U), for U open
in Y, which are the intersection of Oy(U)-algebras indexed by points ~ of
codimension 1 in U. (In particular, this interpolation procedure depends
on the choice of an order on the branches of b, but the final result is in-
dependent of this choice.) We will have the following diagram of schemes
and morphisms

3.a. Localisation at primes of height one.
The aim of this section is to formulate a slight generalisation of a well
known result of commutative algebra, which motivates the definition of the
schemes T ~h~ (see Lemma 3.2). As before, for a ring A we let Fr (A) denote
the total ring of fractions of A.
We begin with the following elementary observation.
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Lemma 3.1. Let R be an integral domain and let / : ~ 2013~ A be a ring
homomorphism. SupPose that f is flat and that A is finite over R and
reduced. Then we can view R as contained in A and A0RFr(R).

Proof. We show that there is a ring homomorphism

given by sending x/a to x ® (1/a), which is an isomorphism. Note that f is
injective. Indeed, if r is a non-zero element of R, then the map on R given
by multiplication by r is injective on R, hence, because of flatness, the map
on A given by multiplication by f (r) is injective too. It also follows that

every non-zero element of R is regular in A, that is it is not a zero-divisor.
We write R C A. Let a be a regular element of A. Since A is finite over R
it is integral over it and so there exist ro, rl, ... , rn-i in R such that

Because a is regular we can assume that 0 and we see that a is

invertible in A 0R Fr(R), indeed

So the map g is well defined and is clearly an isomorphism.

Next we note a generalization of the well-known fact that a normal noe-
therian ring equals the intersections of its localizations at the primes of
height one.

Lemma 3.2. Let R be a noetheriart, normale ring which is a subring of a
ring A. We assume that A is a flat R-module. Then

where p runs over the prime ideals in R, which are of height 1.

Proof. We show that there is an exact sequence

Let q be a prime ideal of R and let B be an R-algebra. We write Bq for
the ring S-1B obtained by localising B with respect to the multiplicative
set S = R, q. So Bq = B 0R Rq. Since, by assumption, A is flat over R
we have, as above, that every non-zero element r of R does not divide zero
in A. In particular the canonical map A -~ Fr(A) induces an injection
of Aq into Fr(A) and the intersection is to be viewed in Fr(A). The fact
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that R = np, ht(p)=1 ~~ can be interpreted as giving the exactness of the
sequence 

-

By the flatness of A over R we deduce the exactness of the sequence

Again by flatness we can consider A = R OR A and Ap = .Rp OR A as
subrings of Fr(R) OR A, which by Lemma 3.1 we can identify with Fr(A).
So the last exact sequence can be rewritten as

which concludes the proof.

3.b. Partial normalisation; definition of N (h) and T ~h~.
Let U be an open affine in Y, we want to define a ring N~h~ (U) by partial
normalisation of the ring where 0 := (see diagram before
Sect. 3.a). For ease of notation let us write W := 0-I(U). The scheme W
is affine and open in T’, and OT~ (W ) is a finite and flat Oy (U)-algebra.
Let Ky (U) denote the ring of fractions of Oy (U) . By Lemma 3.1 we can
write

Note that

and, with the obvious notation,

the tensor product of the fraction fields. The extensions Kx / Ky and
Kz/ Ky are finite and separable, thus the tensor product is a separable
KY-algebra, and hence semi-simple. So we see that is contained
in the reduced ring Fr (OT~ (W ) ) and T’ is reduced.

Notation. For a subring B of Fr(OTI(W» we write B for its integral
closure.

-

We are going to define a finite sub-algebra of OT,(W). Let us apply
-

Lemma 3.1 to We obtain

and clearly
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Let now S denote a subring of Fr(OT’(W)) which contains OY(U) and
which is such that every non-zero element of Oy(U) is regular in S. For
any codimension one point ~ of U we put Se = Sp, where p = pe is the
ideal of height one in Oy (U) corresponding to e. Recall that we denote by
Çh the generic point of the component bh of the branch locus b(X/Y). Fix
an integer h with 1  h  m. For any codimension one point ~ of U let

So for any e we have the inclusions

Definition.

Remark. (a) It follows from Lemma 3.2 that Nh (U) is a finite sub-
- --------------

algebra of OT’(W) and for in U we have (OTI(W»e = (OT,(W)ç).
(More generally for any prime q of R we know that R~q consists of non-zero
divisors of A, so normalisation and localisation commute, namely (Aq) =
(A)q.)

(b) Since for any h the divisor bh is the closure of eh, we see that eh
belongs to U if and only if U meets bh.

(c) If ~ is in U but differs from all of the eh, then = 

and so for h = m we get

where the second equality follows from Lemma 3.2.

The next proposition summarizes some further basic properties of 
which allow us to define the coherent Oy-algebra used to construct
T~h~.

Proposition 3.3. Let U be an open in Y and let h be any integer
with
a) be a point of codimension one in U, then

b) Let D(f) be a standard open subset of the affine open subset U in Y.
Then
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c) The assignment U H N~h~ (U) defines a coherent Oy-algebra N(h) such
that for any affine open subset of Y the restriction of to U is

isomorphic to the quasi-coherent module associated to N (h) (U).

Definition. For 1  h  m, let T (h) := Spec(N~h&#x3E;) be the affine Y-
scheme which is defined by the coherent Oy-algebra N (h) of the previous
proposition (see [EGAI], 1.9.1.4) or [Ha] II, Ex. 5.17).

Part (a) shows that we can rewrite the definition of the sub-Oy(U)-algebra

Compare with Lemma 3.2.

Proof. (a) Let R = Oy (U) and let A = OT’(W). Let p’ = pe be the prime
of height one in R corresponding to ~ and, if Çh lies in U, let ph denote the
prime corresponding to ~h. We shall also put S(h) (P’) = (~). From the
sequence of inclusions A C C Apl we deduce that A C N(h) (U) C
A. Also, if p is a prime of height one in R which is different from all of
the ph, then A C So we deduce the desired equality in this
case:

Suppose now that p’ = Ph for some h, say h = 1 after reordering if necessary.
Since N(h) (U) C 8(h) (Pl) we deduce C To show the reverse
inclusion we start by checking

The left hand side is clearly contained in the right hand side. The other
inclusion can easily be checked for finite intersections. Let x be an element
of the right hand side. Since x is in Fr(A), we can write = als with
a in A and s in R B 101. If s is not in pi, then x belongs to the left
hand side. If s belongs to pi, let q2, ... , qn be the primes of height one
different from pi which contain s. (They are finite in number because R
is noetherian.) Thus x lies in Now, x also lies in

. and because we are intersecting over a finite set we
1 1-1 , ,

see that x belongs to , Write x = b/t with t in

and b S(h) ~2~~ ~ Then x = tx/t with tx in np S(h) (p).
It remains to verify the inclusion APl C This is clear for p one

of the pi, because then Â C Ap = 8(h)(p). So let us suppose p is not any
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of the pi. What has to be checked is C (Ap)pl. Let g be an element
of:4’;, say g = à/si with a in A and si in R Bpi - By Lemma 3.1 we can
write à = a/t, with t in R B {0} and so g = al(sit). If t does not belong
to p, then g is in Analogously, if t does not belong to pi, then g is
in Api C So assume t lies in p n pi, then slt does too and we are
presented with two cases:

Case 1: V(p) fl 0.
Let M be a maximal ideal containing both p and pl. Since Y is regular RM
is a regular local ring and hence a factorial ring. The ideals p and pi are of
height one in RM and so they are principal. Let r and ri denote generators
of p and pi respectively. The fact that p and pi are distinct implies that
r e pi and ri e p. The factorization of sit in RM is slt = 
with u in R , p U pi and v not in M. From this we obtain the equality
vstl = which holds in R. So we can write g as

Now, belongs to Ap and so we see that g lies in (Ap)Pl.
Case 2: n V(Pl) = 0.

Let ri be a uniformizing parameter for the discrete valuation ring Ptpl. Here
R = p + pl and also R = p + pl. So we can find r’ in R such that

so r’ is a generator of PiRpi not belonging to p. In Rp, we write slt =
1 Iv with u and v not in PI and we deduce that vslt = (ri with
(ri)ni not in p and u not in pi. Then

and we again conclude that g lies in (Ap)pl.
We now proceed to prove part (b) of the proposition. We begin with a

lemma.

Lemma 3.4. 
- 11,/., - 11..B

Proof. We prove that the right hand side is contained in the left. The other
inclusion is clear. Let x be an element of ng sirh) (g) f. Since x is in Fr(A)
we can write x = ais with s in R ~ {0~. Let f ql, ... , qn} be the primes of
height one in R which contain s. By definition x lies in if p is not

one of the Since for i  n, x belongs to for all i we can

find ni such that is in 5U(qi). Thus there is an ~ &#x3E; 1 such that fix
belongs to = and we deduce that x is in ~)({7)~.
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Let Pf (resp. PU) denote the set of primes of height one in Oy(D( f )) (resp.
OY(U)). On the one hand, the previous lemma implies that

On the other hand, it follows from the definition that

Indeed, since 0 is affine we have that W = 9-1(U) U is induced by the
inclusion Oy(U) C OT,(W), hence 9-1 (D( f ) ) = Dw(f). It thus follows
that for any p in Pf

1 - ’" 1 - ...

To conclude the proof of part (b) of the proposition it sufiices to show that
if p is in Pu ) Pf, then

Let A = 07,,(W). And write x in Fr(A) as x = a/s with a in A and s in
R ~ 10}. If s is not in p, then x belongs to and thus to If

s lies in p, then we work inside the discrete valuation ring Rp. Since s and
f both are both in p, there exist integers n and k such that s~ and fk have
the same valuation in Rp. So in Rp we can write

with u and v in R Bp. We rewrite x = (asn-lv)/snv as (asn-lv)/ f ku to
get x in This concludes the proof of part (b) of the proposition.

Let us prove part (c) of the proposition. Write for the coherent sheaf

on U associated to the Oy(U)-module ~V~)(!7). Note that 
Fbh)(U)¡ = so part (b) implies that

Lemma 3.5. Let U and V be open affine subsets of Y, with V C U, then

Proof. To show this identity of sheaves on V it is sufficient to show they
have the same sections over the elements in a basis 13 for the topology of
V. We choose for 13 the set of principal open sets of U which are contained
in V. Let D( f ) be an element of l3. From the previous displayed formula
we deduce that
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Note that D( f ) = Since D (f 1 v) is a principal open subset of the
affine V, we also deduce that

This implies that and Fh coincide on 3.u v

We now glue the sheaves u together into a sheaf Nh . Let U and V be
open affine subsets of Y. The intersection U n V is again affine, because Y
is proper (and hence separated) and so the previous lemma implies

This is sufhcient to show the existence of N (h) having the properties an-
nounced in the proposition.

3.c. Local structure of T (h)
Let qz : LI = Zs ~ Z denote the étale neighbourhood constructed in Sect. 2
using a sufficiently small étale neighbourhood q : S = Spec(Ay) -+ Y of
y = O(z). The aim of this section is to describe the structure of T(h) x Y S
and relate it to the partial normalisation of Ts (see Prop. 3.6).

Write U for the image of q. Let us assume that y belongs to the inter-
section of the divisors bl, ... , 1 bn, with 1  n  m and that U does not
intersect the remaining divisors of the branch locus. We have that on U the
divisors bl, ... , bn are defined by sections al, ... , an, which means that, if
gg denotes the generic point of bi, then for any point ~ of codimension one
in U

Note that by the construction of Ay, the sequence ai, ... , an is part of
a regular system of parameters at y, in particular n  dim Y. In what
follows we shall denote by the same letter points of codimension one and
their associated primes.

For 1  .~  n consider the divisor q* (b~) of S. It can be written

where q runs over the set 8(1) of codimension one points of S. We have
that q(q) if and only if ai belongs toq, so can also be written

Recall that for ~ in X above ~, in (2.2) we have defined J = J(x) to be
the set (of indices) of irreducible components of the branch locus b covered
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by a component of the ramification divisor, that go through x. We again
identify J with the set {1, ... , n~ . For any h, let us partition J into

and

So for h &#x3E; n, the set JK is empty. Recall that is the integral closure
of Bj,x 0Ay inside Fr(Bj,x) 0Ky This algebra appears in
the next proposition as for h = m. The proposition generalizes the
remark after Prop. 2.6. 

’ ’

Proposition 3.6. For any integer h with 1  h  m, we have:

and for a = (ai,l)

Proof. Let us fix some notation. Let

and let the total ring of fractions of be denoted by F. So
F is also the total ring of fractions of N(h) (U) and of the integral closure

-------

O
To prove part (a) we write the two sides of the first equality as in-

tersections over the set of codimension one points 17 of S. Consider
the right hand side. By definition T(h) = Spec(N~h~), so T~h~ =

Spec(q*(N~h~)) and because S is affine

see [EGAI] Cor. 9.1.9. Below we will show that

(see after (3.6)). Now we consider the left hand term in Prop. 3.6 (a).
The scheme is the normalisation of the scheme TS along the divisor

Let us denote
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by Ph the set of codimension one points q of S such that there is h’ with
1  ~’  h and 1. Then

Claim. We claim that since S is étale over U, taking the integral closure
commutes with étale base change and localisation, namely

Indeed, is finite over R, so
integral over Ay and hence

We show that B is normal. Note that being the base change by an étale
morphism Spec(B) is open in the regular scheme and

so is regular. This implies that BP is normal for every p, which proves the
claim.

Thus

From this and the definition of N~h~(U) (see also (3.2)) we deduce that

which by (3.6) shows part (a) of the proposition.
We now look more closely at N (h)(U) 0 RAy. This will give us T(h) 0y S

and part (b) of the proposition. We have the inclusions

Since Ay is flat over R we also have the inclusions

The Ay-algebras so obtained are finite over Ay and every non zero element
of Ay defines a regular element in them by flatness, so by Lemma 3.1 the

-

total ring of fractions E of the last three algebras equals 0RL.
We have that L = and we claim that this implies E = 

For this we need to see that L/K is algebraic which can be seen as in [Mi]
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1 Prop. 3.19. Indeed, a non-zero element a of Ay is invertible in Ay 0p K
and Ay is a domain so that, as we saw above,

Let ~ run over the set of codimension one points in U. From the

inclusion

we obtain the inclusion

from which we deduce the equality

Claim. We claim that

Indeed

In any case N(h)(U)ç 0R Ay is finite and flat over Ay,ç, which is a domain
and is normal. We deduce from Lemma 3.2, that

where q runs over the points in S(’) such that q(q) = ~. The claim follows
from the fact that 0R (N~h~(U) 0R Note that we
have also obtained equation (3.6).

So we have to consider the From the work in Sect. 2

and the definition of we have
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and we are reduced to describing 1

in the given range, where
for a fixed pair (i, j )

We show

Note the equivalence of conditions on q:

and let Qh denote the set of 17 which satisfy one of the conditions in the
equivalence. Write Bj,x,17 := 

Case 1: 17 E Qh. In this case, by Prop.2.6,

However, if al does not belong to 17, then lies in Bj,,, , [1 (2) 

Indeed, then = ae is a unit in and hence t-1= /ae belongsi,î 
= ae .Î&#x3E; &#x3E; 2,. Z,

to Thus, since we are assuming that q is in to show that .l does

not belong to J~, it sufhces to show that ae does not belong toq. Hence in
this case

.. _ ,

Case 2: 1} fi. Qh - In this case

We have thus shown that for every q of codimension one in S, is

contained in the right hand side of equation (3.6). Taking the intersection
over ail 17 and applying Lemma 3.2 to deduce n~ = Bj,x we obtain

To show the reverse inclusion let z be an element of the right hand side.
Since for anyq of codimension one is contained in Bj,,,,,7, we see that
z certainly belongs to

and so it belongs to in case q lies in Qh . does not lie in Qh,
then for ~ in J~ we have 0 = and so again z

belongs to This concludes the proof of the proposition.
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3.d. The inverse difFerent and the interpolating forms A(h).
Consider the cartesian diagram of schemes

and let Tx/y be the different of X/Y, which we recall is the O x-module
defined as the annihilator of the module of relative differentials.

Lemma 3.7. Suppose that 7r ando are finite and ,fiat, then

Proof. We show that the sections of the two sheaves coincide over the basis
for the topology of Y’ given by the 0-’(U), where U runs over the affine
opens of Y. Let U be one such and put V = ~r-1(U), V’ = (7r o ~~)-1(U),

By definition = The module is finite over B.

Let (di , ... , dr ) be a system of generators for it. Then x 1--+ (xdi , ... , xdr)
induces the injection

Since 0’ is flat, B’ is flat over B, so we have the injection

and hence and

We deduce from this that

and hence that

This concludes the proof of the lemma.

Using the fact that flat base change commutes with higher direct images
(see e.g. [Ha] III 9.3), we deduce from the lemma that, in the previous
notation,

and also that
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Lemma 3.8. The square root exists and so that ojVT(h)/Z also
s s

exists.

Proof. This follows from the local description given in the previous section.

Indeed, by Prop. 3.6 (b) we have that OT(h) (S) C(h) withT 1_z_r,1__s 

Since for any f in is a unit in we obtain that

with (see for instance [Mi] I Sect. 3 Ex. 3.9).
So the square roots exist because the are odd.

For future reference we also note the equality

Definition 3.9. For any 1  h  m we let

This is a locally free sheaf on Z, which gives rise to a form on Z when
endowed with the trace form. In particular

and

Lemma 3.10. For 1  h, h’  m the forms and (A~h~~,Tr) agree
on the generic fiber of Z.

In fact the forms are isomorphic outside the inverse image in Z of the
branch locus b.

Remark. As noted in [S2] and (L-W~, in case Y is a complex algebraic
curve the existence of the square root of the inverse different amounts to
the existence of a canonical choice of a theta characteristic on Y (or also
to a canonical spin structure on Y).
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3.e. Local structure of the modules 
Let qz : Z,t = Zs - Z denote the neighbourhood constructed in Sect. 2,
using a neighbourhood S of y = O(z), and write

,., ", ’"

Recall that for x in x above ~, and for any h we had defined in (3.5)
a partition of the set J = J(x) into the union of Jh = and J~ =
Jh (x) . Also recall the notation introduced for Lemma 2.5, where we had
parametrised the characters of the group H2 in terms of sequences 
For a = write

where = 0 or depending on whether which by definition satisfies
0   is strictly smaller or strictly larger than ei,t/2. Put

Note that is a rank 1 module, so that the above should be viewed
as a decomposition into eigenspaces according to the characters of Hi .

Lemma 3.11. 
1. 1,-, - /......

Proof. This follows from equation (3.8) and Prop. 3.6. Indeed by (3.8) we
can write

and by (3.6)(b)

Therefore we obtain a basis for the (j,i)-th component of A(h)(5) by con-
sidering the products

with a running through A(i) . We rewrite this and obtain the desired result
, , 1-

after a permutation of the a’s. For f in consider

When (ej,e - 1)/2 Ç ei,Ê, we put := ai’e - 1)/2, so that

a/, i e lies between 0 and ei,£/2. When 0   (eil- 1 ) /2, we put :=
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+ + 1)/2, so that in this case ~2~~ lies between and and
we write

which gives

We are now in the position to prove that the have the expected prop-
erties.

Proposition 3.12. a) For any 1  h  m - 1, there are short exact

sequences of locally free Oz-modules

Here I(h) is given by the intersection of A(h) and viewed inside the

generic fiber, g(h) is the Oz-rraodule generated by A(h) and A(h+’) and the
map into g(h) is the difj‘’erence map.

b) For any 1  h  rn, the form
is metabolic with lagrangian I~h~ _ ~

Proof. Part (b) is clear (see the example at the end of Sect. l.c), so we
only need to check that the modules are locally free. Because g(h-l)(5) =

and 7~-~(~) = from the previous
lemma we obtain the decompositions

and

Remark 3.13. Our aim is to compare the forms on A(°) and on 
The fact that for each h the forms A(h) e A(h+’) are metabolic should be
interpreted in the framework of forms in triangulated categories (here the
derived category Db(Z) of bounded complexes of locally free sheaves on
Z). Then our construction should say that o A (m) is metabolic in this
more general context. Note that, as shown in [Ba2] the usual Witt group
of Z equals the Witt group of Db(Z).
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Proposition 3.14.

a) If J(x), then for all i and j and all a in A(i),

b) Denote by Ah(i) the set of sequences a in A(i) such that ei,h/2  

where

c) The eigenspaces  (a) and are related as follows. For anyilt .7,z
coupl e (i, j ) and any h in J 

.. ,,

The proposition follows from the equalities

4. Proofs of the main theorems

4.a. Proof of Theorem 0.1.
We showed in Prop. 3.12 that the form

is metabolic with lagrangian so the Main Lemma (see Cor. 1.15 (b))
implies that for 0  h  m - 1 in H*(Zet, Z/2Z)

where, we recall, This implies that

To obtain the claim of Thm. 0.1 from this we simply have to remember the
equalities just prior to Lemma 3.10.
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Remark. As noted after the statement of Thm. 0.1, if d = bm+1 denotes
an irreducible divisor on Y not contained in the branch locus b and b’ =

b U bm+l, then for the statement of the theorem we might as well work with
b’ instead of b. This can be seen as follows, let F = A (m+ 1) = 
then the sequence of Prop. 3.12 corresponding to h = m is

and so by the Main Lemma 1.15

4.b. Proof of Theorem 0.2.
We begin by reducing the theorem to the étale case by using the base
change 0 : Z 2013~ Y. For this we use (1) functoriality: for both kind of
classes = ~(~*(2013)), and (2) the fact that, as we saw in Thm. 2.2
the pull-back map 0* : H* (Y) -~ H* (Z) is injective.
To see the equality of the first Hasse-Witt classes, recall from Sect. l.e.l

that wl(F, BF) = wl(det(F), det(BF)), which shows that we have the
equality 

-. 1-. 1 r..

because the forms coincide on the generic fiber and thus have isomorphic de-
terminants. Moreover these determinants equal the function field discrimi-
nant (dT/z) = (dT’/Z), so the first part of Thm. 0.2 follows (see Sect. l.h).
The same reasoning also shows that

We now consider the second invariants. From the Main Lemma 1.15 (c) we
deduce that

Thus we obtain

Remark 4.1. Note that when m is even the right hand side of the last

expression equals det(9), where

By the result in the étale case, presented in Sect. l.h, we see that
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Thus by the result for Wl and the functoriality of the Galois theoretic W2,
we are reduced to showing the next theorem.

Theorem 4.2. The following equality holds in H2(Zet, Z/2Z):

where p(X/Y) has been defined in terms of ramification data in (0.1~.
The proof is given in the next section and makes heavy use of the local

calculations performed above.
4.c. Determinantal calculation.
For the proof of Thm. 4.2 we start by examining both sides of the desired
equality. The right hand side is defined as a divisor of Z and we use
the same notation for its class in Pic(Z), as well as for the image of this
class in H2(Zet, Z/2Z). Now, from the very definition of Chern classes, we
first observe that the left hand side can also be considered as the image
in H2(Zet, Z/2Z) of an element of Pic(Z). Namely it is the image of the
divisor defined by ~1hm det(A(h)) + det(g(h-1». In fact, as in [E-K-
V], p.176, for any h, the inclusion ah : A(h) -3 induces an exact

sequence

Hence there exists a divisor in Div(Z) such that in Pic(Z)

where we denote by [D] the class of the divisor D. We conclude that in

Therefore to show the theorem we are reduced to showing the following
congruence in Div(Z)

where we denote by A the divisor 
To show (4.2) it suffices to work in Div(Zs), where as before S is a

suitable étale neighbourhood of a point y in Y and where Xs and Zs are
as described in Sect. 2. For further notation refer to the diagram there. So
we have to show in Div(ZS)

We start by examining the right hand side of the congruence. By diagram
commutativity we deduce that qZ(~*(p(X/Y))) _ ~S(q*(p(X/Y))). By
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definition p(X/Y) _ 1r*(f), where F is a divisor on X (see (0.1)). We then
deduce that ~s(q*(~r*(r))). By [EGAII] II 1.5.2, under
our hypotheses we have that q*(1r*(f)) = 1rs*(qx(f)). Since Xs and S are
étale over X and Y respectively, the divisor ql (r) of Xs corresponds for
Xs - S to what T is for X ~ Y. Let us denote this divisor by rs. Hence
we have proved that the right hand side of the congruence (4.2) is equal to

namely We record this as

We now describe p(Xs/8) . The points of codimension 1 which are ramified
in Xs ~ S considered as points of codimension 1 of S are those above the
generic points gg of the branch divisors 6~ with f in J(x), which as usual
we identify with the set ~1, ... , We let 1  1~  rl, 1  1  nl
be those primes. By definition we have

It now follows from the description of Xs given in (2.4), that for each
~ such that I  .~  n and each v ~ the ev run through the set
~ei,~,1  z  rl. So we have to determine, for each how many v have
this ramification index and for each such v, the index f(v) (or at least its
parity). From the decomposition of given in loc. cit. we observe
that a prime of Ox (S) will be the product of a prime in one component
and the whole ring in the others. This observation leads us to study what
happens in each factor ..., ti,n] of the decomposition. If follows from
the definition of Ay[ti,l’ ..., ti,n], that for each the primes v of this
algebra above qk,g will have the same inertia index. We are thus led to the
following claim.

Claim. For each pair (i, .~) with 1  i  r and 1  .~  n the sum

is odd. More precisely

Note in passing, that the index f (v) is odd as it is the residue class degree
associated to the extension which is of odd degree.



650

To prove the claim let us simplify notation a little and write A = Ay, so
that S = Spec(A). Recall that Xs = Spec(B), where

Let us treat the case n = 2, so that B equals

Let us consider ~(i, f) for .~ = 1. Thus T/k,1 is a prime of height one in A,
which contains al and which defines an element z in S. We are looking for
the number of elements in the fiber Xs,z and for v in this fiber, we want to
determine f (v). By definition

and, since contains a 1, we see that B Q9A k(z) equals

A prime in this algebra is the product of a prime in one of the components
with the other (full) components. Thus, for instance, the primes with
ramification index el,1 correspond to the primes in the first component,
that is to the primes of [Tl,l, Tl,21 which contain (T1,22 -a2). In
turn these are determined by the primes in the algebra 
a2), which we find by decomposing the polynomial P = T1,22 - a2 into
irreducible factors. Now a2 # 0 in ~(z), the index el,2 is prime to the
residue characteristic of k(z) (by tameness) and the field k(z) contains the
e1,2-th roots of unity, so it follows that P decomposes into a product of ql
polynomials, which are irreducible over k(z) and of same degree f 1. This

gives ql elements in Xs,z with fl = f (vl,l) - ... = f(Vl,qi)-
Hence the equals

which is in this special case. This completes the proof of the claim.

Thus finally we deduce from (4.2) and the claim

and therefore
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We now consider the left hand side of the congruence (4.2). Using the fact
that taking determinants commutes with base change, we obtain that

where the O~h~ (S) are obtained as in (4.2), via an exact sequence involving
det(A~h~(S)) and (see Sect. 3.d). The following is clear.

Lemma 4.3. Let e be an odd integer. Then

From Prop. 3.14 (c) we deduce that if h is not in J(x), then ~~h~ (S) is
trivial. If instead Ê is in J(x), then using the lemma, Prop. 3.14 (c) and
taking the discriminant and the product over the cY, we obtain

Thus, for Ê in J(.î),

and 0~~~ (S) is defined as a Cartier divisor of Zs, by the function

We then conclude that 0(S) is defined by

For any Ê in we put NI! = ei,1! and we write N = flg NÉ. Using
the fact that for all i we have ti,li-:i = a~? we then obtain for the N-th
power

Since the integers N, Nl, s and the e§ g are odd we obtain that
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Therefore we conclude that

Hence the result follows from this last equation together with (4.2), (4.2)
and (4.2).

5. Appendix. Simplicial techniques

5.a. Simplicial objects.
We recall the definition of a simplicial object in a category C. Let A de-
note the category whose objects are the ordered sets [n] = {0, 1, 2, ... , 
whose morphisms are all non-decreasing monotone maps. This category
can be shown to be equivalent to the category, denoted by the same letter,
generated by the objects [n] and for 0  i  n by the maps

which are respectively the increasing injection which does not take the value
i in ~n~, and the non-decreasing surjection which takes the value i twice in
~n~. (To complete the identification one should also add a list of identities
which describe the commutation rules satisfied by these maps, see [G-Z] II
Lemma 2.2, [Mac] pp.172-173, [Mac-Mo] VIII 7, [Mal] Sect. 2 or [Go-Ja] I
(1.2).) The maps ôn are called (co)faces and the maps Un (co)degeneracies.
A simplicial (resp. cosimplicial) object in a category C is a functor X :

C (resp. Y: A - ~). We write Xn = X ([n]) and 8i = for
the faces and Qi = for the degeneracies on X. So a simplicial object
in C is determined by the X~, and the identities satisfied by the faces and
degeneracies. Simplicial objects in a category C form a category SC.

If C = Set is the category of sets, one speaks of a simplicial set. We let
S = SSet. Starting with a simplicial set X one obtains (in a functorial
way) a topological space called the realization of X. Conversely, given
a topological space T one defines a simplicial set S(T), called the singular
set. This is the origin of simplicial techniques. In fact the realization
functor is left adjoint to the singular functor (see e.g. [Go-Ja] I Prop. 2.2).
Example 5.1. Given a (small) category 13 one obtains a simplicial set
N(() called the nerve of the category, by letting

where En is [n] viewed as a category, and Hom denotes the set of functors,
see [Mac-Mo] VIII 7 or [Seg]. (Note that any ordered set (E, ) defines
a category whose objects are the elements of the set and where there is
a morphism from object x to object y precisely in E.) The set

can be identified with composable strings of n arrows in .Ci. Faces are
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then given by suitable compositions and degeneracies by inserting identity
arrows.

Example 5.2. As a particular case we consider that of a groupoid ,~i, that
is a category in which every morphism is invertible. The trivial groupoid
T(U) on a set U is the category whose objects are the elements of U and
the morphisms are given by U x U. Composition is given by (x, y) o (y, z) =
(x, z). (This is equivalent to the category with one object and one arrow.)
Then the nerve NT(U) = N(T(U)) is given by

where we leave it to the reader to make the degeneracies and faces explicit.

Example 5.3. If we consider a group G as a category with one object e,
then the nerve construction gives the classifying simplicial set of G, denoted
BG. One can check that this is the simplicial set (with only one vertex)
given by

Here the two maps G - e are the same, e - G is given by the inclusion of
the identity, and the maps G x G --~ G are Oo = pr2 (second projection),
01 = ii (multiplication), and 92 = prl (first projection). The realization
~ B G ~ of BG is an Eilenberg-MacLane space of the form K ( G,1 ) , that is it
has G as fundamental group and all other homotopy groups reduced to the
identity.

Example 5.4. The nerve of the trivial groupoid on G gives the "universal
bundle " : :

which maps to BG.

Further examples of simplicial objects are given by actions of groups (X, G) .
A G-sheaf on a scheme X, can then be identified with a simplicial sheaf on
the simplicial scheme associated to the action (X, G).
5.b. The Amitsur complex.
The Amitsur complex is a cosimplicial group defined as follows (see [D-G]
III, Sect. 4 n. 6). Let Y be a scheme or more generally a sheaf and as before
Thm. 1.6 let Y’ be a covering of Y, that is a sheaf epimorphism. Let F be
a contravariant functor on sheaves on Y, with values in a category C. Let
Kn-i = (yl/y)n denote the n-fold fiber product over Y of Y’ with itself,
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with coordinates numbered from 0 to n - 1. Consider the simplicial sheaf

where for 0  i  n the face maps Kn -~ are defined by omission
of the i-th coordinate and the degeneracies oin : Kn -~ Kn+1 are obtained
by "duplication" of i-th coordinate. Next apply the contravariant functor
F to this, to get the cosimplicial object in the target category C,

with induced maps: cofaces 8£ = and codegen-
eracies
where

. We will be interested in the case

which, for G a sheaf of groups, takes values in the category of groups, and
we will then write

The resulting cosimplicial group is the Amitsur complex defined by Y’/Y
and G. Define further a subset H°(Y’/Y, G) of CO as the equalizer of the
maps 81 80. C° -~ CI that is

This is in fact a subgroup of Co. The set of 1-cocycles is

Now, x in Co acts on the right on ,f in Cl by the rule

and Zl is stable under this action (use the equalities between maps from

Consider the orbit space

This is the cohomology set we need in Sect.l.d. It has as distinguished
point the unit in Cl.

Remark 5.5. When the group G is abelian, then the Amitsur complex is
a cosimplicial complex of abelian groups, and so its cohomology equals that
of the associated normal complex with differential given by the alternating
sum gn = (see [Mal] Thm. 22.1, [Cu] Sect. 5). This is the

complex considered in say [K-01] Chapt. V or [Knu] II.2, where one can
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see how it gives rise to higher cohomology groups and how it is related to
Galois and Cech cohomology. See also [Mi] Chapt. I Prop. 4.6.

5.c. The homotopy category of simplicial sheaves.
As was seen in the main text homotopy classes of maps between simplicial
objects can play a clarifying role in our subject. We just say a few words
to introduce some relevant notations and refer to the work of Jardine-say-
for more details. The starting point for what we are going to describe is
the remarkable (and by now classical) fact that one can study spaces up to
homotopy by using simplicial sets. Namely, by inverting certain morphisms
called weak equivalences in the category S of simplicial sets, one obtains a
category denoted Ho(S) equivalent to the category of CW-complexes with
morphisms homotopy classes of maps. The equivalence is given by the
realization and singular functors, see [Go-Ja] Thm. 1.11.4. By abstracting
what was necessary for the definition and study of the homotopy category
Ho(S), Quillen arrived at the notion of a closed model category. Given a
closed model category C one can define the homotopy category Ho(C) to be
the category with same objects as C and with morphisms between X and
Y given by the set

of homotopy classes between certain objects Wx and WY, which are weakly
equivalent to X and Y (cofibrant and fibrant..., see [Go-Ja] p. 75).

In (Br~, Brown has considered a closed model structure on the category
of sheaves of simplicial sets on topological spaces. Then Jardine has defined
a homotopy category for any Grothendieck site in [J5]. It is this last work
that lays the foundations in the right generality for our needs. For instance
it is there that one finds the definition of cohomology of a (fibrant) simplicial
sheaf X, with coefficients in an abelian sheaf F as

where K(F, i) is the simplicial abelian sheaf obtained by iterated applica-
tion of the construction giving BF (see [J5] Sect. 2 and [J3] Sect. 3; the
motivation for this again comes from topology, see e.g. [Go-Ja] 111.2.19).
Recall that this entered the definition of the Galois theoretic classes in
Sect. l.f. A further application of these ideas is given in the next section.

5.d. Torsors and homotopy.
Here we sketch a proof of Prop. 1.7, which states that for any sheaf of
groups G on Y, there is a bijection

where the left hand side is defined in terms of the cohomology of the Amit-
sur complex. We follow Jardine [Jl] .
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As a first step in obtaining the description of torsors under G, in terms
of homotopy classes of maps into BG, we give an alternative interpretation
of Amitsur 1-cocycles. So let

be an element of Zl (Y’l Y, G) (see (5.4)). Using f we want to define a map
from the simplicial sheaf NT(Y’/Y) to the classifying sheaf (BG/Y). Both
of these simplicial objects are defined in the Appendix (5.a). That is, we
want a simplicial map

By unwinding the definitions it can be seen that putting fi = f and

makes the second square commutative, precisely because f is supposed to
be a 1-cocycle. Proceeding in this way and after having checked that two
cocycles defining the same element of H1 give homotopic maps, one obtains
a bijection

where ~r(-, -) denotes homotopy classes of simplicial maps. It is the con-
tent of [Jl] Prop. 1.1, that for a locally trivial fibration V 2013~ Y, the canon-
ical map from V into the classifying space NT(VO) of the fundamental
groupoid induces a bijection

This can be paraphrased by saying that the fundamental groupoid preserves
weak equivalences and that a hypercover has the fundamental groupoid as
Cech resolution. (Also BG is right adjoint to fundamental groupoid.) An
important result of [J5], inspired by Brown’s [Br] Thm. 1.1 and Sect. 3 (5),
shows that the set [Y, BG] is given by

where the limit is taken over simplicial homotopy classes represented by
locally trivial fibrations Z - Y. This a generalized Verdier hypercovering
theorem. Thus putting everything together we obtain the expected result.
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