Un -uplet diophantien est un ensemble de entiers naturels non nuls tel que le produit quelconque de deux d’entre eux augmenté de est un carré parfait. Dans cet article, nous nous intéressons a certaines propriétés de courbes elliptiques d’équation du type , où est un triplet diophantien. Nous considérons en particulier la courbe elliptique définie par l’équation où et désigne le -ème nombre de Fibonacci. Nous montrons que si le rang de est égal a , ou si , alors les points entiers sur sont donnés par
A Diophantine -tuple is a set of positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form , where , is a Diophantine triple. In particular, we consider the elliptic curve defined by the equation where and , denotes the -th Fibonacci number. We prove that if the rank of is equal to one, or , then all integer points on are given by
@article{JTNB_2001__13_1_111_0, author = {Dujella, Andrej}, title = {Diophantine $m$-tuples and elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {111--124}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838074}, zbl = {1046.11034}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2001__13_1_111_0/} }
Dujella, Andrej. Diophantine $m$-tuples and elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 111-124. http://archive.numdam.org/item/JTNB_2001__13_1_111_0/
[1] On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17 (1979), 333-339. | MR | Zbl
, , ,[2] The equations 3x2 - 2 = y2 and 8x2 - 7 = z2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. | MR | Zbl
, ,[3] Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19-62. | MR | Zbl
, ,[4] Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc. 7 (1965), 24-28. | MR | Zbl
,[5] Algorithms for Modular Elliptic Curves. Cambridge Univ. Press, 1997. | MR | Zbl
,[6] History of the Theory of Numbers. Vol. 2, Chelsea, New York, 1966, pp. 513-520. | Zbl
,[7] Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
,[8] On Diophantine quintuples. Acta Arith. 81 (1997), 69-79. | MR | Zbl
,[9] The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322. | MR | Zbl
,[10] A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127 (1999), 1999-2005. | MR | Zbl
,[11] A parametric family of elliptic curves. Acta Arith. 94 (2000), 87-101. | MR | Zbl
,[12] Absolute bound for the size of Diophantine m-tuples. J. Number Theory, to appear. | MR | Zbl
,[13] A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306. | MR | Zbl
, ,[14] Integer points on a family of elliptic curves. Publ. Math. Debrecen 56 (2000), 321-335. | MR | Zbl
, ,[15] On Fermat's quadruple equations. Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291. | MR | Zbl
, , ,[16] A problem of Fermat and the Fibonacci sequence. Fibonacci Quart. 15(1977), 323-330. | MR | Zbl
, ,[17] Elliptic Curves. Springer-Verlag, New York, 1987. | MR | Zbl
,[18] A second variation on a problem of Diophantus and Davenport. Fibonacci Quart. 16 (1978), 155-165. | MR | Zbl
,[19] Solving constrained Pell equations. Math. Comp. 67 (1998), 833-842. | MR | Zbl
,[20] Elliptic Curves. Princeton Univ. Press, 1992. | MR | Zbl
,[21] Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162. | MR | Zbl
,[22] Introduction to Number Theory. Almqvist, Stockholm; Wiley, New York, 1951. | MR | Zbl
,[23] Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38. | MR | Zbl
,[24] Euler's concordant forms. Acta Arith. 78 (1996), 101-123. | MR | Zbl
,[25] S-integral points on elliptic curves and Fermat's triple equations. In: Algorithmic Number Theory, (J. P. Buhler, ed.), Lecture Notes in Comput. Sci. 1423 (1998), 528-540. | Zbl
, , ,[26] SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.
[27] The equations z2 - 3y2 = -2 and z2 - 6x2 = -5, in: A Collection of Manuscripts Related to the Fibonacci Sequence. (V. E. Hoggatt, M. Bicknell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75. | MR | Zbl
,[28] Elliptische Kurven: Fortschritte und Anwendungen. Jahresber. Deutsch. Math.-Verein 92 (1990), 58-76. | MR | Zbl
,