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An arithmetic analogue of Clifford’s Theorem

par RICHARD P. GROENEWEGEN

RÉSUMÉ. Nous considérons ici certains fibrés en droites métriques
comme analogues des diviseurs sur les courbes. Van der Geer et
Schoof ont défini une fonction ho sur les fibrés métriques dont les
propriétés ressemblent à celles de la dimension de 
où D désigne un diviseur sur la courbe X. Ils obtiennent en

particulier un analogue du théorème de Riemann-Roch. Nous

proposons des analogues arithmétiques de trois théorèmes sur les
courbes, notamment du théorème de Clifford.

ABSTRACT. Number fields can be viewed as analogues of curves
over fields. Here we use metrized line bundles as analogues of
divisors on curves. Van der Geer and Schoof gave a definition of
a function ho on metrized line bundles that resembles properties
of the dimension l(D) of where D is a divisor on a
curve X. In particular, they get a direct analogue of the Riemann-
Roch theorem. For three theorems of curves, notably Clifford’s
theorem, we will propose arithmetic analogues.

1. Introduction

A popular way to study number fields is to view them as analogues of
curves over a field. The elements of the number field correspond with points
on the curve. Divisors on curves find their analogue in Arakelov divisors
for number fields or metrized line bundles.

Given a divisor D on a curve X, we have an associated line bundle
G(D) and an integer l(D), which is the dimension of the vector space

One of the most well known theorems for curves is the
Riemann-Roch theorem, which relates l(D) to the degree degD of a divi-
sor. It states that there is a canonical divisor K such that for each divisor D
we have

Manuscrit regu le ler novembre 1999.
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Following Van der Geer and Schoof [3], this article presents a function
ho such that for a metrized line bundle L of a number field, we have

In this article we will find analogues for three theorems for curves, stated
here.

Theorem 1.1.

(1) Let D be a divisor on a curve. If degD  0, then l(D) = 0.
(2) Let D be a divisor on a curve with deg D &#x3E; 0. Then 1 (D) :::; 1 + deg D.
(3) (Clifford’s theorem) Let D be a divisor on a curve such that l(D) &#x3E; 0
and l(Dt) &#x3E; 0. Then I(D)  2 deg D + 1.

Proof. For (1) and (3), see Hartshorne [4, lemma IV.1.2 and IV.5.4~. For
(2), see Fulton [2, proposition 8.2.3]. D

Arithmetic analogues to the three theorems above are also considered in
the preprint of Van der Geer and Schoof [3]. As for the first one, they prove
that h°(L) tends doubly exponentially fast to 0 in terms of the degree of L
when deg L becomes negative. Our result is basically the same, although
the bound that we will prove is more explicit. As for the second statement,
Van der Geer and Schoof have a conjecture for number fields that are Galois
over Q or over an quadratic imaginary number field. The conjecture has
been proven by P. Francini for quadratic number fields [1].

2. Statement of Clifford’s theorem for number fields

We give a working definition of a metrized line bundle now, in order to
state Clifford’s theorem. For a full definition, see section 6.

Let K be a number field with ring of integers R. We can write R ez R
as a product

where 800 is the set of infinite primes of K. Each Kv is isomorphic to
either R or C, so it should be clear what it means to take the complex
conjugate of an element in Kv and hence of an element in R 0z R. A
metrized line bundle is a projective R-module L of rank 1 together with an
inner product (-, -) on L0zR, such that for x,y E L oz R and a E R oz R,
we have

where a* is the complex conjugate of a. The dual of a metrized line bundle L
is given by Lt = Hom(L, Z). The elements of Lfi can be identified with the
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elements of L oz R that have integer valued inner product with every
element of L. The degree of a line bundle L is given by

where A is the discriminant of K and vol L is the covolume of the lattice
L in L 0z R. Finally we define

These definitions give rise to the Riemann-Roch theorem from section 1.
The main goal is to give an analogue of Clifford’s theorem, which we

state here.

Theorem 2.1 (Clifford’s theorem). Let K be a numbers field of degree n
over Q and let L be a metrized line bundle with deg L &#x3E; 0 and 0.

Then we have 
-

where 

3. Riemann-Roch for lattices

A Euclidean space E is a finite dimensional vector space over R, equipped
with a positive definite symmetric R-bilinear map

which we call the inner product or Euclidean structure. A norm 11 - II on E
is constructed in the obvious way by setting Ilxll = for x E E. The
norm uniquely determines the inner product by

If we have ~x, y) = 0 for x, y E E, then we say that x and y are perpendicular
and we write x 1 y. Given a subspace V of E we write E E : x 1

V } for the orthogonal complement of V. Given a subset S C E we write
span s for the smallest linear subspace of E containing S.
A lattice in a Euclidean vector space is a discrete subgroup of E. A

lattice has a Z-basis and the rank is given by the cardinality of this basis.
If the rank is equal to the dimension of the vector space E, it is said to
have full rank. If L is of full rank and has basis bl, ... , bn, then the volume
vol L of L is given by the volume of parallelepiped
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where the volume is measured by the Haar measure induced by the inner
product. A lattice L has a dual lattice Lt, defined by

The Riemann-Roch theorem for lattices is better known as the Poisson
summation formula. If E is a Euclidean space and f is a C°°-function
E -&#x3E; C such that for all m the function z - Iximf (x) is bounded, we
call such a function a rapidly decreasing function. We can take the Fourier
transform of of a rapidly decreasing function f as follows. Let dx be the
Haar measure on E induced by the inner product. Furthermore, define the
function [-,-]:ExE2013~Tto the circle T by

Then the Fourier transform /: E ~ C of f is defined by

We can now state the Poisson summation formula.

Proposition 3.1. Let L be a lattice of full rank in a Euclidean vector space
E and let Lt be the dual lattice. Let f be a rapidly decreasing function on E.
Then we have

Proof. See Neukirch [5, VII.3.2~.

Given a subset S of a Euclidean space, we define as

if the sum converges. In particular, ko is well-defined on lattices and cosets
of lattices. An application of the Poisson summation formula gives a mul-
tiplicative version of the Riemann-Roch theorem for lattices.

Theorem 3.2 (Riemann-Roch). For every lattice L, we have

Proof. The function x H e-7r(x,x) is self-dual with respect to taking Fourier
transforms (see [5, VII.3.1]). Furthermore, we have vol L = (vol The

theorem now follows directly form the Poisson summation formula. D
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4. Estimates for l~°

Let L be a lattice in a Euclidean space E. The minimum of L is the

length of the shortest nonzero vector in L. A minimal vector is a vector
with length equal to the minimum. We have the following lemma.

Lemma 4.1. Let L be a lattzce with minimum A. Define at for t E R~o
as

Then we have

Proof. We can write

A substitution of A2t for t in the above expression yields the lemma. D

Lemma 4.2. Let L be a lattice with minimum A. Let at be defined as in
lemma 4. 1. Then we have

Proof. Let t be any positive real number and let At be the set

The distance between any two points in At is at least A. Hence, if x and y
are two different points of At, the open balls and with

radius A/2 and center x and y are disjunct. The union of all balls 
for all x E At is a subset of a large ball with radius + A/2. Hence, by
taking the quotient of the volume of the large ball with radius + A/2
and a small ball with radius A/2 we get

Corollary 4.3. Let L be a lattice wzth minimum A. Then we have
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Proposition 4.4. Let L be a lattice of rank n and with fl.
Then we have

Proof. We have fl Hence by corollary 4.3, we get

This proves the proposition. D

5. Clifford’s theorem for lattices

We write Z for the unit bundle of Q and we write cv = We have
w m 1.086.

Proof. It is clear that for A &#x3E; 1, we have  = w. Now assume
A  1. The dual lattice of AZ is equal to and by Riemann-Roch for
lattices, we get c.~a-1. D

Lemma 5.2. Let L be a lattice of full rank in a Euclidean vector space E.
The function E/L ~ R that sends a coset Z of L to attains a unique
maximum in L.

Proof. Recall that for y,z E E, we have defined [y, z] as [y, z] = e-27ri(y,z).
Let f be a rapidly decreasing function E - C and for z E E let g equal f ,
translated over z, i.e., g(x) = f(x + z). Then we can express the Fourier
transform of g in terms of f as

The Poisson summation formula gives us

We specialize for the case f (x) = f (x) = Then this sum is maximal
if [z, y] equals 1 for all y, hence if z is in L. D



149

Lemma 5.3. Let L be a lattice of full rank in a Euclidean vector space E.
Let 1r be an orthogonal projection on a subspace of E such that the image
1r L is discrete. Let L’ c L be the kernel This gives an exact sequence

Then we have

Equality holds if and only if L is equal to the direct sum L’ (D 1f L.

Proof. As for x E L’ and y E 1f L, we have = 

we have kO (L’ EÐ irL) = For each x E 1f L choose an element

E 1f-l(x). Then we have

.....,,-’IIJII...I -"’-’-..--

Let E’ be the subspace of E spanned by L’ and let x be an element of rL.
For y E E’ we have (x + y, x + y) = (x, x) (y, y) and hence

Hence, by lemma 5.2, we have I , where we have
r-1

equality only if E x + L’. 0

Given a lattice L, we want to have some way of bounding ko(L) in terms
of its minimum. By lemma 5.1, this is trivial if the rank of L is 1. For the
higher rank case we will use orthogonal projection and lemma 5.3 to reduce
to the 1-dimensional case.

In order to give these bounds, we use Hermite constants, so here is a
quick reminder what they are. The ith Hermite constant -yi is defined as
the smallest real number such that any lattice of rank i and with volume 1

has a vector with length at most ’Yi 1/2 In general, a lattice L of rank i has
a vector of length at It follows from the Minkowski
bound that the inequality ,i :::; i holds.

Proposition 5.4. Let L be a lattices of rank n w2th minimum A. Then we
have

Proof. Let L be contained in a Euclidean vector space E. We inductively
choose bl, ... , bn E E as follows. The element bl is equal to a minimal
vector of the dual lattice Lt. Then we project the lattice L orthogonally
on blR. The projection map is given by
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Let Ll be the kernel of the projection map. That is, Ll consists of all
elements of L perpendicular to bl. Then b2 is chosen as a minimal vector
of In general, bi is chosen such that it is a minimal vector of the dual

Li of the sublattice Li of L given by all elements of L perpendicular to
span(bi , ... , The image of Li under orthogonal projection on biR is

Hence, by lemma 5.3 we have

We will now give bounds for If M is a lattice of rank i with
minimum at most A and if b is a minimal vector of the dual lattice Mt, we
have

... - I-

By lemma 5.1, we have

This completes the proof. D

Proposition 5.5. Let L be a lattice in E of rank n with minimum A. Let
W be the smallest subspace of E such that all points of L that are not in
W have distance at least 1 to W . We write 1 = dim W . Then we have

Proof. Let 1 be the dimension of W and define L’ as L’ - W n L. Let 7r be
orthogonal projection on W 1 and let the image of L be denoted 7rL. Then
7rL has minimum greater or equal to 1. Hence, by lemma 5.3, we have

Applying proposition 5.4 twice yields

We use 72  n to get the wanted inequality. 0

Lemma 5.6. Let L be a lattice contained in a Euclidean vector space E
and let W be the smallest subspace of E such that all points of L that are
not in W have distance at least 1 to W. Similarly, let Wt be such a set for
Lt . Then W and W t are perpendicular. In particular dim W + dim W t 
rank L.
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Proof. Suppose W and Wt are not perpendicular. Then there exists a

y E Lt n wt Wt n w1. By minimality of Wt we can choose y
with distance to Wt n smaller than 1. Hence, there is a y~ E wt n W1
with lIy-y’lI  1. Similarly, there is a z E with z V and

a z’ E W n such that Ilz - z’lI  1. Hence we get

As (z, y) is an integer and z and y are not perpendicular, this is a contra-
diction. D

Combining proposition 5.5 and lemma 5.6, we get the following corol-
lary. In section 7, Clifford’s theorem for number fields follows directly from
this corollary. Therefore, we see this corollary as an analogue of Clifford’s
theorem for lattices.

Corollary 5.7. Let L be a lattice of rank n with minimum A and let the
dual Lt have minimum At. Then we have

6. Metrized line bundles

Now we turn to the number field case and prove arithmetic analogues
of the geometric theorems mentioned in the introduction. As we shall see,
almost all of the work is already done in the sections about lattices. We
need a few facts about Euclidean spaces and finite 6tale algebras over R in
order to define Hermitian modules and metrized line bundles.
We state the following lemma without proof.

Lemma 6.1.

(1) If El and E2 are Euclidean spaces, the tensor product El 0 E2 has a
unique Euclidean structure such that for x,y E El and x’,~’ E E2, we have

(2) Every quotient space D of a Euclidean space E, given by 0: E -&#x3E; D,
has an induced Euclidean structure given by D such that =

llxll for z E D.
(3) The Endomorphism EndR(E) of a Euclidean space E has a natural invo-
lution 0 F-+ 0*, where the adjoint 0* the unique element of EndR,(E)
such that the relation (0a, b) = (a, holds.

The category of finite 6tale algebras over R consists of the finite R-
algebras A such that the map 0: A -&#x3E; HomR(A, R) given by O(x) (y) =

is an isomorphism. Here Tr is the trace map from A over R. If
we let v range over the points of S = spec A, we get a decomposition
A = IIv Av, where Av is the residue class field. Every Av is isomorphic
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to R or C. For every v E spec A, we have a projection map 0: A -~ Av .
We contend that the identity functor on the category of the finite 6tale
algebras over R has exactly one nontrivial automorphism. Indeed, suppose
we have a functorial automorphism x H x* on every finite etale algebra
over R. Then for all projections 1r: A - Av and all elements x E A we have
1r(x*) = ~(x)*. Hence, on each 6tale algebra our nontrivial automorphism
is complex conjugation on the factors Av that are isomorphic to C and is
trivial on factors isomorphic to R. When we talk about the involution of
a finite 6tale algebra over R we mean this map.

Let M be a module over an 6tale algebra A over R, with a Euclidean
structure. Then M is called Hermitian if the natural map A -&#x3E; EndR(M)
preserves involutions. This is equivalent to the condition that for all a E A
and ml,m2 E M we have

If we are given two Hermitian modules M and N over A, then M 0R N is
a Euclidean space and the quotient space M 0~ N has a natural Euclidean
structure. Furthermore, we can view A as a module over itself and give it
the unique Euclidean structure such that the inner product on A and the
induced inner product on A0AA is compatible with the map A.
This is the canonical inner product for A. A trace of the definitions results
in the following lemma.

Lemma 6.2.

(1) Let M and N be Hermitian modules, free of rank 1 over a field A,
algebraic over R. For m E M, n E N and m 0 n E M 0A N, we have

(2) Let A be a finite etale algebra over R and let M and N be Hermitian
modules over A, free of rank 1. Then, for v E spec A, we have an isomor-
phism

as Hermitian modules.

(3) Let A be a finite etale algebra, viewed as a Hermitian module over

itself with the canonical inner product. Let v be an elerrtent of spec A and
Let be the restriction of 11.11 to Av. Then we have = [Av : R]1/2.

We are now ready to give the definition of a metrized line bundle. Let K
be a number field and let R be its ring of integers. A line bundle on R is
a projective R-module L of rank 1. Now R 0z R is a finite 6tale algebra
over R and L0z R is a module of rank 1 over We call L a metrized
line bundle over R if L 0z R is given a Euclidean structure such that it
becomes an Hermitian module over R 0z R.
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Two metrized line bundles are isomorphic if there is an R-module isomor-
phism that preserves the inner product. Given two metrized line bundles
Li,L2 over R, their product LlL2 is given by the module L1 0~ L2. The
inner product on (Ll 0~ L2) 0z R is given by the canonical isomorphism

(Li OR L2) 0Z R Ef (Li 0z R) 0RQ9R (L2 0Z R).
The set of isomorphism classes of metrized line bundles over R is denoted
Pic K and with this multiplication it is a group. The unit element is equal
to R with the canonical Euclidean structure on R oz R. We call R with
this structure the unit bundle.

Let L be a metrized line bundle over R and let Soo be the set of infinite

primes of K. Then we have a decomposition L 0z R = Lv, where
Lv = L ® Kv is a 1-dimensional Kv-vector space. The factors Lv are
perpendicular and we for the restriction of the norm to Lv .
For instance, if R is the unit bundle and is the restricted norm on

Rv = Kv, we have 
____

We define the norm of a metrized line bundle L as

where A is the discriminant of K. The degree is defined as deg L =
log N(L).

Proposition 6.3.
(1) The norm function is a group homomorphism Pic K --&#x3E; R&#x3E;o.
(2) If L is a rnetrized line bundle and t E L is any nonzero element, then

Proof. Define Mt by

As we have we can also write

Consider the map .R 0z R ~ L 0z R given by multiplication with t. It
blows up the measure by a factor Mt . Hence, we have

This proves (2). To prove (1) one uses (2) together with some explicit
calculations. D
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Let L be a metrized line bundle over R. Then it can be viewed as a
lattice in L 0z R. Hence, we have a definition for k°(L), given as

Furthermore, we define h°(L) as

Both k° and h° induce functions from Pic K to R. In order to state the
Riemann-Roch theorem, we need the notion of the dual of a metrized line
bundle L. Consider the map

This map is an isomorphism, giving

a canonical Euclidean structure. We let Lt be Hom(L, Z) with this struc-
ture.

Proposition 6.4 (Riemann-Roch). Let L be a metrized line bundle. Then
we have

Proof. This follows directly from the Riemann-Roch theorem for lattices.
This formula also appears in [3, Proposition 1] in a different form. D

7. Analogues of theorems for curves

We have set up everything to prove in quick succession the analogues of
the geometric theorems mentioned in section 1. The only lemma we need to
tie the results for lattices to metrized line bundles is the following lemma,
that relates the minimum of a lattice to the norm of the line bundle.

Lemma 7.1. Let n be the degree of a number field K, and let L be a
metrized Line bundle. Then for all elements x E L, we have
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Proof. The geometric-arithmetic mean inequality and proposition 6.3 give
for nonzero x E L the estimate

First, we will prove the analogue of the geometric fact that l(D) = 0 if
the degree of a divisor D is negative. The proposition states that h°(L)
tends doubly exponentially fast to zero in terms of the degree of L when
the degree becomes negative. This was already noted by Van der Geer and
Schoof [3, Corollary 1 to Proposition 2~.

Proposition 7.2. Let K be a number field of degree n over Q and let L
be a metrized line bundle of degree at most 0. Then we have

Proof. Immediate from proposition 4.4 and lemma 7.1 and the fact that
k°(L) - 1. 0

Second, we prove the analogue of the geometric theorem that l(D) :5
1 + deg D if D is effective.

Proposition 7.3. Let K be a number field of nurnber field of degree n
over Q and let L be a metrized Line bundle with deg L &#x3E; 0. Then we have

Proof. Let A be the minimum of the lattice L. The assumption deg L &#x3E; 0
translates into N(L) &#x3E; 1. Using proposition 5.4, the fact and
lemma 7.1, we get

Finally, take the logarithm to prove the proposition. D

The third analogue is Clifford’s theorem for number fields, of which a
sneak preview was given in section 2, theorem 2.1.
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Theorem 7.4 (Clifford’s theorem). Let K be a numbers field of degree n
over Q and let L be a metrized line bundle with deg L &#x3E; 0 and 0.
Then we have 

- 11

Proof. By corollary 5.7, we have where M

is either L or Lt and 1L is the minimum of M. Using 1/~ ~ we

get 
- ~ I-

and hence

Using Riemann-Roch, we also have

As we have L = M or L = Mt, this proves the theorem. D
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