We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.
Nous prouvons dans cet article que presque tout entier s'écrit comme la somme d'un cube, d'un bicarré, ..., et d'une puissance dixième.
@article{JTNB_2001__13_1_227_0, author = {Laporta, M. B. S. and Wooley, T. D.}, title = {The representation of almost all numbers as sums of unlike powers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {227--240}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838083}, zbl = {1048.11074}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2001__13_1_227_0/} }
TY - JOUR AU - Laporta, M. B. S. AU - Wooley, T. D. TI - The representation of almost all numbers as sums of unlike powers JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 227 EP - 240 VL - 13 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2001__13_1_227_0/ LA - en ID - JTNB_2001__13_1_227_0 ER -
%0 Journal Article %A Laporta, M. B. S. %A Wooley, T. D. %T The representation of almost all numbers as sums of unlike powers %J Journal de théorie des nombres de Bordeaux %D 2001 %P 227-240 %V 13 %N 1 %I Université Bordeaux I %U http://archive.numdam.org/item/JTNB_2001__13_1_227_0/ %G en %F JTNB_2001__13_1_227_0
Laporta, M. B. S.; Wooley, T. D. The representation of almost all numbers as sums of unlike powers. Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 1, pp. 227-240. http://archive.numdam.org/item/JTNB_2001__13_1_227_0/
[1] Sums of squares and higher powers. II. J. London Math. Soc. (2) 35 (1987), 244-250. | MR | Zbl
,[2] A problem in additive number theory. Math. Proc. Cambridge Philos. Soc. 103 (1988), 27-33. | MR | Zbl
,[3] On Waring's problem: two cubes and seven biquadrates. Tsukuba Math. J. 24 (2000), 387-417. | MR | Zbl
, ,[4] On Waring's problem: two cubes and one square. Proc. London Math. Soc. (2) 43 (1937), 73-104. | JFM | Zbl
, ,[5] The representation of numbers as sums of unlike powers. J. London Math. Soc. (2) 51 (1995), 14-26. | MR | Zbl
,[6] The representation of numbers as sums of unlike powers. II. J. Amer. Math. Soc. 9 (1996), 919-940. | MR | Zbl
,[7] On a new approach to various problems of Waring's type. In: Recent progress in analytic number theory, vol. 1 (Durham, 1979), Academic Press, London (1981), 127-191. | MR | Zbl
,[8] Proof that almost all positive integers are sums of a square, a positive cube and a fourth power. J. London Math. Soc. 24 (1949), 4-13. | MR | Zbl
,[9] A problem in additive number theory. Proc. London Math. Soc. (2) 53 (1951), 381-395. | MR | Zbl
,[10] On additive number theory. Acta Arith. 13 (1967/68), 237-258. | EuDML | MR | Zbl
,[11] On sums of powers and a related problem. Acta Arith. 36 (1980), 125-141. | EuDML | MR | Zbl
,[12] On certain additive representations of integers. Portugal. Math. 42 (1983/84), 447-465. | EuDML | MR | Zbl
,[13] On the representation of numbers as sums of powers of natural numbers. Proc. London Math. Soc. (3) 21 (1970), 160-180. | MR | Zbl
,[14] On sums of mixed powers. J. London Math. Soc. (2) 3 (1971), 677-688. | MR | Zbl
,[15] A ternary additive problem. Proc. London Math. Soc. (3) 41 (1980), 516-532. | MR | Zbl
,[16] On Waring's problem for cubes. J. Reine Angew. Math. 365 (1986), 122-170. | EuDML | MR | Zbl
,[17] On Waring's problem for smaller exponents. Proc. London Math. Soc. (3) 52 (1986), 445-463. | MR | Zbl
,[18] A new iterative method in Waring's problem. Acta Math. 162 (1989), 1-71. | MR | Zbl
,[19] The Hardy-Littlewood method. Cambridge Tract No. 125, 2nd Edition, Cambridge University Press, 1997. | MR | Zbl
,[20] On Waring's problem: some refinements. Proc. London Math. Soc. (3) 63 (1991), 35-68. | MR | Zbl
, ,[21] Further improvements in Waring's problem. Acta Math. 174 (1995), 147-240. | MR | Zbl
, ,[22] Further improvements in Waring's problem, IV: higher powers. Acta Arith. 94 (2000), 203-285. | EuDML | MR | Zbl
, ,[23] On simultaneous additive equations, II. J. Reine Angew. Math. 419 (1991), 141-198. | EuDML | MR | Zbl
,[24] Large improvements in Waring's problem. Ann. of Math. (2) 135 (1992), 131-164. | MR | Zbl
,[25] New estimates for smooth Weyl sums. J. London Math. Soc. (2) 51 (1995), 1-13. | MR | Zbl
,[26] Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behaviour. Invent. Math. 122 (1995), 421-451. | EuDML | MR | Zbl
,