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On Galois structure of the integers in cyclic
extensions of local number fields

par G. GRIFFITH ELDER

Dedicated to Professor Manohar L. Madan

RÉSUMÉ. Soit p un nombre premier, K une extension finie du
corps des nombres p-adiques, et L/K une extension cyclique ram-
ifiée de degré pn. On suppose que le premier nombre de ramifi-
cation de L/K satisfait b1 &#x3E; 1/2. pe0/(p-1) où e0 est l’indice
de ramification absolu de K. Nous déterminons explicitement la
structure de l’anneau des entiers de L comme Zp[G]-module, où
Zp désigne l’anneau des entiers p-adiques et G = Gal(L/K) le
groupe de Galois de L.

ABSTRACT. Let p be a rational prime, K be a finite extension
of the field of p-adic numbers, and let L/K be a totally ramified
cyclic extension of degree pn. Restrict the first ramification num-
ber of L/K to about half of its possible values, b1 &#x3E; 

where e0 denotes the absolute ramification index of K. Under this
loose condition, we explicitly determine the Zp[G]-module struc-
ture of the ring of integers of L, where Zp denotes the p-adic
integers and G denotes the Galois group Gal(L/K). In the pro-
cess of determining this structure, we study various restrictions
on the ramification filtration and examine the trace map relation-

ships that result. Two of these restrictions are generalizations of
almost maximal ramification. Our method for determining this
structure is constructive (also inductive). We exhibit generators
for the ring of integers of L over the group ring, Zp[G] (actually
over where is the ring of integers in the maximal un-
ramified subfield of K). They are determined in an essential way
by their valuation. Then we describe their relations.

1. Introduction

The Normal Basis Theorem says that in a finite Galois extension of fields,
L/K, there is an element whose conjugates provide a field basis for L over
K. As such, this theorem explains the Galois action on fields. Restricting
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our attention to finite Galois extensions of number fields, L/K, we may ask
about the Galois action on the ring of integers D L of L. This is tied to the
arithmetic of the extension. By a result of E. Noether [10], we know that
in order for a normal integrat basis to exist it is necessary for the extension
to be at most tamely ramified.

For local number fields, E. Noether’s result is not only necessary but also
sufficient. To be precise we fix a prime p, write Qp for the field of p-adic
numbers, let K be any finite extension of Qp, and suppose that L is a finite
Galois extension of K with Galois group, G. The ring of integers of L has
a normal basis over the ring of integers I~K of K, if and only if L/K is at
most tamely ramified. In other words, there is an integer a E D L whose
conjugates, a E G}, provide a basis for D Lover D K, precisely when
the ramification index of L/K is not divisible by p (i. e. ’PK - D L = f 3L and
p f e where q3 refers to the unique prime ideal).

Outside of this situation, when the ramification index is divisible by
p (i. e. the ramification is wild), our understanding of the Galois mod-
ule structure of ~L is extremely limited. To gain some control over the
variety of issues that can emerge, we restrict our investigation in this pa-
per to those extensions with cyclic Galois group. So that we may focus
our attention completely on the difficulties associated with wild ramifica-
tion, we assume these extensions to be totally wild. Therefore we study in
this paper the Galois module structure of the integers in totally ramified,
cyclic, p-extensions. Because L/K is totally ramified q3K - ~7L = q3’ where
e = [L : K~. Because L/K is a p-extension [L : K] = pn for some n. Before
we explain things further, we adopt some notation.

1.1. Notation.

~ Fix a generator a of G = Gal(L/K~.
~ Let Ki denote the fixed field of Upi. Relabel Ko := K, Kn := L.
~ Let Di denote the ring of integers in Ki and q3i the maximal ideal of

0,.
~ Let 7ri be a prime element in Ki, and vi the valuation of Ki so that

Vi(1ri) = 1.
~ Let bl  b2  ...  bn denote the lower ramification numbers of Kn /Ko

[12, Ch IV].
. For i &#x3E;_ j &#x3E; 0 let %;,; denote the relative trace from Ki to Kj and let

’ 

t À..be the integer such that q3;’
~ Let T be the maximal unramified extension of Qp contained in Ko, eo

the absolute ramification index of and f the degree of inertia
of Ko /Qp, so that [Ko : T] = eo, [T : Qp] = f .

~ Let Fp denote the finite field of p elements.
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~ For i &#x3E; 1 let (D be the cyclotomic
polynomial, and define ~1(x) = x - 1.

~ Let §(z) be the Euler Phi function with ~(1) := 1.
~ Use to denote the floor function (the greatest integer less than or
equal to x), while denotes the ceiling function (the least integer
greater than or equal to x).

Generalizing [12, V Lem 4] (using [12, III Prop 7] and [12, IV Prop 4])
one sees that for i &#x3E; j,

While Serre’s Book [12] is our primary reference for local number fields,
our main reference for integral representation theory is Curtis and Reiner
~2J .
1.2. Structure of the Integers over the Group Ring Zp[G]. Moti-
vated by the classification theorems of Integral Representation Theory, one
is lead in a natural way to ask for the Zp[G]-module structure of Dn. If
Noether’s result is seen as a determination of Dk[G]-structure of Dn for
every subfield k of Ko, this is then one approach to generalization.

In [11] this approach was adopted by Rzedowski-Calder6n, Villa-Salvador
and Madan. They were motivated by Heller and Reiner’s finite classifica-
tion of indecomposable Zp[Cp2]-modules [6], and sought the Zp[G]-module
structure of 02. Due to technical considerations, they did not get a com-
plete result, finding it necessary to impose three separate restrictions on
the first ramification number:

, ,

These restrictions, in particular the second and third restriction of (1.2),
have subsequently played a role in generalizations to n &#x3E; 2.

The first of these generalizations, [5], was derived under what may be
viewed principally as a slight tightening of the third part of (1.2). Under

- - - ,

the following condition on the traces was determined:

This condition restricts the number of indecomposable modules that may
appear in to a finite set [5, Thm 4], therefore enabling the determination
of the structure of as a Zp[G]-module [5, Thm 5).

The other generalization to ~, &#x3E; 2 is this paper. Here we tie the second
restriction in (1.2), which we call near maximale rarrtification, to a condition
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on the traces that may be used to greatly simplify considerations in [11].
See §2.4.1. We also introduce a new restriction on ramification, strong
ramification, tied similarly to "trace" relations. Strong ramification implies
near maximal ramification. Together they yield our main result:

Theorem 1.1. Let p be any prime, Ko be any finite extension of the p-
adic numbers and Kn/Ko be a fully rami fied cyclic extension of degree p’~,
r~ &#x3E; 1. Assume that is strongly ramified - that its first ramification
number satis fies 

-

If G = Gal(Kn/Ko) and H denotes the subgroup of order p, then the struc-
ture of the ring of integers, i7n, as a is determined inductively
by:

These modules are defined in Appendix A. Other notation is defined in §1.1.
Note that denotes the submodute of M fixed by H, while e denotes
the removal of a direct summand, so that (M e N = M .

To put strong ramification in some context, note that the first lower
ramification number bl of a cyclic p-extension is either peo/(p -1) (if Ko
contains a p-th root of unity) or an integer which 
peo/(p - 1) with gcd(bl, p) - 1 [12, IV §2 Ex. 3]. strong ramification
restricts bl to about one half of its possible values.

1.3. Organization of Paper. In §2, we will discuss the implications of
six different restrictions on the ramification filtration, making the connec-
tion between these restrictions and trace relations our theme. Using the
implications of strong rami fication, we provide Galois generators for the
ring of integers in §3. A complete description of the Galois relationships,
at this point, would determine the Galois module structure. This is given
in two steps. In §4 we recursively reselect the Galois generators again.
This time we are careful to select them to be compatible with other pre-
viously selected Galois generators. This gives us the Galois relationships,
but leaves open the possibility that they may be entangled with one an-
other. In other words, certain Galois generators may appear in more than
one Galois relationship. The second step occurs in §5 where we disentangle
these Galois relationships. The section concludes with the structure of D3 .
The dis-entanglement in §5 results however in more than the structure of
D3, it determines the structure of the main result of this paper The-
orem 1.1. In §6 we provide a proof of our main result, briefly discuss its
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implications, and provide some corollaries, the first of which is the main
result of [5]. The last section, §7, contains directions for constructing ex-
amples and some further remarks. We conclude the paper with Appendix
A, an explanation of our Zp[Cpn ]-module notation.

2. Ramification restrictions and trace relations

The study of the Galois module structure of the ring of integers has
been closely tied to restrictions on ramification ever since E. Noether’s
Normal Basis Theorem. Often the utility of a restriction on the ramification
numbers emerges only after the restriction is translated into a statement
about trace maps (in other words, translated into a statement concerning
the existence of certain elements in the associated order). For example,
tame ramification, which restricts the lower ramification numbers below
0, is equivalent to the condition ~7K (this condition was
generalized to other ideals by Ullom [13]).
We begin the section with a universal trace map relationship, a relation-

ship that holds for all cyclic p-extensions, whether ramified or not. We
emphasize this fact, since the other trace relationships that we examine are
all associated with restrictions on the ramification numbers. Next we dis-
cuss stable ramification,: If the first ramification number is large enough, the
other ramification numbers are determined. We also discuss almost 
imal ramification, a condition that has played an important role in other
investigations of the Galois structure of the integers in wildly ramified cyclic
extensions - notably the work of Bertrandias [1] concerning structure of the
integers over the associated order, and the work of Miyata [9] and Vostokov
[14] concerning the structure over Do [G]. Note that "tame" and "almost
maximal" are two extremes of ramification - one bounds the ramification
numbers from above while the other bounds the ramification numbers from
below. Following our section on almost maximat ramification we interpret
the restrictions imposed in [11] as generalizations of this condition. In the
last part of this section we will study strong ramification:

Since this restriction is stronger than stable ramification. and one of the
more useful generalizations of almost maximale rami fication, namely near
maximad ramification., we use it and its consequences to prove our main
result.

2.1. A Universal Trace Relation. The family of trace map relation-
ships described in this section hold in any cyclic p-extension, regardless of
ramification. Besides their utility in our work, they have additional impor-
tance as they address the following question:
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Definition: Define the realizable indecomposables, to be the set of
indecomposable Zp[GI-modules M, for which there is an extension L/K
with Gal(L/K) ~ G such that M appears as a Zp[G]-direct summand of
ÙL. ·
Question A: Is SCpft equal to the set of all indecomposable 
modules ? (Because of [11, Thm 1], this question is only interesting for
n &#x3E; 1.)
The existence of these universal trace relationships enables us to answer

to Question A. The answer is "no" . But first we state the relationships
from which we may draw this conclusion.

Lemma 2.1. The following relationships hold irc any cyclic p-extenszorc:

Proo f . If Kj / Kj-2 is unramified or only partially ramified, then one has
Trj-1,j-2.oj-1 = ~ j -2 and the result clearly holds. If the extension is fully
ramified, then this is equivalent to the statement that Ajj-1 
This inequality may be verified as follows: If pjeo / p - I ) then we
have stable ramification so use (2.2) to find that bj = bj-l + pi-leo, and
( 1.1 ) to evaluate the A’s. Otherwise, as one may check, 
from which the statement follows. For further details, see [3, Lem 6]. 0

We now turn our attention to Question A and address it for G ^--’ Cpn .
Note that because the answer for n = 2 is "no" (see below), the answer is
"no" for all n &#x3E; 2.

2.1.1. Application: The Case p2. Based upon Lemma 2.1, we can strengt-
hen the main result of [11]. Since Trl,o.ol, we determine
that any indecomposable summand M of .02 must satisfy C

(MuP), where X^t denotes the submodule of X that is fixed by y E G.
One may easily check that (IZ2, Z; 1) (See §A.3. The notation is from [2,
Thm 34.32]) does not satisfy this condition. As a consequence, starting
with [11, p. 419 (51)], setting the exponent of (R2, Z; 1) equal to zero, we
immediately determine that:

Theorem 2.2. If max{eo/(p -1), (peo - p + l)/(2p - 1)}, then

as Zp[G]-modules, where these modules are described in §A.3.
We conclude this section by strengthening Question A.

Question B: Is sCpn finite? (This is only interesting for n &#x3E; 2.)
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This question is revised and discussed further in §7.

2.2. Stable Ramification. In this section we consider the first restriction
of (1.2). Wyman proved that when a lower ramification number is large
enough, subsequent ramification numbers are uniquely determined [15]:

If the first ramification number is large enough, namely eo / (p -1 ),
one says that the extension is stably ramified.

Using (2.2) and (1.1), one may verify that under stable ramification,

As a condition on the traces, this may be expressed as

If the extension is not stably ramified and Ko contains a p-th root of unity,
then the possible second lower ramification numbers, b2, have been classified
by Wyman [15, Thm 32]. A variety of second ramification numbers are
possible, therefore to keep complications associated with the ramification
filtration to a minimum it is prudent to assume stable ramification.

2.3. Maximal and Almost Maximal Ramification. If any of the lower
ramification numbers are divisible by p, then bi = for each i

[12, IV §2 Ex 3], and the extension is called maximalty ramified. So long as
the extension is almost maximally ramified, namely bl + 1 &#x3E; peo / (p -1 ),
we may use [12, V §3] to find that

In doing so, it is helpful to note that bi is the ramification number of

[12, IV §3]. Therefore, under this condition the idempotent ele-
ments of Qp [G] decompose the ring of integers:

where = 0. Each Mi may be viewed as a torsion-free mod-
ule over the principal ideal domain, R, := Torsion-free
modules over principal ideal domains are free [2, §4D] and so by checking
Zp-ranks, we find that

Note that under this severe restriction the ring of integers has a particularly
simple Galois module structure.
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Remarks 2.3. As a consequence of this discussion, it only remains for us to
determine the structure of the ring of integers for bi  peo/(p 2013 1) - 1.
Under this condition, the ramification numbers are relatively prime to p.
2.4. Generalizing "Almost Maximal" : Near Maximal Ramifica-
tion. The trace relationship which results from almost maximal ramifi-
cation can be rewritten as = Since g it is

clearly always the case that · So if

Trj,j-1(Dj) =F pDj-l, it must be that PÙj-1; in other words,
some of the elements in the image of the trace have valuation which is too
small. . To remedy this, one may increase valuation through application of
(Q -1). This results in the following family of restrictions:

The first case t = 0 is almost maximal ramification. The next case t = 1,
that we call near maximal ramification, follows from stable ramification
and (peo - p + 1)~~2P - 1).
Lemma 2.4. Let the extension be stably rami,fied and let t &#x3E; 0, then

Remark 2.5. Compare with [11, Lem 3].
Proof. Note that the inclusion, g follows from
the inequality, Àj,j-1 + tbi &#x3E; pi-1eo. Because of (2.3) we may replace

in this inequality with À1,0 - eo + pi-leo, and work instead with
Al,o + tbi &#x3E; eo. Clearly À1,0 = [((bi + 1)(P -l»/pJ ~ eo - ~61 if and only if
((b1 + 1 ) (p -1 ) ) /p &#x3E; eo - tbi . One may easily check that this is equivalent
to the hypothesis. 0

Instead of emphasizing near maximal ramification as a generalization of
almost maximal ramification, we can emphasize the analogy with [5]. In
this section, we do for the second condition in (1.2) what [5] did for the third
condition. First in Lemma 2.4, the second condition in ( 1.2) is interpreted
as a relation among trace maps. Then we greatly simplify the argument in
[1 1] , and prove a much stronger result - already stated as Theorem 2.2. Of
course, Theorem 2.2 was stated and proven earlier in this paper. The basis
for that argument however, is [11, p. 419 (51)], a statement that is derived
near the end of [11]. Here we outline an alternative approach which can be
used to greatly simplify considerations throughout [11].
2.4.1. Application: The Case p2. One may easily check that the trace
relationship associated with near maximal ramification restricts the number
of modules that can appear in ~2 from a list of 4p + 1 to the following list
of nine: Z, E, ’R,2, (R2, Z; 1), (’R2, R1; Àp-2), (R2,&#x26;; Àp-1), (R2, Z EÐ
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a~-2 ), (R2, Z C E;1, ap-2 ) . The notation comes from [2, Thm 34.32]
and is consistent with the notation of [11]. The advantage of this restriction
is clear: families of modules that arise as extensions ( e. g. (R2, ?Z1; Ai), i =
0,1, ... ,p - 2) may contribute at most one member (e.g. (~Z2, a~-2)).
One may verify the following: if M is an indecomposable Zp[Cp2]-module,

then

where Q is a generator of Cp2 and H-1 (-, -) denotes Tate cohomology.
If one uses this property along with the other properties listed in [11,

Table 2], one can start with the nine modules listed above and very easily
derive Theorem 2.2.

2.5. Generalizing "almost maximal": rings with the same trace.
Another way to express the trace relationship associated with almost max-
imal ramification is as Trj,j-1(Dj) = Trj,j-1(Ûj-1). In this section we

generalize this interpretation of the trace relationship. Alternatively, one
may view this section as the development of a family of trace map condi-
tions generalizing [5, Prop 1, p. 144], or as a generalization of the third
restriction in (1.2).
Lemma 2.6. Under Stable Ramification, if bk + 1 &#x3E; pkfeo/(P - 1)1 - pk,
then for all m = 1, 2, 3, ...

Proof. One may easily check that these conditions are equivalent, so we
need only prove 1. But first we note that re-

gardless of ramification, since Dm+k C forces 9
So the restriction on the ramification numbers is

only to force Àm+k,m Because of (2.3) we need only
show that + eo. Using (1.1) and (2.2) one can check that
Àk+1,0 = keo + bl + 1 + 1)lpk+1 J while, ak,o = (k - 1)eo + bl +
1 + 1)/pkj. Let j := pk ~eo/(p -1)~ - (bk + 1), then because of the
assumption J  p~‘. Therefore, we need only verify that if q = 1)1
and bk + 1 = J then

Let r := q(1n - 1) - eo (so 0  r  p - 1). Replace -b~ - 1 with -pkq + 8.
Replace -bk+i - 1 with -Pkq-p keo + 6, and eo with q(p -1) - r. Equation
(2.5) then follows immediately. 0
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Remark 2.7. To be able to talk about the "eventual behavior of k," consider
a fully ramified Zp-extension. By [15], ramification in such an extension
will eventually stabilize - there will be a t &#x3E; 0 such that bt &#x3E; 
Assuming stable ramification b1 2: eo/(p -1), note that as k grows the
assumption bk + 1 &#x3E; p~ weakens. Once this assumption
holds, note that condition 1. is equivalent to (bl + + eo / (p -1 ) ( 1-

&#x3E; eo/(p - 1). ( 1-1 /p 1 ) &#x3E; feo/(p - 1)1 - 1. This will clearly be
true for large enough k. Therefore this type of condition is widespread. In
any fully ramified Zp-extension, there is a threshold value ko such that for
all k &#x3E; ko and all m &#x3E; 1 Condition 2. holds.

2.6. Traces on Quotient Rings: Strong Ramification. The action
of on Ûi/Ûi-l is easy to describe for j &#x3E; i. The trace acts via

multiplication by p for j &#x3E; i, and by 0 for j - z. In this section we
extend this action to j  i. To do so, we identify with (a) and
instead study the effect upon · The result of our study
is the most important "trace" relation in our catalog. The ramification
restriction associated with this relation, being stronger that others, will be
called strong ramification.
From Remark 2.3, we may assume that all ramification numbers are

relatively prime to p. Meanwhile from [12, IV §3], we know that the rami-
fication number of KjIKj_1’ is bj. Let a E Kn and =1, then
following [12, IV §2 Ex 3 (a)], we find that for j  n,

Let us begin by considering the effect of on Choose any
a E i7n such that bl mod p. As one can easily show by repeated
application of (2.6) = vn((Q - = vn(a) + (p - 1)bl -
0 mod p. Therefore may be expressed as a sum:

where p E v E ~n and  vn(v). Assume
for the purposes of this discussion that v # 0, so we may assume that

1. Since = v mod knowing the valuation
of v means knowing the effect of the Galois action upon the valuation of
a E .onl.on-1. We are faced, therefore, with the following problem: How
to determine the valuation of v?
To solve this problem, we apply (a - 1) to both sides of (2.7), yielding

Note that 1)a) = vn (a) + b2, vn ((0’ - 1)J.t) &#x3E; +Pbl and
= + bi. If we assume that b2  (2p 2013 l)6i, then 

1)a)  vn((Q - 1)), hence vn((aP - 1)a) = 1)v), and is

uniquely determined to be vn(a) + (b2 - bl). Alternatively, if we assume
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b2 &#x3E; (2p - 1) bi and vn (p) fl 0 mod p so that 1) J.L) = + pb1,
then &#x3E; vn((Q -1)~), hence = vn((Q -1)v), and
vn(v) is uniquely determined to be If on the other hand,
neither condition is satisfied, we require additional information concerning
a to determine the valuation of v.

Clearly, we should assume one of the conditions, either b2  (2p - 1)bl
or b2 &#x3E; (2p - 1)bi. Under stable ramification these are equivalent to bl &#x3E;

peo/(2p - 2) and bl  Peo/(2p - 2) respectively. All other restrictions on
ramification have been lower bounds, so we choose bl &#x3E; 2). We
will refer to this restriction as strong ramification. Note that strong implies
both stable and near maximal ramification.

This discussion is generalized in the following Lemma:

Lemma 2.8. Assume gcd(p, bl) = 1, peo/(2p - 2) and k  j  n.
Given a E SJ~ and bi mod p there exists a v with Vj(v) =

+ (bk+1 - mod p, such that 4D p k (C)a =- v mod D;-i . In

fact, = v+lt where p E and = 

Proof. If b1 &#x3E; 1/2 - peo/(p - 1), then using (2.2) bk &#x3E; 1/2 . pk eo/(p - 1) .
(2 - pi-k) &#x3E; 1/2 ~ pk eo/(p - 1) for k &#x3E; 1. Because bk &#x3E; 1/2 ~ pk eo/(p - 1)
and = bk + Pkeo we find that bk+ 1 &#x3E; (2p - If v~ (a) - bi mod P,
then v. (-(b pk (0’) a) = vj (a) + (p -1)bk == 0 mod p. As a consequence, there
exist elements IA E 7 such that (D pk (o,) a = where =

3. Galois generators
As mentioned in the abstract, we shall determine the Zp[G]-module struc-

ture of Dn by exhibiting generators and describing their relations. In this
section we determine the generators. The principal mechanism whereby we
may conclude that a set generates is the following basic observation.

Remark 3.1. Let {3i E Dj be elements subject only to the condition =

i. Then the set is a basis for Oy over DT-1 Iz=0

As a consequence of this remark, we will work principally over DT, the
ring of integers in the maximal unramified subfield of Ko . The most im-
portant part of our work, especially in this section, is our development of
.oT[G]-generators for each quotient, l, ... , n. The DT[G]-
generators for Dn we achieve as a byproduct.
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3.1. Quotient module generators. This section is devoted to the de-
velopment of DT[G]-generators for Ùj/Ùj-1. Since (0’) . = 0,
we may follow the discussion in §2.3, observing that the Or[G]-structure
of Ùj/Ùj-1 is really In other words, Ùj/Ùj-1
may be viewed as a module over sJT(G’~/(~~,; (Q)) =’ where ~T,;
denotes a primitive pj-th root of unity. Now I is a principal ideal
domain and modules over principal ideal domains are free, therefore

for some exponent a, as where 0’ acts upon 3DT[Cpjl via
multiplication by (pi. To determine the exponent, compare OT-ranks. One
finds that a = eo. So it is appropriate to talk about a basis for 
over Since DT[lQ-structure is essentially .oT[(pi]-structure we find
it convenient to blur the distinction, and refer to a as an

This should not cause too much confusion.
We will use stable ramification in this section and because of Remark

2.3 assume that the ramification numbers are all relatively prime to p. Our
main tools are equation (2.6), and the consequence of strong ramification,
Lemma 2.8.

3.1.1. A n for Dj - Let am~ j E Kj with = bl + pm. We
leave it to the reader to check the valuations and verify that based upon
Remark 3.1 and (2.6), the following elements provide an ,T-basis for Dj:

( 1-1)pam,j, ... , for 0  v3 eo + bl + pm and
p~eo + b1 + + pm  7 and for each value of t = 1, 2, ... p -

3.1.2. An for Implicit in the DT-basis that we

just listed is the DT[O’pi-l]-structure of .oj. See [3, p 631-633] for further
details. We glean from these elements the following for

£)j/Dj-1:

So far we have only used stable ramification and the fact that the ramifi-
cation numbers are relatively prime to p. In the following section we will
use the assumption of strong ramification.
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3.1.3. An for Dj/Ùj-1. The elements in (3.1) certainly span
over since they span over a sub-ring. We need

to discern among them now, selecting out only those elements which are
necessary. The following lemma is our principal mechanism for doing so.

Lemma 3.2. Assume that 1/2 ~ peo/(P - 1)  bl  peo/(p - 1) and j &#x3E; 1.
Then for each a E Kj where vj (a) = bl + pm, there is an element v E Kj
with vj (v) + tbj +Pm = tbl mod p, and an element p E with

Proof. This result is proven by repeated application of Lemma 2.8. Let
a E Kj with vj (a) = bl mod p, and let 1  r, s  j. Then by Lemma 2.8,

= vi where Vj(Vl) = vj (a) + br ) and = 

(peo - (p - 1)bl). Using Lemma 2.8 again we find that = v* + uc*
where = and = + (bs+1- bs ) - (peo -
p
One may easily verify that under stable ramification bs  p(p - 1)b,,
therefore by renaming p2 := 1-’* + and v2 = V* we find that

have our result when t &#x3E; 1. 0

Later we will need a partial converse to Lemma 3.2. We state and prove it
now.

Lemma 3.3. Assume that 1/2 Peo/(p - 1)  bl  Peo/(p - 1) and j &#x3E; 1.

Given tt E with = bk + then there are elements a, v E Kj
such that = bl + pm, = + pm + bj and

Proof. First we extend the above Lemma and prove that given a E Kj
with vj(a) = bl + pm there are elements p E Kj-l and v E Kj with
valuations as above, such that (QF’’ ’ - 1)p/(Q - 1) ~ a = v + ~. Note that
(~~’-1 _ l~n~~~ _ 1~ - (~’’-l)P-~-i(7)...$p(7). Using the Binomial
Theorem to expand a# = ((oPj-l - 1) + 1)P then dividing by (Q - 1), we
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find that

Lemma 3.2 we find that = ito + vo where Vj(/Jo) =
(Peo - and = pieo + pm + bj . Furthermore

(cr) - " = vt where = pieo +pm &#x3E;

+ Now it is easy to show by using [12, V §3 Lemma 4] that

and v = and we have the desired conclusion.
We are ready to prove this lemma. To prove this we start with ao E Kj

such that vj (ao ) = vj (p) - j#eo + bj - (peo - (p -1 ) bl ) ) + bl, and elements
ai E K~ i = 1, 2, ... , such that = vj(ao) + pi. Then ==

b1 mod p for i = 0, l, ... , and using Lemma 3.2 we find that there are
elements E E Kj such that (Q~’ 1 -1 )~ / (~ -1 ) ~ ai = vz + pj,

Vj-1(p,) + i. So there must be units ui E ,l:7o such that p =
I::o uipi- Let a = I::o uzaz and v = I::o uivi. The lemma follows. D

As a consequence of Lemma 3.2 we may prove the following which is the
main result of this section.

Lemma 3.4. Assume that 1/2 ~ peo/(P - 1)  bl  peo/(p - 1) and j &#x3E; 1.
Let

Then the union of these sets, namely By := Bj,t, is an 
for Furthermore if (3 E then v~ (,~) = (t + l)6i mod P and

Proof. From our earlier discussion, we know to look among the elements of
(3.1) for eo elements which form a basis for over (a»).
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Note that any element of {3 E B such that

can not be in this basis. We combine this observation and Lemma 3.2 now.

Considering those elements in B of the form we easily eliminate all
elements except those in Now we consider those elements of the form

E B. Using the Binomial Theorem as we did in the proof
of Lemma 3.3, we find that

So to determine the effect of on

E it is clear that we need only determine 

1)t-lp;- () E Dj/.oj_1. Because of this and Lemma 3.2
we eliminate all elements E B, except for those listed in

The Lemma now follows, as it is easily shown that the elements which
remain, namely Bj , continue to span .ojlDj-1 over furthermore,
exactly eo elements remain. 0

3.2. Galois generators for the ring of integers. This section summa-
rizes our accomplishments thus far. For each 0  m  eo - 1 choose an
a E with vo(a) = m. Let the set of such a be called Bo.

Proposition 3.5. Assume that 1/2 ~ peo/(P - 1)  bl  Pep/(p - 1), and
that the sets Bj for j = 1, 2, ... , n are defined as in Lemma 3.4. Then
B = generates Dn over DT[G] :

Proof. This is clear. 0

4. Galois relationships

From the previous section we inherit DT[G]-generators for Dn. These

generators are not yet, however, completely suited to our needs. When
selecting these elements, we did not consider Galois inter-relationships. In
fact, they were selected based upon their valuation alone. To remedy this
fact, in this section we choose certain of these elements again, this time
paying attention to Galois relationships. When we are done, we will not
only have DT [G]-generators for Ùn, but also have their Or[G]-relationships.

4.1. Galois relationships: outline of approach. We proceed induc-
tively, first assuming that the Galois relationships among the elements of
Dn-1 are known, then determining the Galois relationships among the ele-
ments of Dn. As there are a number of issues associated with illuminating
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and then disentangling these Galois relationships, we discuss the process
first.

4.1.1. Form of Galois relation,. Consider the canonical short-exact se-

quence

where i refers to the injection and 7r refers to the natural projection. Since
is free over the elements of namely

for a E Dn, satisfy the equation = 0. Meanwhile since
the generators of a E are also a basis they satisfy only this
one equation. Now 4bp. (a) a E .on-1 and assuming that we can express any
element of in terms of the generators of the Galois relation-

ships among the elements of .on which are not already in will all be

expressions of the form

Since = a change of a generator a by an element of
Dn-1 will change the right-hand-side of (4.1) by an element of pDn-1
and so these expressions are only significant modulo pDn-1. However if for
each a E Bn , the right-hand-side of this expression was determined modulo
PÛn-1, the Galois module structure of Dn would be completely determined
by induction.

4.1.2. Valuation and the Galois relations. In this section we assume that
the ramification numbers are relatively prime to p and describe a process
whereby the right-hand-sides of the expressions in (4.1) may be deter-
mined.

Based upon their expression in Lemma 3.4, it is clear that all elements
of Bn besides those in Bn,o map to zero under the trace; thus resulting in
trivial right-hand-sides. This leaves us to determine the right-hand-side
of (4.1) for each a E Bn,o. But if for each  i  1 we had
Galois expressions for elements vi E with = i, then we could
use the following result, Lemma 4.1, to choose the elements of again.
In other words, we can first determine the right-hand-sides for (4.1) and
then find a to provide the left-hand-side of the equation.

Lemma 4.1. Given any element v E Kj-l with valuations, = i,
there is an elements a E Kj with valuation, vj (a) such that

= v.

Proof. The ramification number of is Use this, the fact that
the trace maps fractional ideals of Dj to fractional ideals of D j-1 [12, V §3
Lem 4], and the lemma follows. 0
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Based upon this observation, we are left to find expressions, in terms
of the Galois generators of Dn-1, for each valuation i in  i 

pn-leo - 1.

4.1.3. Previez,u: expressing vZ . The observations in this subsection depend
explicitly upon strong ramificatzon, and implicitly upon near maximal rami-
fication. Note that near maximal ramification means that E

for every cx E Hence E PÛn-1, and so z 
must lie in the submodule of Dn-1/pDn-l killed by (~ -1). What are the
generators of that submodule?
We turn to the consequence of near maximal ramification, Proposition

3.5, and the generators of to address this question. Certainly the
elements (~~’’ -1 )p-1 / (~ -1 ) ~ ~3 for ~3 E Bj,t where t ~ 0 lie in this module.
Meanwhile the elements $pj () for B3 E also lie in this module. So
we might expect that vi be expressible in terms of

However the 4Dpi (cr) ~ ~3 for # E are, in turn, expressible in terms of the
Galois generators of and so expressions of the form are

not necessary and may be eliminated from this union.
To determine which of the members of (4.2) explicitly appear in the

description of a paxticular vi we make use of strong ramification,. But
first note that since elements in Dn-2 have valuation, equivalent to
zero modulo p, it might seem that the residue class modulo p of i should
influence our expression for vj. Indeed it does; our expression for Vi will
depend initially upon one of the following three conditions: i - 0 mod p,
i - bl mod p, and I fl 0,61 mod p. Ultimately, it will depend upon a partial
p-adic expansion for i.

Of the three conditions, the last is most easily explained. Using strong
ramification and its consequence Lemma 3.2, Vi may be chosen to be

1)p_1/(p - 1)~3 for some # E This may be accom-

plished without placing any additional restriction on ~i besides valuation.
The condition i - 0 mod p is also easily explained. Because of Lemma 2.1
there is an element of with valuation, equal to i.

Therefore, by induction we may assume that there is an expression in terms
of the Galois generators for Dn-2 with valuation i. Use this expression for
Vi -

This leaves the condition i - b1 mod p. Because of Lemma 3.2, there is
an element ~3 E such that 1 )~-1 / (p - )# = p + v where v
has valuation i. So we may choose vi := v. We need to tidy up one loose
end. What is the expression in terms of Galois generators for p? We know
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that p E Dn-2. If we had an expression in Dn-2 with the same valuation
as p, (call the expression p’), then we could use Lemma 3.3, to replace ~3
with a new Galois generator, ~3’, for and replace va with another
element, vi, of equivalent valuation so that vi 
At that point, we would have an element with valuation i which is expressed
in terms of a new set of Galois generators for On-l-
Of course, we still need to find an expression among the Galois generators

of with the same valuation as p. As it turns out this expression
depends on the residue class of its valuation. In fact, there are three cases.
As one might imagine, when bl mod p, we will need to express
p itself in terms of a sum - one of these terms expressed in terms of a
Galois generator for Dn-2/Dn-3’ the other term an element of Dn-3. At
this point it is clear that the Vi could have a rather long expression as a
sum of generators from different quotient rings, the coefficients of which
are of the form: 1 )p-1 / (p - 1) for some j.

4.2. The Recursive selection of the Galois generators. Consider the
sequence with t-th term:

Recall that by Remark 2.3 we may assume that bi  peo/(p 2013 1). Since

peo - &#x3E; 0, it is easily shown that the sequence, t = 1, ... },
decreases as t increases with limit := pi-leo + bl - peo/(p - 1).
Therefore 8oo(j)  sl(j). The significance of this sequence will be made
clear later. For now note that under stable ramification, 0  for

j
In this section, our goal is the following: To determine for each integer

i with  i  pi-leo an element vi with valuation = i along
with its explicit expression in terms of our generators (i.e an explicit linear
combination of elements from along with with coefficients from
t

For emphasis, we state this again. We would like to prove that:

Statement 4.2. For each integer i with  i  pi-leo there is an
element vi E Ùj-1 with valuation Vj-1(Vi) = i, and an explicit linear com-
bination of elements from Ujk=oBk with coefficients from DT [G] that equals
~.

Clearly Statement 4.2 holds for j = 1: For each integer i with 
i  eo there is an element a of Bo with valuation vo(a) = i. To prove
the Statement 4.2 holds for j &#x3E; 1 and to provide these explicit linear
combinations, we proceed inductively. Note that at each step, we may
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need to re-select certain elements of based upon previous selections

( $. e. the elements of 

4.2.1. Selection of the elements of Bj,t. For emphasis, we point out that
the elements in Bj,t for t = 2,3,... p -1 are chosen based upon valuation
alone. There is no need to replace the elements given in §3.
The first elements that we replace are those in Bj,o . We do so based upon

a subset of the elements provided by Statement 4.2, namely those vi E 
with  pi-1eo. Note that We use Lemma 4.1.

Based upon vi we choose paj,m E where m = i - b1- 2pi-leo + eo. Is
is easily checked that these bounds on i correspond with the bounds on m
in Lemma 3.4.

Now, we choose elements in based upon the vi provided by State-
ment 4.2 with  i  Our main tool is Lemma 3.3. Since
the notation used in this lemma refers to the elements in as A’s, we
relabel our elements in referring to them as pj instead of vi. So we
may say that we replace elements of Bj,i based upon the oi E given
by Statement 4.2 with = i and  i  sl(j). Given a pj,
Lemma 3.3 provides elements a and v E Dj such that vj (a) = bl + pm,

= pjeo + pm + bj, and

where m = i - bj . In this way the elements 8j,1 are
defined for bj For emphasis, we repeat this.

Only those elements E 8j,1 with

are redefined. All other elements in Bj-1 are left as they were in §3. One
may check that since bl &#x3E; 1/2~Peo/(p-1), 
so this really refers to a subset of 
We have defined all of the elements in Bj,o and some of the elements

in again in terms of elements in In the following lemma we
show that the elements in which give rise to Bj,o are disjoint from the
elements that give rise to In other words, sl(j)  Àj,j-1.
Lemma 4.3. bl 
p

Proof. From (2.3) Àj,j-1 = eo + Al,o. This lemma is therefore

equivalent to the statement that (p-1)bl  pÀ1,0. Since Al,o = bl - Lb1/pJ,
the lemma reduces to Lb1/pJ  bl /P, which is clear, since p f bi. 0
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4.2.2. Proof that Statement 4.2 holds with j instead o f j -1. First consider
those i - 0 mod p with pj eo + b1 - peol(p -1)  i  p~ eo. Let i = p j, then

(peo/(p - 1) - bl) (peo/(p - 1) - bl)/p  j  
and if Statement 4.2 holds for j -1, then there are elements in Dj
with valuation j expressed in terms of the Galois generators of 
The only new expressions occur when i =,4 0 mod p. Based upon Lemma

3.4, as long as i ~ 0, bl mod p, there is an element {3 E so that

( ’ 1-1 ) p-1 IG -1  has valuation i. Observe that 
1){3) : ,8 E is the set of all integers 0, bi mod p, b1 
i Because bl &#x3E; 

We have expressed all integers i # bl mod p in the range pjeo + bl -
peo / ( p -1 )  i  p3 eo in terms of the Galois generators for D j . But we
have not as yet created any new Galois expressions based upon the old ones
provided by Statement 4.2. Now consider i = b1 mod p. One may check
that for each such integer there are elements {3 E Bj,o and p E such
that the expression for it in terms of the Galois generators of Dj-1 is given,
and v = (~~’ 1- 1)p-1/(p -1)~ - p.

4.3. Description of the Galois relationships. Now that we have re-
cursively defined the elements of fi to be compatible, we describe their
relationships. Given an element vi E Dn-1 with Vn-1(Vi) = i where

 pn-leo, we find that there are basically two different ways
of expressing vi in terms of the Galois generators for On- One of these

expressions is in terms of the Bj,t where t ~ 0, while the other expression
is in terms of the The complexity of each expression depends on the
p-adic expansion of i.

4.3.1. Expressing vi in terms of the Bj,t where t ~ 0. We proceed now
and describe the expression for a given vi E Dn-i with = i where

 First we examine the p-adic expansion of i. We
are interested in only certain of its features, and so we express this p-adic
expansion in a particular way.

Let b = Note b - bl mod p. Let b be the least nonnegative
residue of b modulo p, and let A be the usual set of residues modulo p,
except b is replaced with b. So A := (10, l, 2, ... , p - 1} - f~1) U{b}. Each
integer i &#x3E; 0 has a unique finite p-adic representation with coefficients in
A:

Let m be the smallest subscript with c, 0 10, b} or n - 1, whichever is
smaller. In other words, let
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We now have a special p-adic expression for i:

where each ck belongs to 10, 6}, and C ~ 0, bi mod p unless m = n -1 in
which case there is no restriction on C.
Now that we have a p-adic expression associated with i, we will use it to

associate with i an element vi E On, where vn(vz) = i. We will do so in such
a way that the expression for Vi in terms of our Galois basis is transparent.
Our conclusions are captured in the following lemma:

Lemma 4.4. For each integer i with i  there are ele-

ments E Bn-k-1 and E Zp[G] so that

These elements are determined by the p-adic expression for i given in (4.4).
For k  m, either b and lies in or ck = 0 and

~i~,_~_1 - 0. For k = m, either m = n -1 and ~io lies in ~io without
restriction, or m  n -1 and lies in Bn-m-1,t for {0,1}.
Meanwhile :=1 and := (~p’~ k 2-1)r-~~(Q-1) fork  n-1.

Proof. This sum is clearly what we were referring to at the end of §4.1.3.
The only question which we must answer, now, is whether we recursively
defined, back in §4.2, enough of the elements of for j = l, ... , n -1.
The limit, of the sequence (4.2) was instrumental in our recursive
definition, although its significance was not explained. We correct that
omission now.

Consider the situation where all the coefficients in the p-adic expression
for i are b, i = Emo bpk. In a sense, this is the worst case. Since vi lies
non-trivially in the image of the trace, we have  i 

Because of Lemma 4.3 we find that  pi  pn eo.
Since i - bl mod p, vi = 1)p_1 l(~ -1)~ + for some ~3 E

and iln-2 E On-2. The valuation of Vn-2(J.Ln-2) == bl mod p and
soo(n -1)  ~(~ - 1) = p-2(pn eo - 1 - b - pb)   pn-2 eo.
So because of our recursive definition, there are elements ~i E ~~_2,1 and
An-3 E such that pn-2 = Furthermore

soo(n-2)  s3(n-2)   

and bl mod p, and so pn-3 is expressed similarly. Based upon
this discussion, the significance of the sequence, st ( j ), is clear. Moreover
the lemma is clear. 0

4.3.2. Expressing vi in terms of Bj,o. We have observed earlier that if
i ~ 0 mod p then we may choose, vi E Because of the Universal Trace
Relation described in Lemma 2.1, we may assume that vi is 
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for some !3n-1 E So for some

!3n E Furthermore, if i - 0 mod p2 then we may choose, vi E On-3-
In this case, because of Lemma 2.1 there will be elements #n E 
13n-l E and ~n-2 E Bn-2,1, such that 
Trn-2,n-3,Bn-2 = vi. Indeed, the following lemma is true:
Lemma 4.5. Let Mi := min(In - 11 U ~j : p~ I i, pi+1 ~’ i}). Then there
are elements 13n, 13n-1, ... , where ,Q~ E Bj,l such that

Proof. This is clear based upon the recursive generation of the and

repeated application of Lemma 2.1. D

Based upon this Lemma, we can associate to any given vi a set of elements
which map to vi under a trace. If p f i the set contains only one element,
but if pn-l i the set will have n elements.
4.3.3. Combining these expressions for vi in a Zp[G]-module. There are
many issues that we have not as yet addressed, so it would be premature
for us to begin now to describe the Galois module structure of .on. In par-
ticular, we still need to disentangle the expressions for different i. This will
of course be closely associated with the process of decomposing the mod-
ule, Nevertheless, we can at this point examine the Galois expressions
associated with a particular value of i and by focusing only on the Galois
generators which are involved in these expressions, describe our prototype
Zp[G]-module.

If we combine the expressions in Lemmas 4.4 and 4.5, we get

where, possibly, some of the are zero. Compare the module generated
by these #’s subject to this relations with the module described in

§A.2.

5. Galois structure

We first determine the structure of Ù1 and D2. Then before we proceed
to our inductive step, we use our method to determine the structure of Ù3.
While this step is not necessary for induction, it does help motivate some
of the technicalities.
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5.1. The Structure From Proposition 3.5, we know that fio UBI
generates .01 over Furthermore, we know all the Galois relation-
ships : = 0 for all /3 E Ut;foB1,t, while for each /3 E Bi,o, there is
a unique a E ~o such that = a. As a consequence each # E 
gives rise to f direct summands of Rl;o. See the Appendix A for the mod-
ule notation. Each # E for t = l, ... p -1 gives rise to f copies of Ri
while each a E ~io with 0  vo(a)  Al,o gives rise to f direct summands
of Ro in Therefore

as Zp[G]-modules. Using notation as in (11~ (see §A.3) this expression reads,
(~ EÐ R1)Àl,O! EÐ 

5.2. The Structure of .02- From Proposition 3.5, we know that the ele-
ments generate D2 over .oT[G]. Meanwhile from the previous
section, we have the Galois relationships among the elements of ~3o and fil.
And so to determine the decomposition of .02, we must determine the Ga-
lois relationships in ~2 that involve elements of f32.

First note that $p2(r)/3 = 0 for every /3 E Since, as one
may notice, no other Galois relation (listed in this section) involves one of
these BQ, each such ,8 generates an Or[C]-summand of 2. Therefore each
/3 ~ Ut;éoB2,t corresponds with the appearance of f copies of R2 in the
Zp[G]-decomposition of D2.

This leaves us to list the Galois relationships that involve /3 E ~i2,o.
But based upon the discussion in §4.1.2, this is done once an expression is
determined, in terms of ~3o and for each valuation i, a2~1  i  peo.

First we consider those i = 0 mod p in ~2,1  ~  peo 2013 1. Each such
i is the valuation of an element in Do. Let us refer to such an element as
/30 E Oo- Because of Lemma 2.1, ,8o also lies in the image of the trace from
.01. There are two elements which map onto an element #2 in B2,0 (via

and an element il in 81,0 (via Tr2,1). So

As one will notice these elements will not be involved in any other Galois
relation (listed in this section). Therefore generated an DT[G]-
summand of D2. And consequently, each i - 0 mod p in a2,1  i  peo 2013 1

is associated with the appearance of f copies of lZ2,1:0 in D2. We would like
however to proceed inductively - knowing the structure of D i , we determine
the structure of .02. Therefore we observe that part of this particular Galois
relation, namely = ~o, was listed in §5.1 and associated with the
appearance of an DT[G]-summand of What was once associated with
a summand of .01 is now part of a larger module, part of a collection of
terms associated with a summand of ,~2. However each i - 0 mod p in
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À2,1 - 1 is still the valuation of a {30 ~ Do that is mapped to
only from an element ~31 in Bi,o. These elements are not involved in any
further Galois relation. Therefore each i - 0 mod p in A2,1 - 1
is associated with a .oT[G]-summand of D2 or f copies of 1(,1:0 in the 
decomposition of ,2. Note that this yields a count of 1(,1:0 in D2 that is
the count of Rl:o in D, minus the count of in .~2. In other words,
if we assume (wrongly so) that the count of Rl:o given in (5.1) is also the
count of ’R.1:0 in ~2; then each i - 0 mod p with B2~i ~ ~ ~ peo -1 is
associated with the appearance (in our formula for the structure of ~2) of
f copies of IZ2,1:0, along with the removal of f copies of Rl:o. Now count
the number of these i and note that this is consistent with the count of

IZ2,1:0 in Theorem 2.2. Meanwhile what is left in our count (from (5.1)) of
’R.1:0 is also consistent with Theorem 2.2.
We have taken some time to communicate the process whereby the struc-

ture of ~n is determined once the structure of Dn-1 is known and the ex-
pressions (in terms of Galois generators) are known for each valuation in

1. Now that the underlying process is clear, we
sketch the rest of the details for ~2 below:

First assume (wrongly so) that the counts of Ro and Rl in (5.1) are
also correct for D2. And now let us consider those i ~ 0, b1 mod p in
a2,1  Z  peo -1. In this case there is an element (~ -1)~-2~3 where
,8 E with valuation i. Therefore each such i 0, bi mod p is
accompanied by the appearance of f copies of R2:1 in along with the
disappearance of f of the copies of R1. Finally, consider i - bl mod p. In
this case, there is an element (3 E and a E I~o with vo(a)  Al,o) (so
that a gave rise to f copies of Ro in 01), such that (~ -1 )~-2,Q - a has
valuation i. Therefore for each i = b1 mod p, one must remove f copies of
Ro and f copies of Rl, and add f copies of R2,1,o . Count and compare all
this with Theorem 2.2.

Note that Theorem 2.2 was proven under a condition weaker than strong
ramification. This indicates that the structure provided by our theorems
may continue to hold outside strong ramification.

5.3. A visual-aid. As has become evident from our determination of the
structure of ~2, the p-adic expressions for the i where  

need to be disentangled before we can be sure of the structure of In
other words, we need to be sure that Galois generators do not belong to
more than one module. When we dealt with 71 and D2 we could afford
to be a little sloppy, as we knew the structure beforehand. We have no
such luxury now. To help keep the myriad of facts straight, we introduce
a picture in this section. Disentangling the expressions for i then is simply
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a matter of showing that apparently disjoint features of this picture are
indeed disjoint.

5.3.1. Explanation of graph. First note that this graph assumes that we
are in the process of determining the structure of ~74. Nevertheless, as a
mental image, it is useful as we determine the structure of other 0~.

Consider the following partition of the set of integers, {O, 1,... 
1 } : For each j = 0, ... , n - 2, let 2Jj denote the set of nonnegative integers
less than pn-leo which are exactly divisible by pi, Ij := li E Z : 0  i 
pn-Ieo,pi I i,pi+1 { i}. Let be the integers which remain, :=

i
We may associate via valuation, each subset 2Jj for j = 0,1, ... n - 2

with the elements of which do not belong to The elements
of Do are associated with Imagine plotting these sets separately at
different levels. Plot Io at the highest level and on down until the integers
in are plotted at the lowest level. We have not explicitly plotted these
sets in our picture, nevertheless they should be understood to exist and are
represented implicitly by the levels, .03, D2, .01 and Do.
Now any integer i such that i  pn-leo -1 inherits from §4.3.1

a p-adic expression. In fact we may assume by recursion that each i = pit
such that pn-1eo - 1 also has a p-adic expression.
Based upon these p-adic expressions we may associate to i a path through
the integers o,1, ... , The nodes of this path are the p-adic tails of
z, the set one gets by dropping, in sequence, the initial terms in its p-adic
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expansion,

Arrange the elements of JU$ in decreasing order, and connect each element
with the next element. No element should be connected to itself. In this

way we create a path beginning with i and ending with Cp’~.
Imagine plotting such paths on the graph. Clearly each path will have no

more than one node in each set 2t. But where in each l§ may these nodes
appear? This question is addressed by the placement of various bars on our
graph. These bars represent intervals in which nodes may appear. In fact
they represent intervals where nodes from paths associated with particular
types of p-adic expressions may appear.

For example, because an integer i such that a4,3  i  p3eo -1 may
belong to any one of the sets = 0, l, 2, 3; we have plotted dotted bars
associated with Tr4,3D4 at each of the four levels. Each bar begins at À4,3
and ends at p3eo - 1. Since we are also interested in the image of the trace
TY3,203, there are three bars that begin at PA3,2 and end at p3eo - 1. Note
that we are measuring, in this particular graph, in terms of the valuation
v3. In general, because of stable ramification, in particular (2.3), the bands
associated with are exactly p times as long as the bands associated
with Tri+l,iDi+1. · This is illustrated in the graph.

But there are 15 bars associated with what do the other 11

represent? They represent the potential appearance of a node in a path
starting at i where ~4,3  i  p3eo - 1. If i = bl mod p then the second
node in the path starting at i is b = peo - to the left of i. To
illustrate this, we have placed bars at the 02? .01 and Do-levels which begin
at a4,3 - 6 and end at p3eo - 1 - b. If i - b m pb1 mod p2 , then there will
be another node to the left of this one, so we place bars at the ~1 and
Do-levels which begin at À4,3 - (1 + p) b and end at p3 eo -1- (1 + p) 6. The
recursive nature of this process should be clear.

So that we may be specific when we reference these bars, we name them
now. We will refer to a band associated with as 1(j, *x), where
the variable expression x is a potentially empty binary string referring to
location. The pattern is as follows: At the Dj-level there is one bar as-
sociated with We will refer to this bar with the expression
l(j, *). At the Dj_k-Ievel there are 2k bars associated with Trj+1,j.oj+l.
From right to left they are l ( j, *0 ... 00), l ( j, *0 ..- OI ), 1(j, *0 ... 10), ... ,

*x), ... , l(j, *1...11). The x’s are the binary expressions for the inte-
gers 0,1, ... , 2~ -1 written in increasing order.

At this point we have paths which begin at each level, beginning with
some integer pki, (i, p) = 1 for pn-1eo - 1, or begin-
ning and ending at integers with pn-leo - 1.
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For example, consider two integers i and j with ~3 ~ ~ ~ p3 eo -1 with
p-adic expressions i = b + bp + bp’ + Cp3, j = b + Dp3, for some integers C
and D. The nodes of i lie under l (3, *), l(3, *0), l (3, *00), l (3, *000), while
the nodes of j lie under l (3, *) and l (3, *101). Consider pi pi 
p3eo - 1 with p-adic expression pi = bp + Cp2 where C 0 0,61 mod p then
the path associated with pi begins under l (2, *), and ends under 1(2, *0).

In general, suppose that i is such that i  1, then if

(pk+l, i) = pk then the first node associated with i lies under

Now we illustrate the recursive process whereby one may determine based
upon a node which bar the next node will lie under. Suppose now that i
has a node under l (n -1, *x) (where is a potentially empty binary string),
the integer value of the node being n. Now (n, = P’ for some s  n -1

(unless the n in which case it is the final node in the path anyhow).
Unless n - p~b mod ps+l the path terminates at n, so what happens for
n = p~b mod ps+1? Clearly (n - pSb,ps+2+t) = ps+1+t for some value of t.
Let r = minlt, n - s - 2}, then the next node lies under the bar labeled

5.3.2. Distinct paths are disjoint.. Recall that our purpose in presenting
this picture is to help us disentangle the expressions for the elements vi with

= i and in terms of our Galois generators
for from one another. This is equivalent to a disentangling of the
paths, M.

Lemma 5.1. Let be defined as in (5.2). 0, then M C Nj
or
Proof. Suppose that i but that i and i have the same type of p-adic
expression so that their nodes therefore lie under the same bars. Since
i # j, these p-adic expressions must therefore differ only in the final term.
Since we get these sets, M, Nj, from subtracting off the same amount from
i that we do from j , clearly Nz n Mj = 0.

Suppose that i and j have p-adic expressions that are initially alike,
we can use the previous discussion to show that their initial nodes are
disjoint. This leaves us to consider what happens with their tails or what
happens when their entire p-adic expressions differ in form. If the picture
is an accurate reflection of the general situation, then we need not worry
because bars which sit side-by-side do not overlap.

First note that there is a certain self-similarity in this picture. Whatever
collection of bars occurs at the k + 1-st level, that same collection appears
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twice at the k-th level. The reason for this is clear. A node may either be
0 or congruent to p~b (mod ps+1 ) for some integer s. In the first case, we
plot the integer immediately below. In the second case we plot the integer
p b to the left.
Now to know that the picture accurately reflects the general situation

we need to check two things.
t

1. Do any of the l (k, *), t (k + 1, *o), l (k + 2, *00), ... , ~ (~ + t, * oo ... o~
overlap?

2. Do the bars denoted by l (k + 1, *), l(k + 2, *1), t(k + 3, *10),... , +
t-2

t, really lie over l ( k, *)? More accurately, we need to check
whether the elements of -Z;,-k-1 which lie under one of the bars, l (k +
1, * ), l ( k + 2, * 1 ), ... , really also lie under I (k, * ) .

We address the first issue: Because of the self-similarity in this picture, if
any of

overlap, then there is an overlap among

This recursive problem therefore boils down to whether ~(A?+1, *0) is really
completely to the left of *). This is addressed by Lemma 4.3.
We address the second issue: Since the bars

all lie side by side, we would be done, if we could prove that any element
of which is strictly less than the the left-most end value of d(k +
t, *100 - - - 0) is also strictly less than the left-most end point of l(k, *). This
is proven in the following lemma. 0

Lemma 5.2. If eo/(p - 1)  b1  peo/(p - 1) - 1 then for k &#x3E; t,

Proof. Using (2.3) replace and Àk+1,k with pt-leo - eo + À1,0 and
pk eo - eo + Xi o respectively. The inequality then reduces to
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If p = 2, (5.3) is actually, (2k-t+1 _ 1)(eo - (bi + 1)/2) + &#x3E;

(2 k-t - 1)(2eo - bi ) . This reduces to bl  2eo + + 1 which is clearly
true.

Suppose that p is odd. Note that inequality in (5.3) follows immediately
from l)(eo - 1) (peo - (p - 1) bi) / (p - 1), which is
equivalent to

To verify this equation, we establish the following inequalities:

First we establish the left inequality. Note that this is equivalent to eo &#x3E;
À1,0 + (bilp - Lb1/pJ). Since bl + 1  peo/(p - 1) we have eo &#x3E; Xi,o + 1,
so the inequality obviously holds. The second inequality is equivalent to
p~-t+I (p - 3) + p + 1 &#x3E; 0 and since p &#x3E; 3, it holds. 0

5.4. The Structure of D3. As we noted earlier while determining the
structure of ~1 and ~2, because of Proposition 3.5 , fia U ~31 U ~i2 
generates D3 over DT[G]. Since = 0 for all ~3 E each

such Bi will correspond to the appearance of f copies of R3 in the Zap[(?]-
direct sum decomposition of .03.

All that remains for a determination of the structure of D3 is a catalog
of the expressions for i, a3,2  z  p2eo, in terms of the Galois generators
of D2 .

Suppose that i = 0 mod p, then each such i coincides with the appearance
of f copies of R3,2:1,o along with the disappearance of f copies of or

the appearance of R3,2:1 and the disappearance or the appearance
of R3,2,1:0 and the disappearance of Which occurs depends upon
whether i - bp mod p2, i ~ 0, bp mod p2 or i = 0 mod p2, respectively.

mod p then i coincides with the appearance of f copies of ?Z3:2,1,0
along with the disappearance of f copies or the appearance
of R3:2,1 and the disappearance of R2 % R1, or the appearance of R3,1:2,0
and the disappearance of R2 EÐ Rl:o. Which occurs depends upon whether
i - 6 + bp mod b, b + bp mod p2 or i == b mod p2, respectively.

If i ~ 0, b mod p then i coincides with the appearance of f copies of R3:2
along with the disappearance of f copies of R2. All this is expressed in the
following Theorem:
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Theorem 5.3. Let p be any prime. If bl &#x3E; peo/(2P - 2) then

described in Appendix A.

6. The Galois structure of the ring of integers
In this section we collect the observations of the previous section into a

proof of the main result of the paper, Theorem 1.2. The proof is followed
by a discussion of the result.

Proo f . (Theorem 1.2) From §3 we know that On is generated over DT[G]
by As one may check, each element of contributes a copy
of Or 0Zp Rn to the Or[G]-direct decomposition of On (or f copies Of Rn
to the Zp[G]-direct decomposition). Meanwhile based upon §4 each i for

1 corresponds to the occurrence of Our 0Zp as

a DT[G]-submodule of Because of §5, in particular §5.3 and Lemma
5.1, we know that the elements of which generate ~T 0Zp Rn(i)
are disjoint from the elements which generate Or 0Zp for i ~ j.
Furthermore the elements ofUf=oBi which generate are either

disjoint or are entirely contained in the set of elements which generate
I~T Rn (I) , for k  n. As a consequence, we are justified in expressing
the structure of On as a direct sum of and the summands of On-i
that do not interact with any 7~(z). This is represented in the statement
of our theorem. Cl

6.1. Discussion of result and corollaries. Notice the difference in fla-
vor between Theorem 5.3 and Theorem 1.1. The first result is explicit,
specifying the modules and determining their exponents. The second re-
sult is implicit, essentially providing an algorithm from which the modules
and their exponents can be determined. Clearly using Theorem 1.1 we may
state results like Theorem 5.3 for n = 4, for n = 5 and so forth. These
results however rapidly exceed a single page in length. Therefore we refrain
from doing so, leaving it to the interested reader.
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However if we impose stricter restrictions on ramification we should be
able to state explicit results that are easily confined to a single page and
yet hold without restriction on n, results similar to [5, Thm 5]. Indeed

imposing (1.3), the restriction used in [5], we find that the type of p-adic
expression for i in  pn-1eo is restricted to a very narrow range
of possibilities, thus providing an entirely new proof for [5, Thm 5].

Define

Corollary 6.1. Let p be any prime (odd or even) and bl &#x3E; Peo/(2p - 2).

Proof. The p-adic expressions for the i such that  

determine the modules. Any restriction of the type of p-adic expression
that may appear thereby restricts the Galois module structure.

Let q = ~eo / (p -1 ) ~ so that eo = q ( p -1 ) - r for some r = 0,1, ... , p -1.
The restriction on ramification may then be rewritten as b1 &#x3E; pq - (p + 1).
In other words, b1 = pq - v But we

may assume that b1 t 0 mod Now it may be shown that

1
Using (2.3), Àn,n-1 &#x3E; v. So for n &#x3E; 1, since &#x3E;

p n-1 eo -p and pn-1 - V == b1 mod p we find that i t 0, b1 mod p for every i
in Àn,n-1  i  The corollary follows then because every i such that
Àn,n-1  2  pn-1 eU is associated with the appearance of an Rn:n-1. · 0

Only two families of modules appear in this corollary: the family of ir-
reducible modules, Ri, and the family of modules represented by 
Since each of these modules appear in the structure of the structure
in this corollary may be understood as a generalization of the structure of

To generalize this discussion, we require the following definition:

Definition 6.2. Let R A; B be a module as described in §A.1, so A, B are
sets of integers. Let A(i) = a E A} and B(i) _ fa+i : a E B}. Then
the family of modules containing R A; B is the set of modules, RA(i):B(i)’ with
i E ~ (so long as the module is defined).

Our original intent in developing Lemma 2.6 was to provide a sequence
of ever weaker restrictions on ramification resulting in ever looser trace re-
lations. The hope was that these trace relations would restrict the type of
module that may appear in ,~n to those families that are already repre-
sented in then in D2, and then in etc. This does not happen.
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Although the first restriction in Lemma 2.6 does restrict the modules to
those families which are already represented in the second restriction
in Lemma 2.6 does not restrict the modules to those that are already rep-
resented in .02, namely the families containing IZo, 2,i:o, and 
We explain this now.

For the second restriction in Lemma 2.6, namely b2 + 1 &#x3E; 

1) - p2, to determine a structure for Dn in terms of modules from the four
families of modules already represented in the structure of .02, we would
have to show that based upon this restriction, the only p-adic expressions
appearing among the i in i  pn-leo - 1 are those of the form:
C, pC, and b + pC where C ~ 0,61 mod p. These i would then correspond
to the appearance of the modules: Rn,,,-l:n-2, and 
respectively. Along with the irreducible modules, Rn, these would be the
four families appearing in This however is not possible, other p-adic
expressions can appear. One can show that based upon the restriction

b2 + 1 &#x3E; p2 ~eo/(p -1)~ - p2, there is no integer in  i  pn-leo - 1
which is equivalent to 0 or even b +pb modulo p2, but one cannot show that
there is no integer equivalent to b or pb modulo p2. This is with good reason.
Modules such as M = ~~-2~-4,... ,~-(2A:)~-i~-3~-5,... ~-(2~+1) satisfy
the restriction for each t = 3, 4, ... , n. And
so there are a number of families which satisfy the second trace relation
provided by Lemma 2.6, yet do not appear in 02. One has to imagine, then,
that the variety of modules satisfying subsequent trace relations proliferate.
Our plan then to control the type of module by the imposition of lower
bounds on ramification must therefore be amended.
To control the statements in our corollaries, we require an alternative

restriction on ramification. We require one that is not merely a lower bound
on the ramification numbers but one that strictly controls the variety of p-
adic expressions that may appear in  1.

Fortunately there is a certain stability inherent in the statement of our
main theorem. This results from the fact that for n &#x3E; k, the intervals
An,n-1 :5 i  and i  have the same length.
Therefore the only residues modulo pk-1 that appear among the integers

pn-Ieo - 1 are residues that appear among the integers
k-leo -1. Assume then that the p-adic expressions for

the j in pk-1eo - 1 all end with m (as in (4.4)) strictly less
that k - 1. This would force each C to be distinct from 0 and bI mod p.
Consequently, the only p-adic expressions that appear at the n-th level are
those that already have appeared at the k-th level.

Corollary 6.3. Let Kn/Ko be a cyclic fully ramifaed extensions of degree
pn with bl &#x3E; peo/(2p - 2). If the only modute families which appear in Dk
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are those that appear in then only those module families appear in
Dt for t = k, k + 1, ... , n.

Proof. If the only module families which appear in Dk are those which
appear in then the only p-adic expressions that appear in 
i  are those that appear in Ak-l,k-2 :5 i  pk-2eo - 1. In

particular, the p-adic expressions that occur in Ak,k-1 _ _  i  must

terminate before the pk-1-st term. Since p k-1 eo - a = pt-leo - a mod p k-1
for t &#x3E; k, the p-adic expressions that appear in at,t-1  i  pt-1 eo - 1 are
exactly those that appear in  i  pk-1eo - 1. 0

Based upon this corollary we can generalize Corollary 6.1 as follows.
First, we define some more constants:

Corollary 6.4. Let p be any prime (odd or even) and bl &#x3E; peo/(2p - 2).
If n &#x3E; 2 and every integer i in ~3,2 ~ ~  p2eo is expressed p-adically as C,
pC, or b + pC where C ~ 0, bl mod p, then:

where ao = al,o - Bl, a = Xl,o - A + Bo - Bn an-i = Al,o - A + Bo,
cn = A - Bo - Bi.

Proo f . This corollary follows from Corollary 6.3 and counting. 0

To indicate how this may be generalized further we list one more corollary.
To do so, we require some additional constants:

Corollary 6.5. Let p be any prime (odd or even) and bl &#x3E; 2).
If n &#x3E; 3 and every integer 2 in A4,3  i  p3eo is expressed p-adically as C,
pC, p2C, b + pC where C ~ 0, bl mod p,
then:
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Proof. This corollary follows from Corollary 6.3 and counting. 0

We could proceed further by writing down corollaries of this sort. As this
is simply a computational process, we leave it to the interested reader.

7. Examples and remarks

?.1. Examples. The results of [7] and [8] may be used as they were in [5]
to exhibit extensions with prescribed ramification to which we may apply
our main result. We leave this exercise to the reader.

’T.2. Remarks. Recall Question B from §2.1. Based upon work in that

section, we know that for n &#x3E; 2, is proper in the set of all 

indecomposables. But one might wish for more, perhaps SCpn is very small,
or at least finite. This is in general too much to hope for, see [4] where
the set SG is is shown to be infinite for G the Klein 4-group. But still,
the integral representations of cyclic groups seem to be simpler in nature
than the representations of other groups. And so we may continue to ask
whether Sc p n be finite. This is a difficult open question. As a result, we
revise the question and answer the revision.

Definition: Define the set of x-restricted realizable indecomposables,
SG(x), to be the set of indecomposable Zp[G]-modules for which there
is an extension L/K with G and first ramification number

x, such that M appears as a Zp[G]-direct summand of D L. Let

SG = I  oo}.
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Question C: What is Se p n?
Note that sCpn is bounded trivially by -1 ::; and that

is finite if and only if sc ,,, = - 1. Therefore the answer to Question
B is "yes" if While we are not able to answer Question C; we
can, using Theorem 1.2, provide a non-trivial upper bound:

It is reasonable to expect that one might, by extending the methods
of this paper, derive similar inductive descriptions of the ring of integers
without strong ramification, perhaps reducing the upper bound on to

1), (pep - p + 1)/(2p - 1). Indeed, in §2.6 we made a choice
between two restrictions on bl: strong ramification and b1  (1/2)Peo(p -
1). Had we chosen to work with bl  (1/2)peo/(p - 1) instead, we would
have already determined the effect of lfp(a) on any a E i7n with 
0 mod p and vn (a) + 0 mod p , needing only to extend this effect
to those a with vn(a) + (P - 1) bi =- 0 modP2. Certainly there are many
other details to consider, but still it is reasonable to expect that our results
under strong ramification generalize. We noted at the end of §5.2, that
for Cp2-extensions, our result extends (using other methods) to the weaker
restriction 1), p + 1)/(2P - 1). This investigation
is certainly worth pursuing.

There are two other directions of generalization to consider. First, one
might apply the methods of this paper to the Galois module structure of
other fractional ideals besides Dn . We have restrained from developing our
results in this generality because of the impact of the additional details on
the exposition. Secondly, one might derive a result generalizing Yokoi [16]
(for example, [5, Thm 6]). However, this merely translates our results into
another language.

Appendix A. The modules

In this section, we describe the modules that are used in our structure
theorems. First we describe a broad class of module. Then we specialize
to those modules that actually appear. In the final part of this section,
we provide a brief dictionary to facilitate translation between our notation
and the notation used in [11] and [2].

A.l. A general class of module. We assume throughout that Q, the
generator of G, acts via multiplication by x. First we introduce the irre-
ducible modules:

’7l r-1
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The other modules all arise as extensions of these irreducible modules. To
facilitate their description, define

These are the regular representations of the group quotients.
Let A = (ai , a2, ... , ar} and B = {&#x26;i, 62,... , bs} be sets of decreasing,

nonnegative integers. Furthermore, assume that A and B are disjoint.
Define RA:B or alternatively, to be a particular extension
of EÐ ... e Rar by lzbl 0153 ... 0153 Namely:

where M is the submodule generated by the following r elements: each
of the r elements has the form ai i = 1, ... , r, where ai = (0,..., 0,

A.2. A subclass of module. In this subsection we define a function,
from the integers to a subset of modules listed above. Following

§4.3.1 we let b = peo - and express i p-adically as

where ck E 10, b}, and C ~ 0, bl mod p unless m = n -1 in which case
there is no restriction on C. Now partition the set in, n -1, ... , n -1- m}
into two sets: A = {n} U{~-l-z:0z~m-l,~=0},B=

List the elements of A
and B in decreasing order. Define .

A.3. Dictionary: our notation and others. In this section we explic-
itly list the 15 modules required to describe ~3 and when possible relate
our notation to the notation used in [11].

First we note that Ro is the trivial module called Z in [11], and that
Rl:0 = &#x26;1. So Ro, R1, Rl:0 are the three indecomposable modules associ-
ated to the cyclic group of order p.

Furthermore, translating our notation into the notation used in [11],
we note that ~2:1,0 - R2,1:0 = 
n2:1 = (’R2, ~~ 2~~ So Rj i = o,1, 2, along with n1:o, ~2:1,0, ~2,1:0 and
~2:1 are the seven modules used in Theorem 2.2 to express 02.
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Of the remaining eight modules, R3 requires no translation. Meanwhile
four modules can be expressed using notation similar to [11] (See also [2,
Thm 34.32~ ) :

The remaining three modules, R3,2,1:0 ~3,2:i,o? IZ3,2:1, are quite different and
would require an expansion of the notation in [11]. They are extensions of
modules which are themselves an extension. They should be understood as
generalizations of 7Z2,1:o = (R2, 91; Àp-1). ·
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