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Zero-sumfree sequences in cyclic groups
and some arithmetical application

par ALFRED GEROLDINGER et YAHYA OULD HAMIDOUNE

RÉSUMÉ. Nous montrons que dans un groupe cyclique d’ordre n,
toute suite S de longueur |S|~ sans sous-suite non vide
de somme nulle contient un élément d’ordre n ayant une grande
multiplicité.

ABSTRACT. We show that in a cyclic group with n elements every
zero-sumfree sequence S with length |S|~ contains some
element of order n with high multiplicity.

1. Introduction

Let G be a finite cyclic group with IGI = n and let S be a sequence in
G. We say that S is zero-sumfree, if no non-empty subsequence of S sums
to zero. An easy observation shows that r~ -1 is the maximal length of
a zero-sumfree sequence and if S is a zero-sumfree sequence with length

= n -1, then S consists of one element g E G with order n which is
repeated n - 1 times. Investigations of the structure of long zero-sumhee
sequences were started in the seventies by P. Erdos et al. In [BEN75] it is
proved that a zero-sumfree sequence with length contains some
element with multiplicity 2 ~ S ~ - n + 1. In a recent paper by W. Gao and
the first author it is proved that a zero-sumfree sequence S with 2
contains some element of order n (see [GG98]). Using a new approach
we can sharpen this result and show that a zero-sumfree sequence S with
length contains some element of order n with high multiplicity.
It is easy to verify that this result is best possible (see Theorem 3.12 and
Remark 3.13).

Besides of being of interest for its own right, any information about the
structure of zero-sumfree sequences in a finite abelian group G gives infor-
mation about the non-uniqueness of factorizations in a Krull monoid having
divisor class group G. For this connnection and some general information
on factorization theory we refer to the survey articles in [And97]. Let H
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be a Krull monoid with cyclic divisor class G such that every class con-
tains a prime divisor and set = n. Then the sets of lengths are almost
arithmetical multiprogressions and let A* (G) denote the set of possible dif-
ferences. It is easy to see that maxA*(G) = n - 2 and having the sharp
result of Theorem 3.12 at our disposal we can show that the second largest
value in A*(G) equals [!Ij - 1 (Theorem 4.4).

2. Preliminaries

Let N denote the positive integers and let No = N U 101. For some
real number x E R let l x J E Z denote the largest integer with Lx J  x
and E Z the smallest integer with x  For a, b E Z we set

a,b
Throughout, all abelian groups will be written additively. Let G be an

abelian Go C G a finite subset, :F(Go) the free abelian monoid
with basis Go and

a sequence in Go where gl, ... , gl E Go and for afl g E Go. We
use the same notations as in [GG99]. In particular, = 1 = ¿9EGo 
denotes the lengths of S, supp(S) = {g E Go ~ I &#x3E; 0} C
Go the support of S, a(S) _ G the sum of S and

The sequence S is called

. zero-sum free if 0 

. sqvaref ree =1 for all g E supp(S),
o a zero-sum sequences, if = 0,
9 a minimal zero-sum sequence, if S is a zero-sum sequence and every
proper subsequence is zero-sumfree.

If G = Z /nZ for some n E N and S = + nZ) E 7(Z /nZ) where
a1,... ad E ~1, n~, we set

Clearly, = a(S), S is a zero-sum sequence if and only if 
0 mod n, and if uz(S)  n, then S is zero-sumfree.
We denote by ,A(Go) the set of all minimal zero-sum sequences in Go.

This is a finite set and
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denotes DavenPort’s constant of Go. If G is cyclic, then D(G) = IGI and
1 is the maximal length of a zero-sumfree sequence in G.

3. Zero-sumfree sequences

We shall use the following two well-known addition theorems. The first
one is a special case of Chowla’s Addition Theorem (we give a simple proof)
and the second one follows from a result of L. Moser and P. Scherk (cf.
[MS55]).

Proposition 3.1. Let G be a finite cyclic group, a E G with ord(a) = IGI
and let B be a subset of G. Then 110, a} + IBI + 11.

Proof. Suppose that + B)  ~B~. Since B C {0, a} + B, it follows
that B = 10, al + B whence a + B C B. Therefore ja + B C B for every
j E N and thus

whence + ~B~ &#x3E; 0

Proposition 3.2. Let G be a finite abedian group and S E a zero-

sumfree sequence. If S = with E .’(G), then 
.

Lemma 3.3. Let G be a finite cyclic group with 4 and S E
a zero-sumfree sequence such that vg (S) &#x3E; 0 for some g E G with

ord(g) = n. Then

Proof. Without restriction we may suppose that

where k = V1+nZ(S) E N, 1 E No and al, ... , al E [2, n - 1].
Case 1: For every i E [1, 1] we have ai E [2, k]. Then

Since S is zero-sumfree, it follows that k + ai  n whence

Case 2: There exists some i E ~1, l~ such that ai V [2, k~. Since S is

zero-sumfree, it follows that ai V [n - k, n - 1]. This implies that
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and

Applying Proposition 3.2 we infer that

Definition 3.4. For a finite abelian group G, a non-empty subset Go c G
and some k E N we set

f (Go, k) = : S E zero-sumfree, squarefree and = k}

The above invariant was introduced by Eggleton and Erd6s in [EE72].
For information around it and some recent results we refer to [GG98], sec-
tion three. Here we only need the following lemma which is well-known.
For convenience we provide its simple proof.

Lemma 3.5. Let G be a finite abelian group and Go C G a subset which
contains a square-free zero-samfree sequence of length three but no elements
of order two. Then f (Go,1) =1, f (Go, 2) = 3 and f (Go, 3) &#x3E; 6.

Proof. Clearly, f (Go,1) = 1 and if S = a - b E 7(Go) with then

E(S) = {a, b, a + b}, ( = 3 and thus f (Go, 2) = 3.
Let S = al - a2 - a3 E Y(Go) be a squarefree, zero-sumfree sequence.

Clearly, M = la, + a2, ai + a3~ a2 + a3~ ai + a2 + a3} C E(S) and IMI = 4.
We assert that at most one of the elements al, a2, a3 lies in M. This implies
that I &#x3E; 6 and we are done. Assume to the contrary, that there are
i, j E ~1, 3~ = such that E M.. Then aj + ak and

aj = ai + ak whence 2ak = 0, a contradiction. D

Next we introduce a key notion of this paper.

Definition 3.6. Let G be a finite abelian group, S E a non-empty
sequence, k e N and IS I = kq - r with q E N and r E 0, k -1 An
optimal k-partition of S is a product decompositon S = where

E are squarefree and 1811 I = k (then clearly
and ISql = k - r E [1, 

The reason why we are interested in optimal k-partitions lies in the fact,
that an optimal k-partition of a zero-sumfree sequence S gives a large lower
bound for This will be done in the next lemma.
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Lemma 3.7. Let G be a finite abelian group, S E and k E N. If S
is zero-sumfree and has an optimal k-partition, then for Go = supp(S) we
have

Proof. Let S = be an optimal k-partition of S. Using Proposition
3.2 we infer that

Proposition 3.8. Let G be a finite abelian groups, S E a non-empty
sequence, k e N and = kq - r where r E ~0, k - 1]. Then the following
conditions are equivalent:
1. S has an optimal k-partition.
2. g E G}  q and ~{g e G ~ = q}~  k - r.

Proof. 1. ~ 2. Suppose that S has an optimal k-partition, say S =

Tjq 1 Si where all Si E F(G) { 1 } are squarefree and IS11 _ ’ _ =

k.
If S is a product of t squarefree subsequences for any t E N, then clearly

g E G}  t whence E G}  q.
Let {g E G I = 9} = {gl, ... , gl}. If 1 = 0, then clearly 1 =

0  k - r. Suppose 1 &#x3E; 0 and set So = Since I S and
Sl, ... , Sq are squarefree, it follows that So ~ Sz for every i E [1, q] whence
T = Thus it follows that

whence = r.

2. - 1. Let {9 E G I = 9} = {9¡,..., and So = 

(clearly, So = 1 is the empty sequence if and only if l = 0). Then S = 
for some T E with gcd(So, T) = 1 (i.e., So and T have no elements
in common) and q - 1. We show that T may be
written in the form



226

where T1,... Tq are squarefree, IT11 = ... = ltq-ll = k - l and ITql =
k - l - r &#x3E; 0. Then obviously

is an optimal k-paxtition of S and we are done.
In order to show (*) we write T in the form

where al, ... , au are pairwise distinct, q -1 &#x3E; ml &#x3E; ~ ~ ~ &#x3E; 1 and

91, ... , 9)T) are numbered in the following way: a1 = gl = ... = 9m¡ , a2 =
gml+l = ... = 9rri1+m2 and so on.
We describe how to build subsequences Tl, ... , Tq. We give the first

element g, to Tl, the second element g2 to T2 and finally gq to Tq. Then
we give 9q+1 to Ti, ...., g2q to Tq. We do this k - I - r times. After this we
have spent (k - I - r)q elements of T. From now on we only give elements
to Tl, ... , Tq_1. We give 9(k-l-r)q+l to Tl, and We

repeat this procedure r times. Hence for every z E ~1, q -1~ the sequence 11
consists of (1~ - t - r) + r elements and Tq consists of (k - l - r) elements.
Since max{ Vg (T) g E G  q -1 and T is suitably numbered, all sequences
11 are squarefree. Thus T = and (*) holds. 0

Corollary 3.9. Let G be a finite abelian group and S E 7(G) ) 111.
1. 8 has an optimal2-partition if and only E 

2. If S has no optimal 3-partition, then one of the following conditions
holds:

(a) g E ll + 1.(a) maxfvg (S) I g E - 3

(b) There are two E supp(S) such that 
v () = h (S) = 3 -

Proof. 1. Let 181 = 2q - r with r E [0, 1] whence q = If S has2

an optimal 2-partition, then E G  q by Proposition 3.8.
Conversely, suppose that I 9 E G} ~ q,

We have to show that 2 - 0. Then the assertion follows from

Proposition 3.8. For 1 this is clear. If 2, then
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implies r = 0 and 2 = ISol whence 2 -ISol- r &#x3E; 0.

2. Let 181 = 3q - r with r E ~0, 2~ whence q = Suppose that S has
no optimal 3-partition and that g E G}  q. We have to show
that condition b) holds. As above we set

Then Proposition 3.8 implies that 1801 &#x3E; 3 - r whence 2. Since

3q - r = 181 = ql801 + ITI, it follows that isol = 2 whence r = 2 and
!S+2 r-.q = 3 * 0

Lemma 3.10. Let G be a cyclic groups with even order n, g E G with
ord(g) = 11, and S E 7(G ) {g}) a sequence such that vh(S)  2 for all
h E G with 2h = g. Then S may be written in the form

+

where I E (1, 2), E (g) B {g} for all i e [1~], 2 and IUI = 2
implies that Q(U) = g.

Proof. We proceed by induction on The assertion is clear for 2.

Suppose 3. We construct a subsequence To of S with [To [ E (1, 2 and
(g) B {g}. Then the assertion follows by induction hypothesis.

If there exists some b E supp(8) n (g), then we set To = b. Suppose that
supp( 8) c G B {g}. We decide two cases.

Case 1: 8 is squarefree. Then there are pairwise distinct elements a, b, c E
supp(8) and clearly we have a + b, a + c E (g). g, we set To = a-6.
If

Case 2: 8 not squarefree. Then there is some a E supp( 8) with S.
If 2a # g, then we set To = a2. Suppose 2a = g. Then va(S) = 2 whence
there is some such that a2 . b S. Thus a + b E (g) B {g} and we set

0

Proposition 3.11. Let G be a finite cyclic group with ~G~ = n &#x3E; 4, 8 E

.~’(G) a zero-sumfree sequence with nt1 and 9 e G with 
Then ord(g) E {n, 2, 3 } and, if ord(g) = 2, then there is some h E supp(S)
with ord(h) = nand 3.

Proof. We have
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whence

Let H denote the subgroup generated by g whence = ord(g).

Suppose that = ~ and assume to the contrary that 2 for all

h E G with ord(h) = n. Applying Lemma 3.10 to S we see that S

may be written in the form

where I E ~1, 2~, Q(Ti) E (g) B {g} for all i E [1, t], 2 and I Ul = 2
implies that cr(!7) = g.

First we consider the case  2. Then

is a zero-sumfree sequence with = vg(S). Thus Lemma 3.3 implies
that

a contradiction.

Suppose now that = 2. Then
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is a zero-sumfree sequence with v9(S’) = v9(S)+1. Thus Lemma 3.3 implies
that

a contradiction.

Assume now that IHI I E ~ 4 , 5 } and write S in the form

Since n &#x3E; 4 and

it follows that 

We assert that there are elements a, b E G such that ab I Sl and a +
H, b + H are generators of G/H. Since Sl E 7(G ) H) and 1811 ~ 3, there
exist two elements a, b such that ab I Sl and a + H, b + H E G/H B {H}.
If = 5, then a + H, b + H are generating elements. Assume to the
contrary, that = 4 and the assertion does not hold. Then Sl = a - S2
where S2 E T(H’) for a subgroup H’ with H C H’ C G. Then S1S2 is a
zero-sumfree sequence in H’ with

a contradiction.
Hence there are a, b E G having the above properties, and we choose

some c E G such that abc ~ Sl. By Proposition 3.1 we infer that

and
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This implies that Thus we may infer that

a contradiction. 0

Theorem 3.12. Let G be a cyclic group with IGI = n &#x3E; 3 and S E 
a zero-sumjbee sequence. If nt1, then there exists some g e supp(S)
with

Proof. The assertion is obvious, if n = 3. Hence suppose that n &#x3E; 4 and
let S be a zero-sumfree sequence with 

-

First we show that supp(S) does not contain an element of order two.
Assume to the contrary that S = gT where 2g = 0. Then n is even, say
n = 2m, and m + 1. Let p : G - G denote the multiplication by 2.
Since D(p(G)) = m, the sequence cp(T) contains a subsequence with sum
zero, say = 0 for some subsequence T’ of T. Then either T’ or
gT’ has sum zero in G.

For k E [1,3] we set a(k) = f (supp(S), k). Then Lemma 3.5 implies that
a(1) = 1, a(2) = 3 and a(3) &#x3E; 6.
We set

whence

We show that either there exists some g E G such that

or that there exist two distinct elements g, h E G such that
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Assume to the contrary that this does not hold. Then by Corollary 3.9
S has an optimal 3-partition whence Lemma 3.7 implies that

a contradiction.
Now we first suppose that there exist g E G such that

and we apply Proposition 3.11.
If one of the two elements has order ~, then n is even and by Proposition

3.11 there exists some a E supp(S) with ord(a) = n and va (S) &#x3E; 3.
Suppose that {ord(g), ord(h)} C 1!1, nl. If ord(g) = ord(h) = 3 , then S

would not be zero-sumfree whence either ord(g) = n or ord(h) = n, and we
are done.

Now we suppose that there exists some g E G such that

Then

and Proposition 3.11 implies that ord(g) E In, 2 , ~}. If ord(g) E 
then the assertion follows.

Assume to the contrary that ord(g) = n. We set H = (g) and write S
in the form

Since 11 = ord(g) &#x3E; 2 and

it follows that 3.

First show that n &#x3E; 24. There exist t &#x3E; disjoint subsequences
Q1, ... , Qt of 81 with length 3 and sum E H. Since S is
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zero-sumfree, the sequence So o,(Qi) E is zero-sumfree whence
+

which implies that n &#x3E; 23. Since n is a multiple of 3, we obtain that n &#x3E; 24.

Case 1: There exists some b E G such that + 2.

( ejIf there is some c E supp(Sl) with c (b), then S = (b28o)(b 2 C)S3
for some S3 E 7(G) and we infer that

a contradiction. Thus it follows that Sl E 7"((6)).
If 9 f/. (b), then we write S in the form S = (b2Sog-1)(Slgb-2), apply

Proposition 3.2 and infer that

a contradiction.

Suppose that g E (b). Then y = ord(g) divides ord(b) and since b E
G B H, it follows that (g) # (b) whence (b) = G and ord(b) = n.

Then

whence
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and Lemma 3.3 implies that

Clearly, we have b ~ b’)1 ~ 3 [So I and so we obtain that

whence

Case 2. For every c E G we have r1¥l + 1.
We assert that there are elements a, b E G such that ab ~ I Si, such that

for every c E G we have

Such a choice may be done in the following way. Suppose that S = 

with pairwise distinct hl,..., hi and kl &#x3E; &#x3E; &#x3E; 1. If kl = Sl + 1,p - - 2

then we set a = b = hl, and obviously the assertion holds. If k1  r1¥l,2

then 1  k2  r1¥l We set a = hi, b = h2, and obviously, the assertion2

holds again.
Since a + H and b + H are generating elements of G/H, Proposition 3.1

implies that
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The sequence satisfies the assumptions of Corollary 3.9 with
k = 2. We have

and

and let r’ defined by

Thus we obtain that

Summing up we infer that

whence

and thus

The final inequality implies that

u

whence equality holds.
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Since IS11 ~ 3, we may set Sl = abcT with c E G, T E 7(G) and infer
that

a contradiction. 0

Remark 3.13. We discuss some examples which show that the above re-
sult is sharp in general.
1. If n is even but not a power of 2, then the assumption "~S~ I &#x3E; nt1"

cannot be weakened. Suppose n = 2~m where 1  m is odd. Then

is a sequence with length 181 = 2 which does not contain an element of
order n. We assert that S is zero-sumfree. Assume to the contrary, that
S contains a zero-sum subsequence T. Then T = (2 + (m + nZ)
with i E [1, ~ - 1] and n  O’z(8)  2n whence az(T) = n, a
contradiction.

2. If n is even, then the assertion "v9 (S) &#x3E; 3" cannot be enbettered.

Suppose n = 2m for some m &#x3E; 2 and consider

Then = 2~n - 1  n whence S is zero-sumfree, = ~ + 1 and
3.

3. If n is odd, then the assertion "v9(S) &#x3E; cannot be enbettered.

Let n = 6k - r be odd with r e (0, 5~ (whence k = and

Then = k + 2k + 3(nt1 - 2k)  n whence S is zero-sumfree and

9 C G} = n + 1 2k} = k = n+5 .max{Vg(S) I 9 E G} = max{k, z 2k} = k = 
! 6

4. On 

Let G be a finite abelian group Go c G a non-empty subset. We
briefly recall some basic terminology from factorization theory. To do so, we
restrict to block monoids. However, matters are similar for Krull monoids
having finite divisor class groups. For details the reader is referrred to the
survey articles in [And97].
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Let denote the set of all zero-sum sequences in Go. Then C

F(Go) is a submonoid - called the block monoid over Go - and is

precisely the set of irreducible elements of B(Go). Let B Then
there are minimal zero-sum sequences Ul, ... , Uk E A(Go) such that

B = Ul ..... Uk.
Such a product decompostion is called a f actorization of A and k is called
the length of this factorization. Then

L(B) = N I B has a factorization of length 11 C N
is a finite subset of the positive integers and is called the set of lengths of
B. For any finite subset L = {a?0)"’ ? C Z with xl  ... let

denote the set of distances of L. Clearly, 1 if and only if L is an
arithmetical progression. We define

and say that Go is half-factorial, if 0(Go) = 0 (equivalently, IL(B)I = 1 for
all B E B(Go)).
We shall need the following properties of 0(Go).

Lemma 4.1. Let G be a finite abedian group and Go C G a subset with
0.

1. max A (Go)  D(Go) - 2.
2. min A (GO) 

Proof. See Proposition 3 and Proposition 4 in [Ger88]. 0

Lemma 4.2. Let G = 7G/n7G with n &#x3E; 4 and Go C G a subset with
0 and 1 + nZ E Go. Then

Proof. See Proposition 7 in [Ger87]. D

Let G be a finite abelian group and Go C G a subset which is not half-
factorial. Then for every N E N there exists some B E B(Go) such that

N. Moreover, there exists some M E N‘ such that for every B E
B(Go) the set of lengths L(B) is an almost arithmetical multiprogression
with bound M. The set 0* (G) defined below describes the set of possible
differences which appear in such multiprogressions (cf. [CG97] and [GG00] ) .
Definition 4.3. Let G be a finite abelian group. Then
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Now we can formulate the main result in this section which heavily rests
on Theorem 3.12.

Theorem 4.4. Let G be a cyclic groups with IGI = r~ &#x3E; 4. Then

Proo f . Lemma 4.1 implies that

whence by Lemma 4.2 we have n - 2 = minA(Go) E A**(G).
If n = 2m + 1 with m &#x3E; 2, we set Go = {1 + nZ, m + n7G} and assert

that min A(Go) = m - 1 = ~ 2 J - 1. Clearly, we have

and

whence Lemma 4.2 implies that = m - 1.

If n = 2m for some m &#x3E; 2, we set Go = {1 + m + nZ, (n - 1) + n7G}
and assert that minA(Go) = m - 1. Since

the assertion follows from Lemma 4.2.

We now come to the proof of

Clearly, the assertion holds for n E ~4, 6J. Let n &#x3E; 7 and G1 C G a non
half-factorial subset with min A(Gi)  n - 2. Let Go C G1 B {0} be a
minimal non half-factorial subset with d = minA(Go). If d = n - 2, then

n - 2 ~ min A(Gi ) = gcdA(Go) = n - 2

whence n22. Suppose that d  n-2. It suffices to show that
d

Assume to the contrary that d ~ n21. Then
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implies that D(Go) &#x3E; Therefore there exists a zero-sumfree sequence
S with

By Theorem 3.12 there exists some 9 E supp(S) with ord(g) = n. Since
= n - 2, it follows that -g 0 Go. There exists some group

automorphism cp : G - Z /nZ with cp(g) = 1 + nZ. Since d = minA(Go) =
we may suppose without restriction that g = 1 + nZ and

with  a2  ...  as  n - I. We set
..

with 0  dl  ...  dk. By Lemma 4.2 it follows that d = gcd{dl, ... , dkl.
Since

it follows that k = l, di = d and

Case 1: There exists some a E {~2,... as~ with gcd(a, n} = 1. Then
there exists some 11 E [2, n - 1] with all + 1 = 0 mod n. Considering the
following two irreducible blocks

we infer that uz(U) = na &#x3E; lia + 1 = uz(V) and thus lia + 1 = n. This
implies that

a contradiction. 
’

Case 2: There exists some a E la2, - - .,a, I with 1  gcdfa, nj  a.

Then U = E and

a contradiction.
Case 3: For every i E [2, s] we have ai ~ n. Thus for every U = (ai +

E with az(U) &#x3E; n we have ki  n -1 and hence- ai

a contradiction. D
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