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A group law on smooth real quartics
having at least 3 real branches

par JOHAN HUISMAN

RÉSUMÉ. Soit C une courbe quartique réelle lisse dans P2, qui
admet au moins trois branches réelles On pose B =

B1 x B2 x B3 et soit O ~ B. On note 03C4O l’application de B sur la
composante neutre Jac(C) (R)0 de l’ensemble des points réels de
la jacobienne de C, définie en posant 03C4 (P) comme étant la classe
du diviseur 03A3 Pi - Oi. Alors, 03C4O est bijective. On montre que cela
permet une description géométrique explicite de la loi de groupe
sur Jac(C) (R)° . Cela généralise la description géométrique clas-
sique de la loi de groupe sur la composante neutre de l’ensemble
des points réels de la jacobienne d’une cubique. Si la quartique
est définie sur un corps de nombres réel, alors on obtient une de-
scription géométrique d’un sous-groupe du groupe de Mordell-Weil
d’indice un diviseur de 8.

ABSTRACT. Let C be a smooth real quartic curve in P2. Sup-
pose that C has at least 3 real branches B1, B2, B3. Let B =

B1 x B2 x B3 and let O ~ B. Let 03C4o be the map from B into the
neutral component Jac(C) (R)° of the set of real points of the Ja-
cobian of C, defined by letting 03C4o (P) be the divisor class of the di-
visor 03A3 Pi - Oi. Then, 03C4o is a bijection. We show that this allows
an explicit geometric description of the group law on 
It generalizes the classical geometric description of the group law
on the neutral component of the set of real points of the Jacobian
of a cubic curve. If the quartic curve is defined over a real number
field then one gets a geometric description of a subgroup of its
Mordell-Weil group of index a divisor of 8.

1. Introduction

The group law on a cubic curve is a famous classical geometric construc-
tion [9]. It gives a geometric description of the Jacobian of the curve. For
curves of higher-or Iower-degree such a geometric description is nonex-
istent. If one is only interested in real points of a curve then the present
paper may be of interest: We show that there is a group law on the Carte-
sian product of 3 real branches of a smooth real quartic curve in P~, in
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case, of course, it does have at least 3 real branches. It gives rise to a geo-
metric description of the neutral component of the set of real points of the
Jacobian of the quartic. This generalizes the group law on a real branch of
a smooth real cubic curve.

Other generalizations of the group law on a real branch of a cubic curve
can be found in [7, 2, 3, 4]. All present generalizations are based on an
explicit class of nonspecial divisors on real algebraic curves [6] (see also
Section 4).
The paper is organized as follows. In Section 2, we will be more precise

about the object of the paper. In Section 3, we give the geometric descrip-
tion of the neutral component of the set of real points of the Jacobian of
a quartic. It relies on a statement concerning points in general position
whose proof is given in Section 5. In Section 3, we also give an application
to the Mordell-Weil group if the quartic is defined over a real number field.
This application is proved in Section 6. Section 4 recalls some useful facts
on nonspecial divisors on real curves.

2. The object
Let C be smooth real quartic curve in 1~2. By the genus formula, the

genus of C is equal to 3. A connected component of the set C(R) of real
points of C is called a real branch of C. By Harnack’s Inequality [5], the
number of real branches of C is less than or equal to 4. Smooth real quartic
curves having at least 3 real branches abound.
We assume throughout the paper that C has at least 3 real branches.

Choose, once and for all, 3 mutually distinct real branches Bl, B2, B3 of C
and put

The Jacobian Jac(C) of C is a real Abelian variety of dimension 3. Its
set of real points Jac(C) (R) is a compact commutative real Lie group. We
denote by the connected component of Jac(C)(R) that con-
tains 0.

Let 0 E B be a base point. Define a map

by

for all P E B, where cl denotes the class of a divisor. Since = 0
and since B is connected, To(P) belongs to Jac(C)(R)O, for all P E B.
Hence, To maps B into Applying the general result of [7] to
the present situation, one has the following statement.
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Theorem 2.1. The map To : B -+ a bijection. 0

In particular, one gets, by transport of structure, a group law on B. The
object of this paper is to give a geometric description of this group law.

3. The geometric description
The following statement is the main ingredient in the geometric descrip-

tion of group law on the neutral component of the set of real points of the
Jacobian of C. It states, among other things, that any 9 real points of C
which are uniformly distributed over the real branches B1, B2, B3, are in
general position with respect to cubics.

Theorem 3.1. Let P, Q, R E B. Then, there is a unique real cubic F
passing through the 9 points Pi, Qi, R,-, for i = 1, 2, 3, i. e.,

Moreover, there is a unique S E B such that

We postpone its proof to Section 5 and explain first how Theorem 3.1
gives rise to the geometric description of the group law we are looking for.

Choose 0 E B. According to Theorem 3.1, there is a real cubic G such
that

Moreover, there is an element X E B such that

Now, the geometric description of the group law of is given
in the following statement. Recall (Theorem 2.1) that To is a bijective map
from B onto and is defined by sending P E B to 

Theorem 3.2. Let P, Q, R E B. Then,

in Jac(C) (R) if and only if there is a real cubic F such that
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Proof. Suppose that To(P) +To(Q) +To(R) = 0 in Jac(C)(R). By Theo-
rem 3.1, there is a real cubic F such that

Moreover, there is an element S E B such that

Then,

Taking divisor classes and using the hypothesis, one gets that

in Jac(C)(R), i.e., TX(S) = 0. By Theorem 2.1, S = X and it follows that
there is a real cubic F such that

In order to show the converse, suppose that there is a real cubic F

satisfying the above equation. Then,

Remark 3.3. Theorem 3.2 allows to do calculations in the neutral com-

ponent of the set of real points of the Jacobian of C, just as in the case of
elliptic curves [9]:
The inverse of an element P E B is obtained as follows. By Theorem 3.1,

there is a unique real cubic F such that Moreover,
there is a unique element Q E B such that F - C Oi + Pi + Qi + Xi.
Then, Q is the inverse of P.
The sum of two elements P, Q E B is obtained as follows. By Theo-

rem 3.1, there is a unique real cubic F such that X" -
Moreover, there is a unique element R E B such that 
Ri + Xi. Then, the sum of P and Q is equal to the inverse of R.
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I would like to conclude this section with the following application of
Theorem 3.2 to the Mordell-Weil group of a smooth quartic defined over a
real number field.

Let K be a real number field and let C be a smooth quartic in 1~2 defined
over K. Assume that CR = C x K R has at least 3 real branches Bl, B2, B3.
Let again B = B1 x BZ x B3. An element P E B is a K-rational point of B
if the divisor P, + P2 + P3 on CR comes from a divisor on C. Equivalently,
P E B is K-rational if and only if the divisor Pi + P2 + P3 is invariant
for the action of the Galois group Gal(C/K). The set of K-rational points
of B is denoted by B(K).

Denote by Jac(C)(K)O the inverse image of Jac(C)(R)o by the natural
map from Jac(C)(K) into Jac(C)(R). Since the subgroup Jac(C)(R)o is of
index 4 or 8 in Jac(C) (R) [1, Theorem 4.1.7], the subgroup Jac(C)(K)° has
index 2i in the Mordell-Weil group Jac(C)(K) of C, for some i E {0,1, 2, 3}.
Theorem 3.4. Suppose that 0 is a K-rational point of B. Then, the

map To maps the subset B(K) of B bijectively onto Jac(C)(K)O. In par-
ticular, B(K) is a subgroup of B and the restriction of Tp to B(K) is an
isorraorphism onto Jac(C)(K)O.
A proof is given in Section 6.

4. Nonspecial divisors

The following proposition [1, Corollary 4.2.2] (cf. [6, Proposition 2.1]) is
at the basis of the results. For the convenience of the reader, a proof is
given.

Proposition 4.1. Let C be a geometrically integral proper smooth real al-
gebraic curve and let cv be a nonzero rational differential form on C. Then,
for all real branches B of C, the degree of the divisor of w on B is even.

Proof. The restriction of W to a real branch B of C is a nonzero real

meromorphic differential on B. Since C is proper and smooth, B is real
analytically isomorphic to the real projective line Therefore, we
may assume that B = P (R) . Then, there is a nonzero real meromorphic
function f on Pl (R) such that

In particular, the divisor div(wlb) is equal to the divisor div( f ) of f .
Note that div( f ) = f *0 - f *oo. Since deg( f *P) is constant mod 2 [8],
for P E P~(R), the degree of div( f ) is even. 0

Proposition 4.1 has the following statement [6, Theorem 2.3] as a conse-
quence. We present here a different proof.
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Theorem 4.2. Let C be a geometrically integral proper smooth real alge-
braic curve and let g be its genus. Let D be a divisor on C and let d be
its degree. Let k be the number of real branches of C on which D has odd
degree. If d + J~ &#x3E; 2g - 2 then D is nonspecial.

We need the following lemma.

Lemma 4.3. Let C be a geometricall y integral proper smooth real algebraic
curve and let g be its genus. Let D be a divisor on C and let d be its degree.
Let k be the number of real branches of C on which D has odd degree.

then h° (D) = 0.

Proo f. Suppose 0. Then there is an effective divisor E on C which
is linearly equivalent to D. Let f be a nonzero rational function on C such
that div( f ) = D - E. As we have seen before, the degree of div( f ) is
even on any real branch of C. Hence, the degree of E is odd on k real
branches of C. Since E is effective, there are real points Pl, ... , Pk of C,
each on a different real branch, such that E &#x3E; Pl +... + Pk. In particular,
deg(E) &#x3E; k. But, deg(E) = deg(D) = d  k. Contradiction. 0

Proof of Theorem 4.2. Let K be a canonical divisor on C. Consider the
divisor K - D. It is a divisor of degree 2g - 2 - d. By Proposition 4.1,
K-D is of odd degree on k real branches of C. By hypothesis, 2g-2-d  k.

Hence, D) = 0 by Lemma 4.3. 0

5. Points in general position on a real quartic
In this section, we prove Theorem 3.1. Let us fix ourselves again a

smooth real quartic C in ~2. Let H be a hyperplane section of P2 and
let K = H ~ C. Then, K is a canonical divisor on C. The statement that
will make things work out is the following.

Proposition 5.1. The map from the linear system 13HI on p2 into the
linear system 13KI on C defined by sending an element F E 13HI onto F .
C E 13KI is an isomorphism of projective spaces.

Proo f . Observe that the map ( -~ ~ 13KI is well defined since no divisor
in can contain the curve C as a component. Since this map is a
linear map of projective spaces, it is injective. Now, dim 13HI = 9 and, by
Riemann-Roch, dim 13KI = 9 as well. Therefore, the map - 13KI is
an isomorphism. D

From now on, we assume again that C has at least 3 real branches and
we choose 3 of them, Bl, B2, B3. As observed above, each real branch Bi is
real analytically isomorphic to the real projective line. Moreover, each Bi



255

is homologically trivial in 1~2(I~). Indeed, this is a consequence of Proposi-
tion 4.1, since C is a canonical curve. Put

and choose 0 E B, as before.

Proof of Theorem 3.1. Let D be the divisor + Qi on C.

By Proposition 5.1, it suffices-for the first statement of Theorem 3.1-to
show that the linear system IDI on C is O-dimensional. By Proposition 4.1,
the divisor D has odd degree on all real branches Bl, B2, B3. Moreover, its
degree is equal to 3. Since 3 + 3 &#x3E; 2 - 3 - 2, the divisor D is nonspecial,
by Theorem 4.2. By Riemann-Roch, dim I D 0. This shows the first
statement of Theorem 3.1.

In order to show the last statement of Theorem 3.1, let F be the unique
real cubic passing through the points Pi, Qi, R,-, for i = l, 2, 3. Since each
real branch Bi of C is homologically trivial in P2(R), the degree of the
intersection product F . C on Bi is even. Therefore, there is S E B, such
that

Now, both divisors that intervene in this inequality are of degree 12. Hence,
the inequality is an equality and the points Si are unique. D

6. The Mordell-Weil group

Proof of Theorem 3.4. It is clear that To maps B(K) into Jac(C)(K)°. In
order to show that the image of B(K) is all of let J be an
element of By Theorem 2.1, there is an element P E B such
that To(P) = J. Let D be the divisor E Pi on CR. By Theorem 4.2, D
is nonspecial. Hence, the linear system IDI is 0-dimensional and consists
of D only. Since cl(D) = J + cl(~ Oi) is a K-rational point of the Picard
scheme of C, the divisor D on CR is equal to DR for some divisor D’ on C.
Hence, P E B(K) and J is in the image of B(K) by To. 

’ 

D
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