Nous revisitons un algorithme dû à Lagrange, basé sur le développement en fraction continue, pour résoudre l’équation en les entiers premiers entre eux, où , pgcd n’est pas un carré.
We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of in relatively prime integers , where , gcd is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s for the necessity of the existence of a solution. Lagrange did not discuss an exceptional case which can arise when . This was done by M. Pavone in 1986, when , where . We only need the special case of his result and give a self-contained proof, using our unimodular matrix approach.
@article{JTNB_2002__14_1_257_0, author = {Matthews, Keith}, title = {The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {257--270}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {1}, year = {2002}, mrnumber = {1926002}, zbl = {1018.11013}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2002__14_1_257_0/} }
TY - JOUR AU - Matthews, Keith TI - The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$ JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 257 EP - 270 VL - 14 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2002__14_1_257_0/ LA - en ID - JTNB_2002__14_1_257_0 ER -
Matthews, Keith. The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 257-270. http://archive.numdam.org/item/JTNB_2002__14_1_257_0/
[1] Su di un metodo per la risoluxione in numeri interi dell' equazione . Giornale di Matematiche di Battaglini 46 (1908), 33-90. | JFM
,[2] L 'equation diophantienne du second degré. Hermann, Paris, 1991. | MR | Zbl
,[3] Disquisitiones Arithmeticae. Yale University Press, New Haven, 1966. | MR | Zbl
,[4] An Introduction to Theory of Numbers, Oxford University Press, 1962. | MR
, ,[5] Introduction to Number Theory. Springer, Berlin, 1982. | MR | Zbl
,[6] Theory of numbers, 2nd ed. Chelsea Publishing Co., New York, 1961. | JFM | MR
,[7] The Diophantine equation x2 - Dy2 = N, D > 0. Exposition. Math. 18 (2000), 323-331. | MR | Zbl
,[8] Fundamental Number Theory with Applications. CRC Press, New York, 1998. | Zbl
,[9] Conséquences et aspects expérimentaux des conjectures abc et de Szpiro. Thèse, Caen, 1994.
,[10] A Remark on a Theorem of Serret. J. Number Theory 23 (1986), 268-278. | MR | Zbl
,[11] J. A. SERRET (Ed.), Oeuvres de Lagrange, I-XIV, Gauthiers-Villars, Paris, 1877.
[12] Cours d'algèbre supérieure, Vol. I, 4th ed. Gauthiers-Villars, Paris, 1877. | JFM
,[13] Diophantische Gleichungen, Chelsea Publishing Co., New York, 1950.
,