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22014modular lattices from ternary codes

par ROBIN CHAPMAN, STEVEN T. DOUGHERTY,
PHILIPPE GABORIT et PATRICK SOLÉ

RÉSUMÉ. L’alphabet F3 + 03BDF3 où 03BD2 = 1 est vu ici comme le quo-
tient de l’anneau des entiers du corps de nombres Q(~-2) par
l’idéal (3). Les codes sur cet alphabet qui sont autoduaux pour
le produit scalaire hermitien donnent des réseaux 2-modulaires
par la construction AK. Il existe une application de Gray qui en-
voie les codes auto-duaux pour le produit scalaire euclidien sur
les codes de Type III avec une involution sans points fixes dans
leur groupe d’automorphismes. On démontre des théorèmes style
Gleason pour les polynômes de poids symmétrisés des codes auto-
duaux euclidiens et pour les polynômes de poids "longueur" des
codes auto-duaux hermitiens. Une application est la construction
d’un réseau 2-modulaire optimal de dimension 18 et de norme 3
et de nouveaux réseaux 2-modulaires de norme 3 en dimensions

16, 18, 20, 22, 24, 26, 28 et 30.

ABSTRACT. The alphabet F3 + 03BDF3 where 03BD2= 1 is viewed here
as a quotient of the ring of integers of Q(~-2) by the ideal (3).
Self-dual F3 + 03BDF3 codes for the Hermitian scalar product give
2-modular lattices by construction AK. There is a Gray map
which maps self-dual codes for the Euclidean scalar product into
Type III codes with a fixed point free involution in their automor-
phism group. Gleason type theorems for the symmetrized weight
enumerators of Euclidean self-dual codes and the length weight
enumerator of Hermitian self-dual codes are derived. As an appli-
cation we construct an optimal 2-modular lattice of dimension 18
and minimum norm 3 and new odd 2-modular lattices of norm 3
for dimensions 16,18,20,22,24,26,28 and 30.

1. Introduction

Recent years witnessed a burst of activity in codes over Z4 [6, 11,12, 14,
2, 3, 20] with applications to (nonlinear) binary codes [14] and unimodular
lattices [2, 20]. Another important alphabet of size 4 besides Z4 is F2 +
uF2 introduced in [1] to construct lattices, and explored further in [10]
to study self-dual binary codes with a fixed point free (fpf) involution in

Manuscrit reçu le 14 d6cembre 2000.
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their automorphism groups. This last class of codes was introduced in [4].
The current work is a ternary analogue of [10]. Here self-dual ternary
codes with a fixed point free involution are characterized as Gray images of
self-dual codes over R3 :=F3 + vF3 for the Euclidean scalar product. For
instance Pless symmetry codes admit a natural description as Gray images
of extended cyclic codes over R3. The natural weight is the Lee weight
defined as the Hamming weight of the Gray image with values 0,1, 2.

While F2 + uF2 is a local ring like Z4 the alphabet F3 + vF3 is a semi-
local ring like Z6. It is, as noticed in [1] abstractly isomorphic to F3 x F3.
The main technical tool in that context is therefore the Chinese Remainder
Theorem (CRT). Another way to look at it would be the (u + v, u - v)
construction [15, 16].

Following [1] we view R3 (or F3 x F3) as a quotient of the ring of integers
of Q( 2) by the ideal (3). This induces a conjugation on R3, making it
necessary to introduce a Hermitian scalar product. The natural weight
attached to that number field is the length function which takes values
0, I, 2, 3. By construction A of [17] (Chap. 7) we obtain odd 2-modular
lattices as per the definition in [22].

2. Notation and Definitions

2.1. Codes. Let R3 denote the ring with 9 elements F3 + vF3 where v2 =
1. This ring contains two maximal ideals (v -1) and (v + 1). Observe that
both of R3/(v + 1) and R3/(V - 1) are F3. The CRT tells us that

More concretely, linear algebra over F3 shows that

for
A code over R3 is an R3-submodule of R’3. The Euclidean scalar product

is 
’

The Gray map 0 from R3 to is defined as §(z + vy) = (x, y) for all
x, y E F3 . The Lee weight of x+v y is the Hamming weight of its Gray image.
Define the Lee composition of x say mi (x) , i = 0,1, 2, as the number of
entries in x of weight i. The symmetrized length weight enumerator (slwe),
whose name will be justified in the next subsection, is then

The swap map on is defined as
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for all x, y e Fg.

2.2. Lattices. Let K be the quadratic number field C~(~) with ring
of integers 0 = Z[~2]. Then define R3 := (9/(3). Denote by a bar the
conjugation which fixes F3 and maps b to -b. Consequently, the natural
scalar product induced by the Hermitian scalar product of en is

The length function as defined in [1, p.96] is

Noticing that 2 * v (mod 3), and using the fact that K is Euclidean
we see that

We then extend lK componentwise to R3. Define the length composition
= 0, ... , 3 of x E Rn as the number of coordinates of length i. The

length weight enumerator (lwe) can then be defined as

Define the minimum length l(C) of a code C as the minimum of the
length of a nonzero element.

Define construction AK(C) as the preimage in on of C C R3. Recall
that an integral lattice is 1-modulax [1, 18] for some prime 1 if its dual is
equivalent to itself by a similarity of rate 0.

Theorem 2.1. If C a self-dual code then the lattice AK(C)/V3
is 2-modular. Its norm is equal to the minimum of 3 and l(C)13.

Proo f . The first assertion follows by [1, Remark 3.8] and can alternatively
be derived directly by checking that 0 is 2-modular for the bilinear form

The second assertion follows by observing that the lattice above contains
vectors of the shape 3/ v’3(lon-1) whose norm is 3. D
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3. Structure and duality of codes over R3

By the properties of CRT any code over R3 is permutation-equivalent to
a code generated by the following matrix:

where Ai and Bj are ternary matrices. Such a code is said to have rank
3k2, 3k3 }.

If H is a code over R3. Let H+ (resp. H-) be the ternary code such that
(1 + v)H+ (resp. (1 - v)H-) is read H mod (1 - v) (resp. H mod (1 + v)).
We have: H = (1 + v)H+ % (1 - v)H- with:

and

The code .H+ is permutation-equivalent to a code with generator matrix of
the form:

/... A ... " . A ,...

where Ai are ternary matrices. And the ternary code H- is permutation-
equivalent to a code with generator matrix of the form:

where Bi are ternary matrices.
The preceding statements show that any code H over F3 is completely

characterized by its associated codes H+ and H- and conversely. We

give now a characterization of the dual of a code depending on the scalar
product.

Theorem 3.1. Let H be a code of length n over R3, with associated ternary
codes H+ and H~ then for the Hermitian scalar product:

and the self-dual codes over R3 are the codes H with associated ternary
codes H+ and H- verifying H+ = (H-)1.
Proo f . Observe that if c, c’, d, d’ are ternary vectors of length n then

with -a = cd’ and -b = This shows that a = b = 0 if and only if
dc’=cd’=0. D

Here is the analogue of the preceding theorem for Euclidean codes.
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Theorem 3.2. Let H be a code of length n over R3, with associated ternary
codes H+ and H-, then for the Euclidean scalar product:

and the self-dual codes over R3 are the codes H with associated ternary
codes H+ and H- such that H+ and H- are self-dual ternary codes.

Proof. Observe that if c, c’, d, d’ are ternary vectors of length n then
, - " .,... " i ~,_ I - .1,... .~ 1 I- " - .I- - "

with -a = cc’ and -b = dd’. This shows that a = b = 0 if and only if
cc’ =dd’ =0. 0

This shows, in particular, that Euclidean self-dual codes exist in length
n if and only if n is a multiple of 4, since self-dual codes over F3 exist only
for length a multiple of 4.
The number of distinct self-dual sub-spaces (and therefore the mass for-

mula) for each duality can be deduced from the preceding theorems:

Theorem 3.3. Denote by Ne(n) the number of distinct self-dual codes of
length n over R3 for the Euclidean scalar product then n is a multiple of 4
and:

Proof. Self-dual codes over F3 are known to exist only for length n a
multiple of 4 and the number 0’( n) of such sub-spaces has been calculated
in [19]. In our case, applying the preceding theorem on the Euclidean
duality, we deduce Ne(n) only by squaring Q(n). 0

Theorem 3.4. Denote by Nh(n) the number of distinct self-dual codes of
length n over R3 for the Hermitian scadar product then:

Proof. Let H(H+, H-) be a self-dual Hermitian code of length n. If H+
is given, then H- has to be its dual. So that the number of distinct self-
dual codes is equal to the number of possible ternary code of length n.
The number of ternary codes of length n and dimension k, calculated by
induction, nk-1 3 +i=i , the total number follows. DIn uctIon, IS i=O T-+i--i 7 t e tota num er 0 ows.

Corollary 3.5. If (C, D) denotes a pair of self-dual ternary codes of length
n then v) + D(1 + v)) is a self-dual code with a fixed point free
involution invodutory automorphism.
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Proof. By preceding Theorem we know that is self-dual.
But (a + vb) (a’ + vb’) = 0 yields aa’ + bb’ = 0 i.e. 0(a + vb) 0(al + vb’) = 0.
The first assertion follows. The second assertion follows by noticing that
the Gray image of multiplication by v is the swap of the Gray image :

Now, we characterize a class of ternary self-dual codes with a special
symmetry property.

Theorem 3.6. Up to permutation of coordinates, every self-dual ternary
code T of length 2n with a fixed point free invodutory automorphism can be
readized as ~(C) for some self-dual C of length n over R3 for the Euclidean
scdlar product.

Proof. Let IT be such an automorphism. Write an arbitrary element of
T as (a, Q(a)) with a E F3. Take C to be the code of R3 consisting of all
a + To check that C is self-dual observe that if t := (a, b) :=

(a~, b’) are in T so is s (t’) = (b’, a~). Now the inner product ~-1 (t)~-1 (t’) =
(a + bv)(a’ + b’v) is tt’ + v(ts(t’)). 0

Examples of Euclidean self-dual R3-codes
1. Let p be a prime - -11 (mod 12). Consider the Pless symmetry code

S2p+2, of length 2p + 2. It is held invariant by the natural swap map
by [17], p. 511 (in particular, if p = 11 we get the ternary Golay code).
We denote by ISP+1 the inverse Gray image of length p+1. In the next
section this is constructed as a quadratic residue code over R3.

2. Let W be a n by n weighing matrix of weight k (i.e. = kI)
with k - E (mod 3) withe = :1:1. Assume that WT = eW. Then, the
R3 -span of W - evI is self-dual of length n.

Are there R3-codes which are both Euclidean self-dual and Hermitian
self-dual? The answer is simple.

Proposition 3.7. An R3-code C is self-dual for both the Hermitian and
Euclidean scalar product if and only if it is self-conjugate. In particular it
is the R3-span of a ternary matrix the F3-span of which is self-dual.

Proof. The first assertion is immediate from the definitions. The second
assertion follows by combining Theorems 3.1 and 3.2 to get C+ = C- a
ternary self-dual code. 0

This is the case in particular of Example 2 as the next section shows.

4. Pless Symmetry Codes

Pless defined symmetry codes over F3. These codes have length 2(p+1)
where p is a prime congruent to 5 modulo 6. These can be expressed as
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Gray images of extended quadratic residue codes defined over R3 when p
is congruent to 11 modulo 12.

Let p be a prime congruent to 5 modulo 6. Let e = ~-1/p).
If p =11 (mod 12) then E = -1 and let 6 = v E R3. Note that 62 = ep

in R3. Denote the action of natural involution of R3 by a bar, so that
= ~ - yv for x, y E F3. We shall construct quadratic residue codes

of length p + 1 over R3.
Let S~ be the matrix

where Sp is the circulant matrix whose (i,j)-entry is ( ( j - i)lp). Then

St = ESp and s2 = epI. Let Q be the submodule of RP3 +1 spanned by the
rows of 61 + SP. We show that Q is self-dual in an appropriate sense. If
E = -1 then R = R3 and 61 + Sp = vI + Sp. Hence

As it will become apparent that = 3P+’, then Q is self-orthogonal.
Recall the Gray code map 0 : as above for R3. This3

map preserves orthogonality and so is self orthogonal. In each case
contains the code with generator matrix I ), and so 

Consequently has this generator matrix and is the Pless symmetry
code.

5. The MacWilliams Relations

The complete weight enumerator for a code over R3 is given by:

where there are vectors in C with ai appearing
ai times in the vector.

5.1. The Euclidean Inner Product. Notice there is no generating char-
acter for the ring, hence the MacWilliams relations in [24] do not apply.
Instead we use a slightly modified approach using a symmetric character
table for the additive group of the ring as is done in C’l~. Index the matrix
by the elements of R3 in the following order:
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Then the MacWilliams relations for the complete weight enumerator are

given by the following matrix where oi = e 23 t .

Specializing the variables to the symmetric (i.e. grouping the variables
with their symmetric as one variable) and indexing the matrix by

we obtain the MacWilliams relations for the symmetrized weight enumer-
ator :

Further specialization gets the MacWilliams relations for the Hamming
weight enumerator:

The following matrix gives the weight enumerator for the length weight
enumerator and is indexed by 0, ~ 1, xv, ::l: 1 :f: v.

The symmetrized length weight enumerator is given by the following
matrix, where :i:1 and ~v are grouped together:
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5.2. The Hermitian Inner Product. The complete weight enumerator
for the Hermitian inner product can be determined from the MacWilliams
relations for the standard inner product and are given by the matrix:

We specialize variables to get the MacWilliams relations for the sym-
metrized weight enumerator.

Then we have MH = MH, ML = ML , and MSL = MSL .
Example: Let C be the code {O, 1 + 2v, 2 + v}. Its weight enumerator is

~==~0+~5+~7. Applying Mc to W gives ao + a4 + a8 corresponding to
its orthogonal in the ordinary inner product, i.e. the code {O, 1 + v,1 + 
Applying Me to W gives ao + a5 + a7 corresponding to its orthogonal in
the Hermitian inner product, i.e. the code C.

5.3. Gleason Relations. Define the matrices P3 and P4 as diagonal ma-
trices with entries respectively and 1, W, w , 1. Define the matrix
groups G3 := MSL, P3, iI3 &#x3E;, and G4 := ML, P4 &#x3E; . The following
lemma is easily dealt with by Magma.

Lemma 5.1. The groups G3 and G4 are of respective orders 48, 24 and
have Molien series (corresponding to Hironaka decomposition of their ring
o f invarzants) respectively
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The group G4 is abstractly isomorphic to the group number 2 with name
G(l,1, 4) in the list of [23].
We are now in a position to state the following analogues of Gleason

theorem. The Gleason polynomials are easy to obtain in Magma and too
unwieldy to be recorded.

Theorem 5.2. The symmetrized length weight enumerator of a Euclidean
code is invariant under G3. It belongs to the ring S ED h8S ED EÐ h12S
with

with g4, g4, g12 are primary invariants of degree 4, 4,12 respectively and
h8, h8, h12 are secondary invariants of degree 8, 8, and 12 respectively.
Proof.. The slwe is invariant under P3 by self-duality of the Gray image.
Invariance under iI3 follows by the fact that the length must be a multiple
of 4 by Theorem 3.2. 0

Theorem 5.3. The length weight enumerator of a Hermitian code is in-
variant Under G4. It belongs to the ring

where fi is an homogeneous podynomial of degree i in a, b, c, d.

Proof. The lwe is invariant under P4 by the integrality of the corresponding
lattice. D

6. Some odd 2-modular lattices

In this section we give some codes over R3 for the lengths n = 4, 6, 8, 9,10,
11,12,13,14 and 15, which are Hermitian self-dual and have minimum
length weight 9. All these codes give by construction Ax examples of
odd 2-modular lattices of dimension 2n and minimum norm 3 by Theorem
2.1.

The following upper bound was given in [22]:
Theorem 6.1. If L is a strongly 2-modular lattice with norm It in dimen-
sion n then: 

_

Thus by theorem 2.1 a direct construction AK can only give extremal
odd lattices of norm 3 for lengths strictly less than 8.

The code of length 8 leads to the unique 2-modular lattice of dimension
16 and norm 3, the so called ’odd Barnes-Wall’ lattice of [22], the code of
length 9 leads to a new optimal 2-modular lattice of dimension 18 since for
this length there is no extremal lattice (i.e. norm 4) [22]. The other codes
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lead to norm 3 odd 2-modular lattices of dimension 2n. All the lattices
constructed for n &#x3E; 9 are new.
The codes of lengths lower than 7 are easy to find since we only need a

minimum length weight of 6 to obtain extremal codes. We now describe
how we found the codes of length 8 or more: by Theorem 3.1 we know
that the self-dual Hermitian codes of length n are the codes H which are
written:

with C a ternary code of length n. In order to find such codes H with

length weight 9 or more, we first notice that if C fl Cl is non null then
H contains words of length weight equal to 3, and also that if C or Cl
contain non null words of Hamming weight 2 or less then H contains words
of length weight 3 or 6.
We therefore searched for ternary codes C with the following necessary

conditions:

The codes were found, starting from binary codes with good minimum
weight read-off (mod 3) and when the code H did not have good minimum
length weight, we exchanged some 1 by -1 in the ternary code C. The
minimum length weight was checked by exhaustive search, using the Magma
system.
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