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Products and quotients of numbers
with small partial quotients

par STEPHEN ASTELS

RÉSUMÉ. On note F(m) 1’ensemble des nombres dont tous les
quotients partiels (autres que le premier) sont inférieurs à m.
Dans cet article, nous nous intéressons aux produits et quotients
d’ensembles du type F(m).

ABSTRACT. For any positive integer m let F(m) denote the set of
numbers with all partial quotients (except possibly the first) not
exceeding m. In this paper we characterize most products and
quotients of sets of the form F(m).

1. Introduction

Let x be a real number and n a positive integer. We say that x is n-baddy
approxirrcable if for every rational number p/q,

It can be shown that the set of such numbers is of Lebesgue measure zero;
however, in the following sense it is still quite large. For any positive integer
m let F(m) be the set of numbers

where by [ao, aI, ~2) - - - we denote the continued fractions

with partial quotients ao, al, a2 and so on. It can be shown that for every
x E F(m) and every p/q E Q,
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so that F(m) is a set of (m + 2)-badly approximable numbers. Note that

and hence is of Hausdorff dimension zero, and is of little interest to us.
In 1947 Marshall Hall, Jr. proved [6] that

where for two sets A and B of real numbers we denote by A ~ B the set

In fact, we shall show in Theorem 1.2 that

More generally we will examine products and quotients of sets of the form
F(m). For any set A of real numbers we define A-1 to be the set

and let A/B denote the set A. J3 ~. We would like to completely describe

where k and I are non-negative integers and mi, nj &#x3E; 2 for 1  i  k and

1  j  l. We can do this except in a few cases. Define E by

where we consider the components of each (bZ ) to be unordered. We
have the following results.

Theorem 1.1. Let rral, ... , mk 2:: 2 and nl, ... , 2 be integers for some
.. - ~., I ...

For positive integers m we define g(m) by

Theorem 1.2. Let ml &#x3E; m2 &#x3E; ~ ~ ~ &#x3E; 2 be integers for some k &#x3E; 2.

f or some L and U d epending on m1, ... , More precisely, we have



389

and

We shall prove partial results along the lines of Theorems 1.1 and 1.2 for
a few of the exceptional cases.

Theorem 1.3. F(3) ~ F(3) and F(5) ~ F(2) both contain (-oo, -c] U [c, oo)
for some constant c.

Theorem 1.4. Let x be a non-zero real number,. Then x is a member of
F(3)/F(3) and F(5)/F(2) except possibly if x = rls for some relatively
prime integers r and s with either r or s less than 8.

Note that since F(5) C F(6) Theorems 1.3 and 1.4 also yield partial
descriptions of F(6) . F(2) and F(6)/F(2).

Finally, we establish the multiplicative analog of results contained in [3].

Theorem 1.5. For some constant c, F(3)F(2)F(2) D (-oo, -c] U [c, oo).
Further,

Our basic approach in establishing these theorems will be similar in spirit
to that of Hall in that for integers m we will characterize (0,1~ nF (m) as
a Cantor set and use Cantor set techniques to prove our results.

2. Background
Let T be a connected directed graph. We say that T is a tree if every

vertex V of T has at most one edge terminating at V, and one vertex VR
has no edges terminating at VR. We call VR the root of T. If there is an

edge connecting Vl to V2, then we say that V2 is a subvertex of Vl. A tree
where each vertex has at most 2 subvertices is called a binary tree.
We define a generalized Cantor set (henceforth known as a Cantor set)

to be any set C of real numbers of the form

where I is a finite closed interval and 10i ; i &#x3E; 1} is a countable (finite
or infinite) collection of disjoint open intervals contained in I. We may
inductively define a binary tree D that will represent C. Let the root of
the tree be the interval I. We say that III is the zeroth level of the tree.
Now say that we have defined our tree up to the nth level. We define the
(n + 1)th level of the tree as follows. Let 11 be an nth level vertex of our
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tree for some binary word zu (i.e. w is a finite string of zeros and ones).
Assume first that 

, ,

(so that C) . Let OIW be the interval in the set 10i ; z &#x3E;_ 1 ~ of least
index which is contained in Ilv and let Iw° and be closed intervals with

We let Iw° and be subvertices of I~’ in D and define the thickness of
I~’ to be

where for any interval J we let denote the length of J. If

then we set Iwo = jw, let Iw° be the subvertex of Iw in D and put 
00 .

We repeat this process for every vertex Iw in the nth level of D. The
level of the tree is the set of vertices I v in D with Ivl = where

Ivl [ denotes the length of the word v. We continue this process inductively,
creating the infinite tree D. For example, we might construct the following
tree.

hence

Any tree with this property is said to be a derivation of the Cantor set C
from I. The intervals 1,10,... are called bridges of the derivation, while
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the open intervals Ol, are called gaps of C. We define the thickness
of the derivation D to be

For example, if C is the usual middle-third Cantor set we may take a
derivation of C to be the tree D with root I = ~0,1~ and bridges

for all finite binary words did2 ... dt . We find that in this case T (D) = 1.
Of course we may reorder the set of and hence obtain many different

derivations of the same Cantor set. These derivations may have different

thicknesses, so we define the thickness of the Cantor set C to be

where the supremum is over all derivations D of C. It is not difficult to show
that the supremum is attained if the sequence is non-decreasing (see
Lemma 3.1 of [2]). We also define the normalized thickness of C, 7(C), to
be

The problem of characterizing products and quotients of F (m)’s will involve
finding sums of certain Cantor sets. Let k be an integer which is at least
2, and assume that for 1  j  k, Cj is a Cantor set derived from Ij. We
would like to determine when

where we are considering the pointwise sum of the sets. If h, ... , are

all much smaller than one of the gaps in Ck then (2) cannot hold. Hence
in our approach to finding sums of Cantor sets we will only consider sets
that are approximately the same size, as follows. Let k be an integer which
is at least 2, and assume that for 1  j  k, Aj is a bridge of the Cantor
set Cj, with Oj a gap of Cj of maximal size contained in Aj . We say that
the sequence of bridges (A1, ... , is compatible if

for r = 1,..., k - 1 a,nd j - 1,..., r. Note that if k = 2 than this is

equivalent to the condition

In [2] the author derived a result concerning the sum of a finite number of
Cantor sets.
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Theorem 2.1. Let k be a positive integer and for j = 1, 2, ... , k let Cj be
a Cantor set derived from Ij. Put Sy = 7(Cl) + ... and assume
that (II, ... , Ik) is compatible. If S.y &#x3E; 1 then

Otherwise

For positive integers 01,02?"- we denote by (01,02? -") the continued
fraction [0, al, a2, - -. ]. For any positive integer m &#x3E; 2 let C(m)= (0,1~ n
F(m) and put

where g(m) is defined as in (1). We may characterize C(m) as a Cantor
set derived from I(m) in the following manner. For any real a and b, we
denote by [[a, b]] and ((a, b)) the intervals

and

Assume that

is a bridge of C(m) with b  m. We form the subvertices of A by setting

and

Note that A° is of the form (3) with = b and b replaced by 1. Similarly
A1 is also of the form (3). Since I(m) is of the form (3) with r = 0 and
b = 1, by induction we obtain a derivation D(m) of C(m) from I(m).
By calculation it can be shown (see Lemma 4.2 of [2]) that
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TABLE 1. Values of T(C(m)) and -y(C(m)) to three decimal places

Hence we may easily calculate T(C(m)) and y(C(m)) (See Table 1). In

[2] the author used these calculations along with Theorem 2.1 to derive
results concerning sums and differences of numbers with small partial quo-
tients. We may also use this approach to examine products and quotients
of F(m)’s. For any set E of positive, non-zero numbers we denote by E*
the set

It is not difficult to see that C(m)* is also a Cantor set. We have the

following result.

Lemma 2.2. Let A and B be intervdls contained in [x, x + w], where x
and w are real numbers with 0  2w  x. Then

Proof. We may assume that A and B are closed. Let A = [x + ao, x + a,]
and B = (x + bo, x + bl). Then

and the result follows from the application of the power series expansion of
log(1 + y). 0

Note that by Lemma 2.2 we can make the thickness of (n + C(m))* as
close as desired to that of C(m) by choosing n large. For example, it follows
from Theorem 2.1, Lemma 2.2 and Table 1 that for n sufficiently large,

3. Proofs of Theorems 1.1 and 1.2

For any set B of positive integers we let F(B) denote the set of real
numbers x such that all partial quotients of x, except possibly the first, are
members of B. We also let ~y(B) denote the normalized thickness of the
Cantor set F(B) n ~0,1~. In this manuscript we are concerned with

In [2] the author derived the following general result.
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Theorem 3.1. Let k be a positive integer. For j = 1, ... , k let Bj be a set
of positive integers and let fj E 11, -1}. If

then

Proof. See [2], Theorem 1.7, part 2. 0

Proof of Theorem 1.1. Since zero is not contained in F(m) for any m, The-
orem 1.1 follows from Table 1 and Theorem 3.1. 0

The proof of Theorem 1.2 will require several lemmas. For positive inte-
gers N and m &#x3E; 2 we put

Note that for all positive integers N and m 2 2 the sets CN (m) and CÑ(m)
are Cantor sets. We have the following results.

Lemma 3.2. If N is sufficiently large then

For m &#x3E; 9 and N sufficiently large,

Proof. The result is attained by calculation, using Lemma 2.2 to limit the
number of calculations that must be performed in each case. D

Lemma 3.3. If 0  then

Proof. See (1), Lemmas 6.4.1 and 6.4.2.
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Lemma 3.4. We have

and

Proof. The first result is Theorem 1.8 of [2], so we shall only prove the
second. By Lemma 3.2 we have

for N sufficiently large. Therefore by Theorem 2.1

and letting N tend to infinity we find

To complete the proof of the lemma we must slightly enlarge the set on the
right-hand side of (4). Let

then we find by calculation that

Let O- and 0+ denote the largest gap in (1-C(7))* and C(7)* respectively.
Then

Further,

and

so ((1 - I(7))*, (1 - Il)*) and (1(7)*, (1 - 11 )*) are compatible pairs of
bridges. Therefore by Theorem 2.1 we have
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and

Since

by Lemma 3.3, our result follows from (4), (5) and (6).
Lemma 3.5. We have

Proof. By Lemma 3.2 we have, for N sufficiently large,

Therefore by Theorem 2.1 and letting N tend to infinity we have

As in the proof of Lemma 3.4 we must slightly enlarge this set to achieve
the desired result. In particular we put

By calculation we find that

and by Theorem 2.1 we have

and

The lemma follows from (7), (8) and (9). D

Proof of Theorem 1. 2. Assume first that k = 2. If (ml, m2) equals (4, 3)
or (7,2) then our result is a consequence of Lemma 3.4. Otherwise by
Lemma 3.3 we have
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By Lemmas 3.2 it follows that for - N sufficiently large

so by Theorem 2.1

and

Since g(m) = ~l,m) our result follows upon letting N tend to infinity.
Assume next that k &#x3E; 2. If k = 4 and (ml, m2, m3, m4) _ (2,2,2,2)

then the theorem is a consequence of Lemma 3.5. Otherwise our result

follows from Lemma 3.2, Lemma 3.3 and Theorem 2.1. 0

Unfortunately both ~y(C(5)) + q(C(2) ) and q(C(3)) + q(C(3)) are less
than one, so we cannot use Theorem 2.1 to find intervals in F(5) - F(2)
or F(3) - F(3). Instead we must use a more complicated approach, which
is similar in spirit to the approaches used independently by both Hanno
Schecker [8] and Gregory Freiman [5] in their examinations of F(3) + F(3).
Assume that m is an integer with m &#x3E; 3, and that A is a bridge of C(m)

with

for some positive integers aI, a2, ... , ar. Then we denote by A and OA the
intervals

and

We will derive results concerning sets of the form A + B. To do so we must
modify our concept of compatibility as follows. If A is a bridge of C(m)
and B is a bridge of C(n) for some m &#x3E; 3 and n &#x3E; 2 then we say that A
and B are P- compatible, written A ~ B, if

For integers m &#x3E; 2 let Wm denote the set of finite words with digits
between 1 and m inclusive. For any w E W’n with w = aia2 ... a, we put

and

In [4] the author proved the following result.
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Theorem 4.1. Let I(5; w) and I(2; v) be bridges of C(5) and C(2) re-

spectively. Assume that I(5;w) and I(2;v) are P-compatible, and that

{0,1,12}. Then

The proof of Theorem 4.1 is similar is spirit to the proof of Theorem
2.1 (as given in [2]), the key difference being that instead of relying on two
constants (the thicknesses) we must calculate 25 constants. However, all
of these constants are infimums of ratios of lengths of intervals (similar to
thickness), and so by Lemma 2.2 and the proof of Theorem 4.1 we have the
following result.

Lemma 4.2. m are sufficiently large then

and

whenever {Ql,1,12} and (n + 1(5; w))* and (m + I(2; v))* are P-

compatible.

Using the same technique as in the proofs of Theorem 4.1 and Lemma
4.2 (in this case using 91 constants) we may establish the following result
concerning F(3) ~ F(3).
Lemma 4.3. If are sufficiently large then

and

{0,1,13} and (n + 1(3; w))* and (m + 1(3; v))* are P-

compatible.
The reader is directed to Lemma 7.5.1 of [1] for more information re-

garding the calculations.
To prove Theorem 1.3 we will tile our infinite rays with intervals of the

form (n:l:l(k;w))(m+1(l;v)), for (k, l) equal to (5,2) or (3,3). By Lemmas
4.2 and 4.3 the infinite rays will be contained in F(k) ~ F(l). To construct
the tilings we will use the following technical lemmas.

Lemma 4.4. Let I(k; w) and I(1; v) be bridges of C(k) and C(l) respec-
tively, for some words v. Assume that I(k; w) ~ I(I; v) and 11(l; v) I &#x3E;

2~01~~.~"~~. Then for n sufficiently large and n  m  2n,
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Proof. See [1], Lemma 7.6.1. 0

Lemma 4.5. Let al, a2, /3z be real numbers with 0  al  ~31  1 and
0  a2  f32  1. Let J be any number in the range

For any integers r and s let J(r, s) denote the interval

Then for N, sufficiently large,

is an interval.

Proof. This is equivalent to Lemma 7.6.2 of [1]. 0

Proof of Theorem 1.3. We first consider F(5) - F(2). Let

Then by Lemma 4.4 there exists No such that

foranyn&#x3E;Noandnm2n. By Lemma 4.2 we have

where

Put

By Lemma 4.5, for N1 sufficiently large,

is an interval. Therefore by (10) there exists a constant ci such that

By a similar process we find that

for some constant c2. Now we let
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and consider (n + 13) (m + 13) . Using the same technique as above we have

for some sufficiently large constants c4 and c5, and the theorem follows. D

To prove Theorem 1.4 we will add and subtract scaled versions of our

C(m) Cantor sets. We require a few preliminary results.

Lemma 5.1. Let (m, n) equal (5, 2) or (3, 3) and let a and b be non-zero
real numbers. Let I(m; w) and be bridges of C(5) and C(2) re-

spectively for some words w and v. Assume that aI(5; w) and bI(2; v) are
P- compatible, and that w, {0,1,12,13}. Then

Proof. This lemma is a consequence of the proofs of Theorem 4.1 and
Lemma 4.3 , since ratios of lengths of intervals remain unchanged when
the intervals are scaled. 0

Lemma 5.2. Let a and b be real numbers with a &#x3E; b and suppose that

(m, n) equals (3, 3), (5, 2) or (2, 5). Then there exists art integer t such that

otherwise.

Proof. We will prove the case (m, n) = (3, 3). The other cases are similar.
If blI(3; ll)l &#x3E; [ then we may take t = 0. Otherwise let t be
chosen such that

Then

by calculation, so 6)f(3; 11)) [ &#x3E; 11(1)t)l [ and the result follow.0
We will also need the following following version of Kronecker’s Theorem.

Lemma 5.3. Let 0 and x be real numbers with 0 irrational. Then for any
number N there exists integers q and p with p, q &#x3E; N and

Proof. See [7], Theorem 440.
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Proof of Theorem 1.4. Assume that (m, n) equals (3,3). The other cases

are similar. Let 6 E R Assume first that 0 &#x3E; 1 and that 0 g Q. By
Lemmas 5.1 and 5.2 the set C(3) - OC(3) contains an interval (~ - 6, x + J]
for some real x and J. By Lemma 5.3 there exist integers p and q such that

- - - -,

as required.
Next assume that 0 = r/s for some relatively prime integers r and s with

r &#x3E; s &#x3E; 8. By Lemma 5.2 there exists an integer t such that rI(3;11(1)t) ~
sI(3;11) and r~I(3;11(1)t)~ &#x3E; 3.3sI0(3; 11)1. By Lemma 5.1 we have

Further,

hence there exists real numbers a, /3 E C(3) and integers p and q such that
sa - = rq - sp (since r and s are relatively prime). Therefore

as required.
Assume next that 0 E (0, 1) and either 0 0 Q or 0 = r/s with both r and

s at least 8. Then by the above argument we have 1/0 E F(3)/F(3), hence
0 E F(3)/F(3).

Finally, we may extend our result to the negative portion of the real
line. Assume that 0  0 and either 0 0 Q or 0 = -r/s with r, s &#x3E; 8. By
a process similar to the above it follows that -9 E -F(3)/F(3), and the
theorem follows. Q

6. Proof of Theorem 1.5

In [3] the author used Theorem 2.1 to established the following result.

Theorem 6.1. We have

We can use this result to find intervals in the product and quotients of
F(3), F(2) and F(2).

Proof of Theorem 1.5. The first part of the theorem may be proved using
the techniques employed in the proofs of Theorems 6.1 and 1.3. Consider
the quotient F(3)F(2)/F(2), and let a = (T) and {3 = (2, I). By a process
similar to the irrational case of the proof of Theorem 1.4 it follows that for
all x V Q, ax and (3x are both in F(3)F(2)/F(2). Let 0 E Then
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since either 01a or is irrational, so 0 E F(3)F(2)/F(2) as
required.
The proof is similar for the set F(2)F(2)/F(3). 0
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